Regression with Correlated Errors

\[y_t = \alpha + \beta x_t + e_t \]

• In some regression models, the errors are correlated
 – Pure Trend Models
 – Pure Seasonality Models

• In these models the errors can be correlated

• Classical and robust standard errors are not appropriate
Example: Stock Volume
Least-Squares Variance Formula

Recall for $\nu_t = x_t e_t$

$$\text{var}(\hat{\beta}) \sim \frac{\text{var} \left(\sum_{t=1}^{T} \nu_t \right)}{[T \text{var}(x_t)]^2}$$

When the ν are uncorrelated

$$\text{var} \left(\sum_{t=1}^{T} \nu_t \right) = \sum_{t=1}^{T} \text{var}(\nu_t) = T \text{var}(\nu_t)$$

$$\text{var}(\hat{\beta}) \sim \frac{\text{var}(\nu_t)}{T[\text{var}(x_t)]^2}$$
General Formula

Define

\[
f_T = \frac{\text{var} \left(\sum_{t=1}^{T} v_t \right)}{T \text{ var}(v_t)}
\]

When the \(v \) are uncorrelated \(f_T = 1 \), otherwise not.

Then

\[
\text{var}(\hat{\beta}) \sim \frac{\text{var}(x_t e_t)}{T \left[\text{var}(x_t) \right]^2} f_T
\]
Adjustment Factor

• The asymptotic variance of least-squares is the conventional, multiplied by an adjustment factor for the serial correlation

\[
\text{var}(\hat{\beta}) \sim \frac{\text{var}(x_t e_t)}{T [\text{var}(x_t)]^2} f_T
\]
Autocovariance of v

- We want a useful formula for
 \[
 f_T = \frac{\text{var} \left(\sum_{t=1}^{T} v_t \right)}{T \text{var}(v_t)}
 \]

- Since $E(v_t) = 0$, then
 \[
 E(v_t^2) = \text{var}(v_t)
 \]
 \[
 E(v_t v_j) = \text{cov}(v_t v_j) = \gamma(t - j)
 \]

the autocovariance of v_t
Variance of sum of correlated v

$$\text{var}\left(\sum_{t=1}^{T} v_t\right) = E\left(\sum_{t=1}^{T} v_t\right)^2$$

$$= E\left(\sum_{t=1}^{T} v_t \sum_{j=1}^{T} v_j\right)$$

$$= \sum_{t=1}^{T} \sum_{j=1}^{T} E(v_t v_j)$$

$$= \sum_{t=1}^{T} \sum_{j=1}^{T} \gamma(t - j)$$
Adjustment Factor

\[f_T = \frac{\text{var} \left(\sum_{t=1}^{T} v_t \right)}{T \text{var}(v_t)} = \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{T} \rho(t-j) \]

- Where the \(\rho(t-j) \) are the autocorrelations of \(v_t \)
This double sum is the sum of all the elements in the matrix

\[
\begin{bmatrix}
\rho(0) & \rho(1) & \rho(2) & \cdots & \rho(T-1) \\
\rho(1) & \rho(0) & \rho(1) & \cdots & \rho(T-2) \\
\rho(2) & \rho(1) & \rho(0) & \cdots & \rho(T-3) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho(T-1) & \rho(T-2) & \rho(T-3) & \cdots & \rho(0)
\end{bmatrix}
\]

There are

- \(T \) of the \(\rho(0) \)
- \(2(T-1) \) of the \(\rho(1) \)
- \(2(T-2) \) of the \(\rho(2) \)
- \(\ldots \)

\[T + \sum_{j=1}^{T-1} 2(T-j)\rho(j) \]
Adjustment Factor

- Dividing by T

\[f_T = \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{T} \rho(t - j) \]

\[= 1 + \sum_{j=1}^{T-1} 2 \left(\frac{T - j}{T} \right) \rho(j) \]

- If T is large

\[f_T \rightarrow 1 + 2 \sum_{j=1}^{\infty} \rho(j) = f \]
Summary: Least-Squares Variance

• When the errors are correlated

\[\text{var}(\hat{\beta}) \sim \frac{\text{var}(x_t e_t)}{T \text{var}(x_t)^2} f \]

\[f = 1 + 2 \sum_{j=1}^{\infty} \rho(j) \]

