Autoregressive Processes

• The first-order autoregressive process, AR(1) is

$$y_{t} = \beta y_{t-1} + e_{t}$$

where e_t is WN(0, σ^2)

Using the lag operator, we can write

$$(1 - \beta L)y_t = e_t$$

- If $\beta>0$, y_{t-1} and y_t are positively correlated
- If β <0, y_{t-1} and y_t are negatively correlated

Inversion

By back-substitution

$$y_{t} = \beta y_{t-1} + e_{t}$$

$$= e_{t} + \beta (\beta y_{t-2} + e_{t-1})$$

$$= e_{t} + \beta e_{t-1} + \beta^{2} e_{t-2} + \cdots$$

$$= \sum_{i=0}^{\infty} \beta^{i} e_{t-i}$$

a general linear process with geometrically declining coefficients

- This inversion requires that $|\beta|$ <1
- $|\beta| < 1$ is required for stationarity

Importance of $|\beta| < 1$

• If $\beta=1$ then

$$y_t = e_t + e_{t-1} + e_{t-2} + \cdots$$

does not converge, so the sum is not defined.

Mean and Variance

 By the formula for the unconditional mean and variance of a general linear process

$$E(y_t) = E(\sum_{i=0}^{\infty} \beta^i e_{t-i}) = 0$$

$$var(y_t) = var(\sum_{i=0}^{\infty} \beta^i e_{t-i})$$

$$= \left(\sum_{i=0}^{\infty} \beta^{2i}\right) \sigma^2$$

$$= \frac{\sigma^2}{1 - \beta^2}$$

Another Variance Calculation

Take variance of both sides of

$$y_{t} = \beta y_{t-1} + e_{t}$$

Thus

$$var(y_t) = var(\beta y_{t-1} + e_t)$$

$$= var(\beta y_{t-1}) + var(e_t)$$

$$= \beta^2 var(y_{t-1}) + \sigma^2$$

If y is variance stationary, we solve and find

$$var(y_t) = var(y_{t-1}) = \frac{\sigma^2}{1 - \beta^2}$$

$$|\beta|<1$$

• If $|\beta|=1$ then

$$var(y_t) = \frac{\sigma^2}{1 - \beta^2}$$

is infinite

$$|\beta|=1$$

We calculated that

$$var(y_t) = \beta^2 var(y_{t-1}) + \sigma^2$$

• When $|\beta|=1$, then

$$var(y_t) = var(y_{t-1}) + \sigma^2 > var(y_{t-1})$$

so the variance is increasing with t

- $|\beta|=1$ is inconsistent with variance stationarity.
- $|\beta|$ < 1 is necessary for stationarity.

Random Walk

• An AR(1) with $\beta=1$ is known as a random walk or unit root process

$$y_t = y_{t-1} + e_t$$

By back-substitution

$$y_{t} = y_{0} + \sum_{i=0}^{t} e_{t-i}$$

The past never disappears. Shocks have permanent effects

Unit Root

- The random walk is called a unit root process because the lag operator 1-L has a "root" (intersection with the x-axis) at L=1
- It is called a **random walk** because it tends to wander without mean-reversion.
- If y_t is an AR(1) with a unit root (β =1) then its first difference $\Delta y_t = y_t y_{t-1}$ is white noise

Conditional Mean and Variance of AR(1)

Conditional mean:

$$E(y_{t} | \Omega_{t-1}) = E(\beta y_{t-1} + e_{t} | \Omega_{t-1}) = \beta y_{t-1}$$

Conditional variance:

$$var(y_t | \Omega_{t-1}) = var(y_t - E(y_t | \Omega_{t-1}) | \Omega_{t-1})$$

$$= var(e_t | \Omega_{t-1})$$

$$= \sigma^2$$

Autocovariance of AR(1)

Take the equation

$$y_t = \beta y_{t-1} + e_t$$

• And then multiply both sides by y_{t-k}

$$y_{t-k} y_t = \beta y_{t-k} y_{t-1} + y_{t-k} e_t$$

• Then take expectations. Since e_t is white noise, it is uncorrelated with

$$E(y_{t-k}y_t) = \beta E(y_{t-k}y_{t-1}) + E(y_{t-k}e_t)$$

or

$$\gamma(k) = \beta \gamma(k-1)$$

Autocorrelation of AR(1)

Dividing by the variance, this implies

$$\rho(k) = \beta \rho(k-1)$$

We know

$$\rho(0) = 1$$

Then

$$\rho(1) = \beta \rho(0) = \beta$$

$$\rho(2) = \beta \rho(1) = \beta^{2}$$

$$\vdots$$

$$\rho(k) = \beta^{k}$$

Autocorrelation of AR(1)

