Distribution of Estimates

• From Econometrics (410)

• Linear Regression Model

 \[y_t = \alpha + \beta x_t + e_t \]

 – Assume \((y_t, x_t)\) is iid and \(E(x_t e_t) = 0\)

• Estimation Consistency

 – The estimates approach the true values as the sample size increases

 – Estimation variance decreases as the sample size increases
Illustration of Consistency

• Take random sample of U.S. white men
• Estimate linear regression of log(wages) on education
• Total sample = 2089
• Start with 100 observations, sequentially increase to 2089
Sequence of Slope Coefficients
Asymptotic Normality

\[y_t = \alpha + \beta x_t + e_t \]

\[\hat{\beta} \overset{a}{\sim} N(\beta, \sigma^2_{\hat{\beta}}) \]

\[\sigma^2_{\hat{\beta}} = \frac{1}{T} \frac{\text{var}(x_t e_t)}{\text{var}(x_t)^2} \]
Illustration of Asymptotic Normality
Time Series

• Do these results apply to time-series data?
 – Consistency
 – Asymptotic normality
 – Variance formula

• Time-series models
 – AR models, i.e., $x_t = y_{t-1}$
 – Trend and seasonal models
 – One-step and multi-step forecasting
Derivation of Variance Formula

• For simplicity
 – Assume the variables have zero mean
 – The regression has no intercept

• Model with no intercept:

\[y_t = \beta x_t + e_t \]
• Model with no intercept

\[y_t = \beta x_t + e_t \]

• OLS minimizes the sum of squares

\[
\sum_{t=1}^{T} (y_t - \beta x_t)^2 = \sum_{t=1}^{T} y_t^2 - 2\beta \sum_{t=1}^{T} x_t y_t + \beta^2 \sum_{t=1}^{T} x_t^2
\]

• The first-order condition is

\[
0 = -2 \sum_{t=1}^{T} x_t y_t + 2 \hat{\beta} \sum_{t=1}^{T} x_t^2
\]
• Solution
\[\hat{\beta} = \frac{\sum_{t=1}^{T} x_t y_t}{\sum_{t=1}^{T} x_t^2} = \frac{1}{T} \sum_{t=1}^{T} x_t y_t \]
\[\hat{\beta} = \frac{1}{T} \sum_{t=1}^{T} x_t^2 \]

• Now substitute \(y_t = \beta x_t + e_t \)
\[\hat{\beta} = \frac{\frac{1}{T} \sum_{t=1}^{T} x_t (x_t \beta + e_t)}{\frac{1}{T} \sum_{t=1}^{T} x_t^2} = \beta + \frac{\frac{1}{T} \sum_{t=1}^{T} x_t e_t}{\frac{1}{T} \sum_{t=1}^{T} x_t^2} \]
• We have

\[\hat{\beta} = \beta + \frac{1}{T} \sum_{t=1}^{T} x_t e_t \]

\[\frac{1}{T} \sum_{t=1}^{T} x_t^2 \]

• The denominator is the sample variance (when x has mean zero), so

\[\frac{1}{T} \sum_{t=1}^{T} x_t^2 \sim \text{var}(x_t) \]
\begin{itemize}
\item Then
\[\hat{\beta}^a \sim \beta + \frac{\sum_{t=1}^{T} v_t}{T \text{ var}(x_t)} \]
where
\[v_t = x_t e_t \]
\item Since
\[E(v_t) = E(x_t e_t) = 0 \]
then
\[\text{var}(\hat{\beta})^a \sim \frac{\text{var}\left(\sum_{t=1}^{T} v_t\right)}{[T \text{ var}(x_t)]^2} \]
\end{itemize}
• From the covariance formula

$$\text{var}\left(\sum_{t=1}^{T} v_t\right) = \sum_{t=1}^{T} \text{var}(v_t) + \sum_{j \neq t} \text{cov}(v_t, v_j)$$

• When the observations are independent, the covariances are zero.

• And since \(\text{var}(v_t) = \text{var}(x_t e_t)\)

we obtain \(\text{var}\left(\sum_{t=1}^{T} v_t\right) = T \text{var}(x_t e_t)\)
• We have found

\[\text{var} \left(\hat{\beta} \right) \sim T \frac{\text{var}(x_t e_t)}{[T \text{var}(x_t)]^2} = \frac{\text{var}(x_t e_t)}{T[\text{var}(x_t)]^2} \]

as stated at the beginning
Extension to Time-Series

• The only place in this argument where we used the assumption of the independence of observations was to show that $v_t = x_t e_t$ has zero covariance with $v_j = x_j e_j$.