• The conventional formula is multiplied by an adjustment for autocorrelation
HAC Estimation

• Estimation of f
 – For variances and standard errors under autocorrelation

• Called heteroskedasticity and autocorrelation consistent (HAC) variance estimation

• Multiply conventional variance estimates by estimates of f
HAC Estimation

- The adjustment is

\[f = 1 + 2 \sum_{j=1}^{\infty} \rho(j) \]

where \(\rho(j) \) are the autocorrelations of \(v_t = x_t e_t \)

- Estimate \(\rho(j) \) by sample autocorrelations using least-squares residuals

- But in a sample of length \(T \) we cannot estimate all autocorrelations well
Unweighted HAC Estimator

• For some *truncation parameter* \(m \),

\[
\hat{f} = 1 + 2 \sum_{j=1}^{m} \hat{\rho}(j)
\]

• Original proposal
 – L. Hansen, Hodrick (1978)
 – Hal White (1982)

• Deficiencies
 – This estimator is not smooth in the truncation parameter
 – The sample estimate can be negative
Lars Hansen

- Professor Lars Hansen, U Chicago
- Invented Generalized Method of Moments, the leading estimation method for applied econometrics
- Introduced unweighted HAC estimator for multi-step regression models
- Won 2013 Nobel Prize in economics
Example of Negative Estimate

• Take \(m=1 \)
• Then \(\hat{f} = 1 + 2\hat{\rho}(1) < 0 \)
 if estimated \(\rho(1) < -1/2 \)
Example: Liquor Sales

- Transform to growth rates
- Monthly change in log liquor sales
- Regress on Seasonal Dummies only to obtain seasonal pattern
Autocorrelation of Residual

- The first autocorrelation is less than $-1/2$
Weighted HAC Estimator

\[\hat{f} = 1 + 2 \sum_{j=1}^{m} \left(\frac{m - j}{m} \right) \hat{\varrho}(j) \]

- Called Newey-West variance estimator
 - Whitney Newey, Ken West (1987)
- This weighted estimator is always positive
- Smoothly changes in truncation parameter \(m \)
Whitney Newey and Ken West

• Professor Whitney Newey, MIT
 – Leading econometric theorist
• Professor Ken West, Wisconsin
 – Macroeconomist & econometrician
 – Forecast evaluation and comparison
• Joint paper in 1987
 – Weighted HAC estimator
 – One of the most referenced papers in econometrics
Computation

• In STATA, replace `regress` command with `newey` command

 `.newey y x, lag(m)`

• You supply the truncation parameter “m”

• Similar to regression with robust standard errors

• These are identical

 `.newey y x, lag(0)`

 `.reg y x, r`
Example: Liquor Sales

```
.reg dy b12.m,r
```

Linear regression

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----|---------|------------------|-----|------|----------------------|
| dy | | | | | |
| m | -.788371 | .0120765 | -65.28 | 0.000 | -.8121825 to -.7645595 |
| 1 | -.321870 | .0105478 | -30.52 | 0.000 | -.3426677 to -.3010733 |
| 2 | -.210318 | .0094619 | -22.23 | 0.000 | -.2289744 to -.1916619 |
| 3 | -.300291 | .010514 | -28.56 | 0.000 | -.3210222 to -.2795607 |
| 4 | -.225811 | .0100036 | -22.57 | 0.000 | -.245536 to -.2060876 |
| 5 | -.318535 | .0096047 | -33.16 | 0.000 | -.3374735 to -.2995981 |
| 6 | -.261882 | .0100737 | -26.00 | 0.000 | -.2817449 to -.2420198 |
| 7 | -.339259 | .0107775 | -31.48 | 0.000 | -.3605093 to -.3180088 |
| 8 | -.362447 | .0123023 | -29.46 | 0.000 | -.3867042 to -.3381907 |
| 9 | -.278295 | .010299 | -27.02 | 0.000 | -.2986023 to -.257989 |
| 10 | -.276187 | .0108553 | -25.44 | 0.000 | -.2975908 to -.2547835 |
| _cons | .3099733 | .0065735 | 47.16 | 0.000 | .2970122 to .3229343 |

Number of obs = 215
F(11, 203) = 423.80
Prob > F = 0.0000
R-squared = 0.9613
Root MSE = 0.0347
With Newey-West standard errors

```
. newey dy b12.m, lag(12)
```