We have derived

$$\rho(k) = \beta^k$$

- The autocorrelation of the stationary AR(1) is a simple geometric decay ($|\beta|$ <1)
- If β is small, the autocorrelations decay rapidly to zero with k
- If β is large (close to 1) then the autocorrelations decay moderately
- The AR(1) parameter describes the persistence in the time series

One-Step-Ahead Forecast

As we showed earlier

$$E(y_t \mid \Omega_{t-1}) = \beta y_{t-1}$$

Thus

$$E(y_{T+1} \mid \Omega_T) = \beta y_T$$

 The optimal one-step-ahead forecast is a linear function of the final observed value

2-step-ahead forecast

By back-substitution

$$y_{t} = \beta y_{t-1} + e_{t}$$

$$= e_{t} + \beta (\beta y_{t-2} + e_{t-1})$$

$$= \beta^{2} y_{t-2} + e_{t} + \beta e_{t-1}$$

Thus

$$E(y_t | \Omega_{t-2}) = E(\beta^2 y_{t-2} + e_t + \beta e_{t-1} | \Omega_{t-2})$$
$$= \beta^2 y_{t-2}$$

and

$$E(y_{T+2} \mid \Omega_T) = \beta^2 y_T$$

2-step-ahead forecast

 This shows that the optimal 2-step-ahead forecast is also a linear function of the final observed value, but with the coefficient β².

$$E(y_{T+2} \mid \Omega_T) = \beta^2 y_T$$

h-step-ahead forecast

Similarly

$$y_{t} = \beta^{h} y_{t-h} + e_{t} + \beta e_{t-1} + \dots + \beta^{h-1} e_{t-h+1}$$

So

$$E(y_t | \Omega_{t-h}) = E(\beta^h y_{t-h} + e_t + \beta e_{t-1} + \dots + \beta^{h-1} e_{t-h+1} | \Omega_{t-2})$$

= $\beta^h y_{t-h}$

Optimal forecast:

$$E(y_{T+h} \mid \Omega_T) = \beta^h y_T$$

Inversion of AR(1)

By inverting the lag operator

$$(1 - \beta L)y_t = e_t$$

$$y_t = (1 - \beta L)^{-1} e_t$$

$$= \left(\sum_{i=0}^{\infty} \beta^i L^i\right) e_t$$

$$= \sum_{i=0}^{\infty} \beta^i e_{t-i}$$

Which is the same as found by back substitution

Condition for Invertibility

- The operator (1- β L) is invertible when $|\beta| < 1$
- This is the same as for the MA(1) model
- β is the inverse of the root of the polynomial 1- β L
- The root of a function is the value where it crosses the x-axis
- The root of 1- β L is 1/ β , the inverse of the root is β
- Invertibility requires that the inverse of the root be less than one

AR(1) with Intercept

An AR(1) with intercept is

$$y_{t} = \alpha + \beta y_{t-1} + e_{t}$$

Taking expectations

$$E(y_t) = \alpha + \beta E(y_{t-1}) + E(e_t)$$

Thus

$$\mu = \alpha + \beta \mu$$

and

$$\mu = \frac{\alpha}{1 - \beta}$$

Best Linear Predictor

• A linear predictor of y_t given y_{t-1} is

$$\alpha + \beta y_{t-1}$$

The forecast error is

$$e_{t} = y_{t} - \alpha - \beta y_{t-1}$$

 The linear predictor which minimizes the expected squared forecast error solves

$$\min_{\alpha,\beta} E(y_t - \alpha - \beta y_{t-1})^2$$

Least-Squares

- The estimate of the expected squared linear forecast error is the sum of squared errors
- The least squares estimate

$$y_{t} = \hat{\alpha} + \hat{\beta}y_{t-1} + \hat{e}_{t}$$

minimizes the sum of squared errors, so is the estimate of the best linear predictor

• This is a linear regression, treating y_{t-1} as a regressor.

Unemployment Rate

. regress ur L.ur

Source	SS	df		MS		Number of obs	= 744 =37941.25
Model Residual	1775.33245 34.7193756	1 742		5.33245 5791611		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9808
Total	1810.05182	743	2.43	8613974		Root MSE	= .21631
ur	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
ur L1.	.9934454	.0051	L002	194.79	0.000	.9834329	1.003458
_cons	.045538	.0299	9153	1.52	0.128	0131907	.1042667

GDP Growth Rates

. reg gdp L.gdp

Source	SS	df		MS		Number of obs F(1, 248)		250 37.15
Model Residual	548.684959 3662.76711	1 248		684959 692222		Prob > F R-squared Adj R-squared	= =	0.0000 0.1303 0.1268
Total	4211.45207	249	16.9	134621		Root MSE	=	3.8431
gdp	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
gdp L1.	.3605283	.0591	503	6.10	0.000	. 2440274		4770292
_cons	2.146711	.3123	873	6.87	0.000	1.531441	2	.761982

