Components Model

• Remember that we said that it was useful to think about the components representation

\[y_t = T_t + S_t + C_t \]

• Suppose that \(C_t \) is an AR(p) process

• What model does this imply for \(y_t \)?
Trend+Cycle Model

• For simplicity, we start with the trend-cycle model

\[y_t = T_t + C_t \]

• And specify the cycle as an AR(1)

\[C_t = \beta C_{t-1} + e_t \]
Intercept only

• Suppose the trend is just an intercept

\[T_t = \mu \]

• The model is

\[y_t = \mu + C_t \]
\[C_t = \beta C_{t-1} + e_t \]
Partial Differencing

• Lag the first equation, multiply by β and subtract

$$y_t = \mu + C_t$$

$$y_{t-1} = \mu + C_{t-1}$$

$$y_t - \beta y_{t-1} = (1 - \beta)\mu + C_t - \beta C_{t-1}$$

Then use

$$C_t = \beta C_{t-1} + e_t$$

to find

$$y_t = (1 - \beta)\mu + \beta y_{t-1} + e_t$$
Equivalence with AR(1)

• Thus

\[y_t = \mu + C_t \]

implies

\[C_t = \beta C_{t-1} + e_t \]

\[y_t = \alpha + \beta y_{t-1} + e_t \]

with

\[\alpha = (1 - \beta)\mu \]

• The model is just an AR(1) with intercept
Linear Trend

• Suppose the trend is a linear time trend

\[T_t = \mu_1 + \mu_2 t \]

• Then

\[y_t = \mu_1 + \mu_2 t + C_t \]
\[C_t = \beta C_{t-1} + e_t \]
Partial Differencing

- Lag the first equation, multiply by β and subtract, and use AR(1) equation

\[
y_t = \mu_1 + \mu_2 t + C_t
\]
\[
y_{t-1} = \mu_1 + \mu_2 (t - 1) + C_{t-1}
\]
\[
y_t = \beta y_{t-1} + (1 - \beta)\mu_1 + \beta \mu_2 + (1 - \beta)\mu_2 t + e_t
\]

- We find

\[
y_t = \alpha + \beta_1 y_{t-1} + \beta_2 t + e_t
\]
Summary: Trend+AR(1) Cycle

• When the trend is an intercept or a time trend
• The components model
 \[y_t = T_t + C_t \]
 \[C_t = \beta C_{t-1} + e_t \]
 is equivalent with
 \[y_t = T_t + \beta y_{t-1} + e_t \]
• The components model is equivalent with a regression on the trend variables and the lag
AR(p)+Trend

• A linear trend plus AR(p)

 \[y_t = \mu_1 + \mu_2 t + C_t \]

 \[C_t = \beta_1 C_{t-1} + \cdots + \beta_p C_{t-p} + e_t \]

 is equivalent to

 \[y_t = \alpha + \gamma t + \beta_1 y_{t-1} + \cdots + \beta_p y_{t-p} + e_t \]

• A regression on a time trend plus p lags of y
Example: Real GDP

- $\ln(\text{rgdp})$ and linear trend
Residuals from Linear Trend
AR(4) on residuals

```
.reg u L(1/4).u
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 264</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>0.800747324</td>
<td>4</td>
<td>0.200186831</td>
<td>F(4, 259) = 2547.86</td>
</tr>
<tr>
<td>Residual</td>
<td>0.020349748</td>
<td>259</td>
<td>0.00007857</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.821097073</td>
<td>263</td>
<td>0.003122042</td>
<td>R-squared = 0.9752</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.9748</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 0.00886</td>
</tr>
</tbody>
</table>

| u | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-----------|-----------|-------|--------|----------------------|
| u | | | | | |
| L1. | 1.337073 | 0.0618057 | 21.63 | 0.000 | 1.215368 - 1.458779 |
| L2. | -0.2144409| 0.1023036 | -2.10 | 0.037 | -0.4156936 - 0.0129882|
| L3. | -0.221563 | 0.102324 | -2.16 | 0.032 | -0.4226492 - 0.0196634|
| L4. | 0.0817946 | 0.0621732 | 1.32 | 0.189 | -0.0406348 0.204224 |
| _cons | -0.0000945| 0.0005461 | -0.17 | 0.863 | -0.00117 - 0.0009809 |
Fitted Values
AR(4) with trend

```
.reg y t L(1/4).y
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 264</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>101.418159</td>
<td>5</td>
<td>20.2836318</td>
<td>F (5, 258) = .</td>
</tr>
<tr>
<td>Residual</td>
<td>.020112173</td>
<td>258</td>
<td>.000077954</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>101.438271</td>
<td>263</td>
<td>.385696849</td>
<td>R-squared = 0.9998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>.0000173, .0000836</td>
</tr>
<tr>
<td></td>
<td>1.40, 1.062</td>
</tr>
<tr>
<td></td>
<td>-.0000472, .0002819</td>
</tr>
<tr>
<td>L1.</td>
<td>1.325836, .0618984</td>
</tr>
<tr>
<td>L2.</td>
<td>-2.214016, .1019164</td>
</tr>
<tr>
<td>L3.</td>
<td>1.2231381, .1019282</td>
</tr>
<tr>
<td>L4.</td>
<td>-.092073, .0622436</td>
</tr>
<tr>
<td>_cons</td>
<td>.1350218, .0820877</td>
</tr>
<tr>
<td></td>
<td>1.64, 1.010</td>
</tr>
<tr>
<td></td>
<td>-.0266254, .296669</td>
</tr>
</tbody>
</table>
Fitted Values from AR(4) with Trend