• This is saying that v_t is not autocorrelated.

• When does this happen in time-series?
Unforecastable one-step errors

• **Claim:** In one-step-ahead forecasting, if the regression error is **unforecastable** then v_t is not autocorrelated

• In this case, the variance formula for the least-squares estimate is the same as in regression

\[
\text{var}(\hat{\beta}) \sim \frac{\text{var}(x_t e_t)}{T \left[\text{var}(x_t) \right]^2}
\]
• Why is the claim true?
• The error is unforecastable if \(E(e_t \mid \Omega_{t-1}) = 0 \)
• For simplicity suppose \(x_t = 1 \)
• Then for \(t \neq j \)

\[
\text{cov}(v_t, v_j) = E(e_t e_j) = 0
\]
Summary

• In one-step-ahead time-series models, if the error is unforecastable, then least-squares estimates satisfy the asymptotic (approximate) distribution

\[\hat{\beta} \overset{\text{a}}{\sim} N(\beta, \sigma^2_{\hat{\beta}}) \]

\[\sigma^2_{\hat{\beta}} = \frac{1}{T} \frac{\text{var}(x_t, e_t)}{\text{var}(x_t)^2} \]

• As the sample size \(T \) is in the denominator, the variance decreases as the sample size increases.

• This means that least-squares is consistent
Variance Formula

- The variance formula for the least-squares estimate takes the form

\[\sigma^2 \hat{\beta} = \frac{1}{T} \frac{\text{var}(x_t e_t)}{[\text{var}(x_t)]^2} \]

- This formula is valid in time-series regression when the error is unforecastable
Classical Variance Formula

If we make the simplifying assumption

\[\text{var}(x_t e_t) = \text{var}(x_t) \text{var}(e_t) \]

then

\[\sigma_{\hat{\beta}}^2 = \frac{1}{T} \frac{\text{var}(x_t e_t)}{\text{var}(x_t)^2} = \frac{1}{T} \frac{\text{var}(e_t)}{\text{var}(x_t)} \]

This can be a useful simplification
Homoskedasticity

• The variance simplification is valid under “conditional homoskedasticity”

$$E(e_t | \Omega_{t-1}) = 0$$

$$E(e_t^2 | \Omega_{t-1}) = \sigma^2$$

• This is a simplifying assumption made to make calculations easier, and is a conventional assumption in introductory econometrics courses

• It is not used in serious econometrics
Variance Formula : AR(1) Model

• Take the AR(1) model with unforecastable homoskedastic errors

\[
y_t = \alpha + \beta y_{t-1} + e_t
\]

\[
E(e_t | \Omega_{t-1}) = 0
\]

\[
E(e_t^2 | \Omega_{t-1}) = \sigma^2
\]

• Then the variance of the OLS estimate is

\[
\hat{\sigma}_\beta^2 = \frac{1}{T} \frac{\text{var}(e_t)}{\text{var}(x_t)} = \frac{1}{T} \frac{\text{var}(e_t)}{\text{var}(y_{t-1})}
\]

since \(x_t = y_{t-1} \) in this model
AR(1) Asymptotic Variance

• We know that

\[
\text{var}(y_{t-1}) = \frac{\text{var}(e_t)}{1 - \beta^2}
\]

• So

\[
\sigma^2_{\hat{\beta}} = \frac{1}{T} \frac{\text{var}(e_t)}{\text{var}(y_{t-1})} = \frac{1 - \beta^2}{T}
\]

• The asymptotic distribution is very simple

\[
\begin{align*}
\hat{\beta} &\overset{a}{\sim} N\left(\beta, \frac{1 - \beta^2}{T}\right) \\
\end{align*}
\]
The variance is a function of the unknown true value of β

As $|\beta|$ increases, the variance decreases, so the OLS estimate is actually more precise.
Distribution of Least-Squares

• In classic regression, if the errors are iid normal, and independent of the regressors, then the least-squares estimates have an **exact** normal distribution, not just asymptotic.