One-Step-Ahead Forecast

The optimal forecast for T+1 given T is

$$\hat{y}_{T+1|T} = \alpha + \beta y_T$$

The forecast using the estimates is

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\beta} y_T$$

Example – Unemployment Rate

The estimates were

$$y_t = 0.0455 + 0.993 y_{t-1} + \hat{e}_t$$

• The value for Jan 2010 is 9.7%, so

$$\hat{y}_{2010:2} = 0.0455 + 0.993 \times 9.7 = 9.68$$

			£:44 a al a l a
	\boldsymbol{y}_t	\boldsymbol{y}_{t-1}	fitted value
Jan-09	7.7	7.4	7.40
Feb-09	8.2	7.7	7.70
Mar-09	8.6	8.2	8.19
Apr-09	8.9	8.6	8.59
May-09	9.4	8.9	8.89
Jun-09	9.5	9.4	9.38
Jul-09	9.4	9.5	9.48
Aug-09	9.7	9.4	9.38
Sep-09	9.8	9.7	9.68
Oct-09	10.1	9.8	9.78
Nov-09	10	10.1	10.08
Dec-09	10	10	9.98
Jan-10	9.7	10	9.98
Feb-10	?	9.7	9.68

Example – GDP Growth

The estimates were

gdp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gdp L1.	. 3605283	.0591503	6.10	0.000	. 2440274	.4770292
_cons	2.146711	.3123873	6.87	0.000	1.531441	2.761982

$$y_t = 2.14 + 0.361y_{t-1} + \hat{e}_t$$

• The value for 4th quarter 2009 is 5.7%, so

$$\hat{y}_{2010:1} = 2.14 + 0.361 \times 5.7 = 4.2\%$$

GDP Growth

	\boldsymbol{y}_t	\boldsymbol{y}_{t-1}	fitted
2008q4	-5.4	-2.7	1.2
2009q1	-6.4	-5.4	0.2
2009q2	-0.7	-6.4	-0.2
2009q3	2.2	-0.7	1.9
2009q4	5.7	2.2	2.9
2010q1	?	5.7	4.2

One-Step-Ahead Forecast Error

The forecast error is

$$y_{T+1} - \hat{y}_{T+1|T} = \alpha + \beta y_T + e_{T+1} - (\alpha + \beta y_T)$$
$$= e_{T+1}$$

The forecast variance is

$$var(y_{T+1} - \hat{y}_{T+1|T}) = var(e_{T+1}) = \sigma^2$$

Forecast variance estimation

Average of squared residuals

$$\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} \hat{e}_t^2$$

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$$

where the least-squares residuals are

$$\hat{e}_{t} = y_{t} - \hat{\alpha} - \hat{\beta}y_{t-1}$$

One-Step-Ahead Intervals

- Normal Method
 - Assume forecast error is normally distributed
 - Forecast interval is point estimate, plus and minus the estimated standard deviation multiplied by a normal quantile
 - For a 95% interval:

$$\hat{y}_{T+1|T} \pm \hat{\sigma} \cdot z_{.025} = \hat{y}_{T+1|T} \pm \hat{\sigma} \cdot 1.96$$

For a 90% interval

$$\hat{y}_{T+1|T} \pm \hat{\sigma} \cdot z_{.05} = \hat{y}_{T+1|T} \pm \hat{\sigma} \cdot 1.645$$

Estimating Forecast Variance

- The estimated variance is 16.9
- The estimated st. dev. is 3.84
- . reg gdp L.gdp

Source	SS	dŤ		MS		Number of obs		250
Model Residual	548.684959 3662.76711	1 248		684959 692222		F(1, 248) Prob > F R-squared	= =	37.15 0.0000 0.1303 0.1268
Total	4211.45207	249	16.9	134621		Adj R-squared Root MSE	=	2 2424
gdp	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
gdp L1.	.3605283	.0591	.503	6.10	0.000	. 2440274		4770292
_cons	2.146711	.3123	873	6.87	0.000	1.531441	2	.761982

Standard Dev Estimation

- In STATA, the estimate of σ or "root mean squared error" is saved after you estimate a regression in "e(rmse)"
- Better, the forecast standard deviation is stdf, through the command

predict s, stdf

Forecast Interval Construction

```
. tsappend, add(1)
. predict p if t>tq(2009q4)
(option xb assumed; fitted values)
(251 missing values generated)
. gen p1=p-1.645*e(rmse)
(251 missing values generated)
. gen p2=p+1.645*e(rmse)
(251 missing values generated)
```

- Point estimate = 4.2%
- 90% Interval = [-2.1%, 10.5%]