Regression with Newey-West standard errors

| dy | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----|-------------|-----------|-------|-----|---------------------|
| m | -0.788371 | 0.0149943 | -52.58| 0.000| -0.8179356, -0.7588064 |
| 1 | -0.3218705 | 0.0093479 | -34.43| 0.000| -0.3403018, -0.3034391 |
| 2 | -0.2103181 | 0.0100234 | -20.98| 0.000| -0.2300816, -0.1905547 |
| 3 | -0.3002915 | 0.0087418 | -34.35| 0.000| -0.3175278, -0.2830551 |
| 4 | -0.2258118 | 0.0128307 | -17.60| 0.000| -0.2511104, -0.2005132 |
| 5 | -0.3185358 | 0.0087245 | -36.51| 0.000| -0.335738, -0.3013336 |
| 6 | -0.2618824 | 0.0090442 | -28.96| 0.000| -0.279715, -0.2440498 |
| 7 | -0.3392591 | 0.0134996 | -25.13| 0.000| -0.3658765, -0.3126416 |
| 8 | -0.3624475 | 0.0075171 | -48.22| 0.000| -0.377269, -0.3476259 |
| 9 | -0.2782956 | 0.0116472 | -23.89| 0.000| -0.3012606, -0.2553307 |
| 10 | -0.2761872 | 0.0126533 | -21.83| 0.000| -0.3011359, -0.2512384 |
| _cons | 0.3099733 | 0.0066381 | 46.70 | 0.000| 0.2968848, 0.3230618 |
Truncation Parameter

- m should be large when autocorrelation is large
- Sophistical data-dependent methods to pick m have been developed, but are not in STATA
- Stock-Watson default (explanatory x’s)
 \[m = 0.75T^{1/3} \]
- Trend/Seasonal default
 \[m = 1.4T^{1/3} \]
Derivation of Defaults

• Due to Andrews (1991)
• The optimal \(m \) minimizes the mean-squared error of the estimate of \(f \)
• When \(\nu_t \) is an AR(1) with coefficient \(\rho \), Andrews found the optimal \(m \) is

\[
m = CT^{1/3}
\]

\[
C = \left(\frac{6 \rho^2}{(1 - \rho^2)^2} \right)^{1/3}
\]
Donald Andrews

- Professor Donald Andrews, Yale
- Leading econometric theorist
- Contributions to time-series
 - Optimal selection of truncation parameter
 - Tests for structural change
Default Values

\[m = CT^{1/3} \]

\[C = \left(\frac{6\rho^2}{(1-\rho^2)^2} \right)^{1/3} \]

- **Stock-Watson**
 - If both \(x_t \) and \(e_t \) are AR(1) with coef \(\frac{1}{2} \), then \(v_t = x_t e_t \) has AR(1) coefficient \(\rho = .25 \). Plug this in, and \(C = .75 \)

- **Trend-Seasonal**
 - If \(x_t \) is trend and/or seasonal and \(e_t \) are AR(1) with coef \(\frac{1}{2} \), then \(v_t = x_t e_t \) has AR(1) coefficient \(\rho = .5 \). Plug this in, and \(C = 1.4 \)
Liquor Sales again

. dis 1.4*e(N)^{(1/3)}
8.387017

. newey dy b12.m, lag(8)

Regression with Newey-West standard errors
Number of obs = 215
F(11, 203) = 736.19
Prob > F = 0.0000

| dy | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----|-------|-----------|---|------|----------------------|
| m | | | | | |
| 1 | -.788371 | .0146673 | -53.75 | 0.000 | -.8172907 | -.7594513 |
| 2 | -.3218705 | .0089781 | -35.85 | 0.000 | -.3395727 | -.3041682 |
| 3 | -.2103181 | .0097191 | -21.64 | 0.000 | -.2294815 | -.1911548 |
| 4 | -.3002915 | .0097151 | -30.91 | 0.000 | -.319447 | -.281136 |
| 5 | -.2258118 | .0116748 | -19.34 | 0.000 | -.2488312 | -.2027924 |
| 6 | -.3185358 | .0089588 | -35.56 | 0.000 | -.3362001 | -.3008715 |
| 7 | -.2618824 | .00916 | -28.59 | 0.000 | -.2799433 | -.2438214 |
| 8 | -.3392591 | .0126319 | -26.86 | 0.000 | -.3641655 | -.3143526 |
| 9 | -.3624475 | .0091312 | -39.69 | 0.000 | -.3804516 | -.3444434 |
| 10 | -.2782956 | .0106888 | -26.04 | 0.000 | -.2993709 | -.2572204 |
| 11 | -.2761872 | .0126343 | -21.86 | 0.000 | -.3010984 | -.2512759 |
| _cons | .3099733 | .0065735 | 47.16 | 0.000 | .2970122 | .3229343 |
Example: Men’s Labor Force Participation Rate, Trend Model
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Summary