• This is not true in most time-series regressions.
Non-Classical Distributions

• Estimates in autoregressive models
 – Biased downwards
 – Skewed
 – Thick tails

• Especially
 – When autoregressive coefficients are large
 – Sample sizes are small

• These issues diminish in large samples
Example

- Take the AR(1) model with intercept

\[y_t = \alpha + \beta y_{t-1} + e_t \]

- \(e_t \sim \text{N}(0,1) \)
- \(T=100, 500, 1000 \)
- \(\beta=0.0, \beta=0.5, \beta=0.9, \)
- Numerically calculate distribution of least-squares estimate of \(\beta \)
Distribution, $\beta=0.0$

$\beta = 0$
Distribution, $\beta=0.5$
Distribution, $\beta = 0.9$
Interpretation

• Estimates of autoregressive parameters are random
• Even if regression error is normal, the parameter estimates are not normally distributed
• Distributions are less normal when AR coefficient is large
• Distributions are more concentrated and normal when sample size is large
Asymptotic Standard Deviation

• The least-squares estimate is asymptotically (approximately) normally distributed
• In the simple model \(y_t = \beta x_t + e_t \)

then

\[
\hat{\beta} \sim a \left(\beta, \sigma^2_{\hat{\beta}} \right)
\]

\[
\sigma^2_{\hat{\beta}} = \frac{1}{T} \frac{\text{var}(x_t e_t)}{\text{var}(x_t)^2}
\]

• The standard deviation measures the precision of the estimate, but it is unknown.
Standard Errors

• Estimates of the standard deviations are called **standard errors**, and are reported in regression output

• They are used to measure estimation precision.
Classical standard errors

A **classic standard error** is an estimate of the standard deviation from the formula

$$
\sigma^2_{\hat{\beta}} = \frac{1}{n} \frac{\text{var}(e_t)}{\text{var}(x_t)}
$$

This formula is valid under conditional homoskedasticity

$$
E(e_t | \Omega_{t-1}) = 0
$$

$$
E(e_t^2 | \Omega_{t-1}) = \sigma^2
$$
Robust standard errors

• “Robust” standard errors are estimates of
 \[\sigma_\beta = \sqrt{\frac{1}{n} \frac{\text{var}(x_t e_t)}{[\text{var}(x_t)]^2}} \]

• These are the conventional standard errors for regression analysis

• Also known as “White” standard errors
Halbert White

• Professor Hal White, UCSD (1950-2012)
• Leading contributor to econometric methods, especially time series analysis
• Introduced robust standard errors into econometrics (1980)
 – Most referenced paper in economics
• Founded Bates-White consulting firm, a leader in economic policy analysis
Have you seen robust standard errors?

• If you took an econometrics course other than 410, you may not be familiar with robust standard errors

• If you are currently taking 410, you won’t cover robust standard errors until later in the course
 – Wooldridge uses the homoskedasticity assumption in the early part of his text

• Stock-Watson use robust standard errors throughout
Does the Choice Matter?

• Classic standard errors are for the assumption of conditional homoskedasticity
 \[\mathbb{E}(e_t^2 | \Omega_{t-1}) = \sigma^2 \]

• This is **unforecastability in the variance**
 – This is not implied by conventional unforecastability
 – It may be a convenient approximation for macro data
 – It is a bad assumption (quite false) in financial data
Example: Stock Returns, AR(1)

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-----------|-----------|-----|------|---------------------|
| \(r \) | \(r \) L1. | -.0163895 | .0179105 | -0.92 | 0.360 | -.051507 - 0.0187279 |
| | _cons | .0013626 | .0003728 | 3.66 | 0.000 | .0006317 - 0.0020935 |

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-----------|-------------------|-----|------|---------------------|
| \(r \) | \(r \) L1. | -.0163895 | .032377 | -0.51 | 0.613 | -.0798718 - 0.0470927 |
| | _cons | .0013626 | .0003878 | 3.51 | 0.000 | .0006022 - 0.002123 |

- The robust standard error on the AR(1) coefficient is almost twice as large as the conventional standard error
Computation