Graph showing fitted values over time from 1950q1 to 2010q1.
Last 7 years
Residuals
Forecasts

• Same as for AR(p) models, but include time trend as a regressor
• h-step forecast based on

\[y_t = \alpha + \gamma t + \beta_1 y_{t-h} + \cdots + \beta_p y_{t-h-p+1} + e_t \]
Forecast for \(\ln(\text{GDP}) \) using AR(4)+trend
Forecast for GDP (using exponential)
Direct Interval Forecasts

tsappend, add(4)
gen y = ln(gdp)
reg y t L(1/4).y
predict y1
predict sf1, stdf
gen y1L = y1 - 1.645*sf1
gen y1U = y1 + 1.645*sf1
reg y t L(2/5).y
predict y2
predict sf2, stdf
gen y2L = y2 - 1.645*sf2
gen y2U = y2 + 1.645*sf2
reg y t L(3/6).y
predict y3
predict sf3, stdf
gen y3L = y3 - 1.645*sf3
gen y3U = y3 + 1.645*sf3
reg y t L(4/7).y
predict y4
predict sf4, stdf
gen y4L = y4 - 1.645*sf4
gen y4U = y4 + 1.645*sf4
egen p = rowfirst(y1 y2 y3 y4) if t >= tq(2014q1)
egen pL = rowfirst(y1L y2L y3L y4L) if t >= tq(2014q1)
egen pU = rowfirst(y1U y2U y3U y4U) if t >= tq(2014q1)
label variable p "forecast"
label variable pL "lower forecast interval"
label variable pU "upper forecast interval"
tsline y p pL pU if t >= tq(2008q1), title(GDP) lpattern (solid dash longdash shortdash)
gen ep = exp(p)
gen epL = exp(pL)
gen epU = exp(pU)
tsline gdp ep epL epU if t >= tq(2008q1), title(GDP) lpattern (solid dash longdash shortdash)
Iterated Forecast for GDP
Direct Interval Forecasts

tappend, add(4)
gen y=ln(gdp)
reg y t L(1/4).y
forecast create ar4
estimate store model1
forecast estimates model1
forecast solve, simulate(errors, statistic(stddev, prefix(sd_)) reps(1000))
gen p=exp(f_y) if t>=tq(2014q1)
gen pL=exp(f_y-1.645*sd_y)
gen pU=exp(f_y+1.645*sd_y)
label variable p “forecast”
label variable pL "lower forecast interval”
label variable pU "upper forecast interval“
tsline gdp p pL pU if t>=tq(2008q1), title(GDP growth) lpattern (solid dash longdash shortdash)
Example: Log Stock Volume

- Log Volume and Linear Trend
Residuals
Model

- Weekly Data through 2009
- 3082 observations
- Fit AR(52)+trend
Data and Fitted
Last Two Years of Sample
Residuals
Trend Omission

• Suppose the truth is that the data have a trend, but you fit an AR model without a trend.

• What happens?

• Suppose

$$y_t = \mu_1 + \mu_2 t$$

• Then

$$y_t = y_{t-1} + \mu_2$$
Example

• Since

\[y_t = y_{t-1} + \mu_2 \]

• If you estimate an AR(1), you obtain

\[y_t = \hat{\alpha} + \hat{\beta}y_{t-1} + \hat{e}_t \]

\[= \mu_2 + y_{t-1} \]

\[\hat{\alpha} = \mu_2 \]

\[\hat{\beta} = 1 \]

• You estimate a unit coefficient on the AR lag
General Effect of Trend Omission

• If the truth is

\[y_t = \mu_1 + \mu_2 t + \beta y_{t-1} + e_t \]

• But you estimate an AR(1) **without** a trend

\[y_t = \hat{\alpha} + \hat{\beta} y_{t-1} + \hat{e}_t \]

• Then you tend to find

\[\hat{\beta} \approx 1 \]

• This is due to model misspecification
Simulated Example

\[y_t = .01t + .3y_{t-1} + e_t \]

. gen e=rnormal(0)
. gen y=e
. replace y=.01*t+.3*L.y+e if t>1
 (499 real changes made)
Simulated Process
Estimate AR(1) without Trend

```
. reg y L.y

Source | SS       | df | MS        | Number of obs = 499
-------|----------|----|-----------|-----------------
Model  | 2031.45086 | 1  | 2031.45086 | F( 1, 497) = 1212.27
Residual| 832.842361 | 497| 1.67573916 | Prob > F = 0.0000
Total  | 2864.29322 | 498| 5.75159281 | R-squared = 0.7092
        |           |    |           | Adj R-squared = 0.7086
        |           |    |           | Root MSE = 1.2945

|     | Coef.    | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|-----|----------|-----------|-------|------|---------------------|
| y   |          |           |       |      |                     |
| L1. | .8423331 | .0241927  | 34.82 | 0.000| .7948006 .8898657   |
| _cons | .5786825 | .1039191  | 5.57  | 0.000| .3745076 .7828573   |
```