• In one-step-ahead forecast regressions
• If the errors are serially uncorrelated
 – Use Robust standard errors
 • reg with r option
• If the errors are correlated
 – Use Newey-West standard errors
 • newey y x, lag(m)
 – In pure trend or seasonality models
 • Set m=1.4T^{1/3}
 – In dynamic regression
 • Set m=.75T^{1/3}
h-step-ahead forecasts

• In the AR(1) Model

\[y_t = \alpha + \beta y_{t-1} + e_t \]

• The optimal h-step forecasting regression takes the form

\[y_t = \alpha + \beta^h y_{t-h} + u_t \]
\[u_t = e_t + \beta e_{t-1} + \beta^2 e_{t-2} + \cdots + \beta^{h-1} e_{t-h+1} \]

• The error \(u_t \) is a correlated MA(h-1)
 – Unless \(\beta=0 \)
h-step-ahead models

• In any h-step model

\[y_t = \alpha + \beta y_{t-h} + u_t \]

the variable \(v_t = y_{t-h} e_t \) is generally serially correlated

• Generally MA(h-1)

• Correct adjustment term

\[f = 1 + 2 \sum_{j=1}^{h-1} \rho(j) \]
Newey-West Standard Errors

• Standard errors can be estimated using the Newey-West method

• Truncation parameter set to forecast horizon
 – \(m = h \)

\[
\hat{f} = 1 + 2\sum_{j=1}^{h-1} \left(\frac{h-j}{h} \right) \hat{\rho}(j)
\]
Example: Unemployment Rate

- 12-month-ahead forecast with 4 AR lags
 - Robust standard errors:

```
.reg ur L(12/15).ur, r
```

Linear regression

| Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|------------------|------|------|---------------------|
| ur | | | | |
| L12. | 1.686434 | .2920485 | 5.77 | 0.000 | 1.113072 2.259795 |
| L13. | -.0698989 | .3908098 | -0.18| 0.858 | -.837153 .6973552 |
| L14. | -.5401552 | .3461042 | -1.56| 0.119 | -1.219641 .1393309 |
| L15. | -.4100512 | .2538791 | -1.62| 0.107 | -.9084772 .0883747 |
| _cons | 1.94875 | .1705347 | 11.43| 0.000 | 1.613949 2.28355 |

Number of obs = 730
F(4, 725) = 139.36
Prob > F = 0.0000
R-squared = 0.4955
Root MSE = 1.1088
Example: Unemployment Rate

- Newey-West standard errors:
- Standard errors on lag 13 and 14 decrease by half
- Standard error on constant more than doubles

```
.newey ur L(12/15).ur, lag(12)
```

```
Regression with Newey-West standard errors
maximum lag: 12

|      | Coef.  | Std. Err. |    t  | P>|t| | [95% Conf. Interval] |
|------|--------|-----------|-------|------|----------------------|
| ur   |        |           |       |      |                      |
| L12  | 1.686434 | .273372   | 6.17  | 0.000| 1.149738 - 2.223129  |
| L13  | -0.0698989 | .1564772  | -0.45 | 0.655| -0.3771014 - 0.2373036 |
| L14  | -0.5401552 | .1378278  | -3.92 | 0.000| -0.8107445 - 0.2695658 |
| L15  | -0.4100512 | .246517   | -1.66 | 0.097| -0.8940236 - 0.0739212 |
| _cons| 1.94875  | .4550687  | 4.28  | 0.000| 1.05534 - 2.842159   |

Number of obs = 730
F( 4, 725) = 21.00
Prob > F = 0.0000
```
newey and forecasting