• In STATA, the default is conventional standard errors.
• They are automatically reported with the `regress (reg)` command
• For robust standard errors, use the “r” option
 `.reg y x, r`
Example: Real GDP Growth

```
.reg gdp L(1/4).gdp
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 247</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>662.232234</td>
<td>4</td>
<td>165.558059</td>
<td>F(4, 242) = 11.39</td>
</tr>
<tr>
<td>Residual</td>
<td>3518.78213</td>
<td>242</td>
<td>14.540422</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4181.01437</td>
<td>246</td>
<td>16.9959934</td>
<td>R-squared = 0.1584</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.1445</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 3.8132</td>
</tr>
</tbody>
</table>

| gdp | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|---------|-----------|-------|-------|----------------------|
| gdp | .327656 | .0640344 | 5.12 | 0.000 | .2015202 .4537919 |
| L1. | .1466135| .0670302 | 2.19 | 0.030 | .0145764 .2786506 |
| L2. | -.0980287| .066934 | -1.46 | 0.144 | -.2298764 .0338189 |
| L3. | -.0889209| .0644466 | -1.38 | 0.169 | -.2158689 .038027 |
| _cons | 2.378427 | .389677 | 6.10 | 0.000 | 1.610836 3.146019 |
With Robust st. errors

. reg gdp L(1/4).gdp,r

Linear regression

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|------------------|-------|------|----------------------|
| gdp | 0.327656 | 0.076895 | 4.26 | 0.000 | 0.1761871 - 0.479125 |
| L1. | 0.1466135 | 0.0858808 | 1.71 | 0.089 | -0.0225558 - 0.3157828 |
| L2. | -0.0980287 | 0.0728951 | -1.34 | 0.180 | -0.2416186 - 0.0455611 |
| L3. | -0.0889209 | 0.0790354 | -1.13 | 0.262 | -0.244606 - 0.0667641 |
| _cons | 2.378427 | 0.4731312 | 5.03 | 0.000 | 1.446447 - 3.310408 |
Robust st. errors

• With the “r” option
 .reg y x, r

• You get robust
 – Standard errors
 – t statistics and p-values
 – test statistics
Annoyance

• In STATA, with the “r” option, STATA omits sum of squared error table
 – Yet this can be useful
• So both commands may be useful
 .reg y x
 .reg y x, r
Interpretation of standard errors

- The standard errors measure precision of the estimate
 - Forecasts use *estimated* coefficients.
- Small standard errors mean the estimate is precise
 - Good for forecasting
- Large standard errors mean the estimate is not precise
 - Bad for forecasting
 - Inaccurate estimates leads to inaccurate forecasts

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|--------|------------------|-------|------|----------------------|
| gdp | .327656| .076895 | 4.26 | 0.000| .1761871 .479125 |
| L1. | .1466135| .0858808 | 1.71 | 0.089| -.0225558 .3157828 |
| L2. | -.0980287| .0728951 | -1.34 | 0.180| -.2416186 .0455611 |
| L3. | -.0889209| .0790354 | -1.13 | 0.262| -.244606 .0667641 |
| _cons | 2.378427| .4731312 | 5.03 | 0.000| 1.446447 3.310408 |
Interpretation of t-statistics

- “t” is the coefficient estimate divided by the standard error.
- It is used to test if the coefficient is zero
 - “P>|t|” is the p-value of the t-statistic
 - If p<.05 you “reject” the hypothesis of a zero coefficient
- Hypothesis tests are useful for assessing economic theories
 - But are less useful for picking good forecasting models

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|--------|------------------|------|-------|----------------------|
| gdp | .327656| .076895 | 4.26 | 0.000 | .1761871 .479125 |
| L1. | .1466135| .0858808 | 1.71 | 0.089 | -.0225558 .3157828 |
| L2. | -.0980287| .0728951 | -1.34| 0.180 | -.2416186 .0455611 |
| L3. | -.0889209| .0790354 | -1.13| 0.262 | -.244606 .0667641 |
| _cons | 2.378427| .4731312 | 5.03 | 0.000 | 1.446447 3.310408 |
Interpretation of Confidence Interval

- The 95% interval is the coefficient estimate plus and minus 1.96 times the standard error
- Helps gauge possible values for the true coefficient
- Useful tool

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|----------|------------------|------|--------|----------------------|
| gdp | .327656 | .076895 | 4.26 | 0.000 | .1761871 | .479125 |
| L1. | .1466135 | .0858808 | 1.71 | 0.089 | -.0225558 | .3157828 |
| L2. | -.0980287| .0728951 | -1.34| 0.180 | -.2416186 | .0455611 |
| L3. | -.0889209| .0790354 | -1.13| 0.262 | -.244606 | .0667641 |
| _cons | 2.378427 | .4731312 | 5.03 | 0.000 | 1.446447 | 3.310408 |
Summary

• In one-step-ahead forecast regressions with unforecastable errors
 – Robust standard errors generally appropriate
 – Classical standard errors appropriate under conditional homoskedasticity