- The estimated AR(1) coefficient is 0.84, much too large (true value was 0.3)
Estimate AR(1) with Trend

```
. reg y t L.y
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th></th>
<th>Number of obs = 499</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2309.43596</td>
<td>2</td>
<td>1154.71798</td>
<td>F(2, 496) = 1032.23</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>554.857262</td>
<td>496</td>
<td>1.11866383</td>
<td>Prob > F = 0.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2864.29322</td>
<td>498</td>
<td>5.75159281</td>
<td>R-squared = 0.8063</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.8055</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 1.0577</td>
<td></td>
</tr>
</tbody>
</table>

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|-----------|-----------|--------|--------|---------------------|
| y | | | | | |
| t | .0114629 | .0007272 | 15.76 | 0.000 | .0100342 .0128916 |
| y | .2274365 | .0437293 | 5.20 | 0.000 | .141519 .313354 |
| L1 | -.1060309 | .095372 | -1.11 | 0.267 | -.2934137 .081352 |

- The estimated AR coef is 0.23, close to the true 0.3
- The estimated trend coef is 0.11, close to the true 0.10
- The root MSE decreases from 1.29 to 1.06
Seasonality

• Recall that we said that it can be useful to describe the mean of a time series as the sum of components

\[\mu_t = T_t + S_t + C_t \]

where \(S_t \) is the seasonal component.

• The seasonal component \(S_t \) is a repetitive cycle over the calendar year

• Seasonality \(S_t \) can be deterministic (predictable) or stochastic
Seasonality – Examples

• Gasoline consumption rises in summer due to increased auto travel
• International airline prices rise in summer due to increased tourism
• Natural gas consumption and prices rise in winter due to heating
• Electricity consumption increases in summer due to air conditioning
• Construction activity and jobs decrease in winter in the Midwest
• Consumer spending increases in November and December due to holiday shopping
Deterministic vs Stochastic Seasonality

• If the seasonal pattern repeats year after year, it is deterministic and predictable.
 – Christmas is always in December
• If the seasonal pattern roughly repeats itself, but evolves over the years, it is stochastic and only partially predictable
 – Holiday shopping as a percentage of income is not a fixed constant
• Seasonal patterns can change dramatically as the economy evolves
 – The spread of air conditioning shifted the seasonal pattern of residential electricity consumption from winter to summer
Seasonal Adjustment

• Most economic indicators reported by the government are *seasonally adjusted*.
• Roughly, the component S_t is estimated, and then what is reported is
 \[
 y_t^* = y_t - S_t
 \]
 \[
 = T_t + C_t
 \]
• The idea is that seasonality distracts from the main reporting purpose
 – Seasonally adjusted data allows users to focus on trend and business cycle movements
• Seasonal adjustment by central statistical agencies is sophisticated, allowing for evolving seasonal patterns.
Examples of Seasonal Time Series

- First Example:
- U.S. Unemployment Rate
 - Men, 20+ years
 - 1948-2009
 - Not seasonally adjusted
U.S. Unemployment Rate
Men, 20+ years, 1948-2009
Unemployment Rate, 1990-2001
Unemployment Rate, by year
Example 2

U.S. Gasoline Sales Volume
Gasoline Sales, by year
Example 3

U.S. Housing Starts

(New Privately Owned Housing Units)
Housing Starts, by year
Deterministic Seasonality

• If seasonality is constant and deterministic then S_t is simply a different constant for each period.

• For example, for monthly data

$$S_t = \begin{cases}
\gamma_1 & \text{if } t = \text{January} \\
\gamma_2 & \text{if } t = \text{February} \\
\vdots & \vdots \\
\gamma_{12} & \text{if } t = \text{December}
\end{cases}$$

• Seasonality is a constant which varies by the calendar period (quarter, month, week, day, or time of day)
Fitted Values and Forecasts
Pure Deterministic Seasonality

• In the simple pure deterministic seasonality model, fitted values and forecasts are the simple seasonal pattern
Example – Housing Starts

<table>
<thead>
<tr>
<th>Month</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>91</td>
</tr>
<tr>
<td>February</td>
<td>95</td>
</tr>
<tr>
<td>March</td>
<td>127</td>
</tr>
<tr>
<td>April</td>
<td>144</td>
</tr>
<tr>
<td>May</td>
<td>150</td>
</tr>
<tr>
<td>June</td>
<td>148</td>
</tr>
<tr>
<td>July</td>
<td>142</td>
</tr>
<tr>
<td>August</td>
<td>140</td>
</tr>
<tr>
<td>September</td>
<td>132</td>
</tr>
<tr>
<td>October</td>
<td>137</td>
</tr>
<tr>
<td>November</td>
<td>114</td>
</tr>
<tr>
<td>December</td>
<td>96</td>
</tr>
</tbody>
</table>