- `predict` works after `newey` command, but not with `stdf` option
- `e(rmse)` does not work, only after `regress` or `reg`
 - rmse not computed or reported
- `newey` not appropriate for iterated forecasts
- Use `newey` to assess model and examine coefficients
- Use `reg` to compute out-of-sample forecast intervals
Summary

• In one-step-ahead forecast regressions
 – If the errors are serially uncorrelated, use `r` option
 – If the errors are correlated
 • Use `newey` for standard errors
 – In pure trend or seasonality models set $m=1.4T^{1/3}$
 – In dynamic regression set $m=.75T^{1/3}n$
 • Use `reg` and `predict sf, stdf` for forecast intervals, or iterated forecasts with `forecast`

• In h-step-ahead forecast regressions
 – Use `newey` with $m=h$ for standard errors
 – Use `reg` and `predict sf, stdf` for forecast intervals
Joint Tests

\[y_t = \alpha + \beta_1 y_{t-1} + \cdots + \beta_p y_{t-p} + e_t \]

- How do we assess if a subset of coefficients are jointly zero? Example: 3rd+4th lags

```
. reg gdp L(1/4).gdp,r
Linear regression
Number of obs = 247
F(  4,  242) =  8.85
Prob > F    =  0.0000
R-squared   =  0.1584
Root MSE    =  3.8132

|       | Coef.   | Robust Std. Err. | t   | P>|t|   | [95% Conf. Interval] |
|-------|---------|-----------------|-----|------|---------------------|
| gdp   |         |                 |     |      |                     |
| L1.   | .327656 | .076895         | 4.26| 0.000| .1761871            | .479125   |
| L2.   | .1466135| .0858808        | 1.71| 0.089| -.0225558           | .3157828  |
| L3.   | -.0980287| .0728951    | -1.34| 0.180| -.2416186           | .0455611  |
| L4.   | -.0889209| .0790354      | -1.13| 0.262| -.244606            | .0667641  |
| _cons | 2.378427| .4731312       | 5.03| 0.000| 1.446447            | 3.310408  |
```
Joint Hypothesis

• This is a joint test of
 \[\beta_3 = 0 \]
 \[\beta_4 = 0 \]

• This can be done with an “F test”

• In STATA, after `regress (reg)` or `newey` .
 `test L3.gdp L4.gdp`

• List variables whose coefficients are tested for zero.
Joint Tests

• “F test” named after R.A. Fisher
 – (1890-1992)
 – A founder of modern statistical theory

• Modern form known as a “Wald test”, named after Abraham Wald (1902-1950)
 – Early contributor to econometrics
F test computation

```
. test L3.gdp L4.gdp
( 1)  L3.gdp = 0
( 2)  L4.gdp = 0

    F(  2,  242) =  1.76
    Prob > F =  0.1747
```

- You need to list each variable separately
- STATA describes the hypothesis
- The value of “F” is the F-statistic
- “Prob>F” is the p-value
 - Small p-values cause rejection of hypothesis of zero coefficients
 - Conventionally, reject hypothesis if p-value < 0.05
Example: 2-step-ahead GDP AR(4)

```
.newey gdp L(2/5).gdp, lag(2)
```

Regression with Newey-West standard errors

| Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-----------|------|------|-----------------------|
| gdp | 0.2410617 | 0.0768239 | 3.14 | 0.002 | 0.0897296 - 0.3923938 |
| L2. | -0.0368004 | 0.0703583 | -0.52 | 0.601 | -0.1753962 - 0.1017954 |
| L3. | -0.0910108 | 0.0791053 | -1.15 | 0.251 | -0.2468369 - 0.0648152 |
| L4. | -0.1128763 | 0.0687243 | -1.64 | 0.102 | -0.2482533 - 0.0225006 |
| _cons | 3.329426 | 0.5460059 | 6.10 | 0.000 | 2.253873 - 4.404979 |

```
.test L3.gdp L4.gdp L5.gdp
```

(1) L3.gdp = 0
(2) L4.gdp = 0
(3) L5.gdp = 0

F(3, 241) = 1.65
Prob > F = 0.1793
Testing after Estimation

• The commands `predict` and `test` are applied to the most recently estimated model

• The command `test` uses the standard error method specified by the estimation command
 – `reg y x`: classical F test
 – `reg r x, r`: heteroskedasticity-robust F test
 – `newey y x, lag(m)`: correlation-robust F test
 • (The robust tests are actually Wald statistics)