Time-Series Components

e Recall that the optimal point forecast of a series
Y., IS its conditional mean

Hy = E(yt+h |Qt)

e |tis useful to decompose this mean into
components

=T+, +C,

— T,=Trend
— S, = Seasonal
— C,=Cycle



Components

Trend

— Very long term (decades)

— Smooth

Seasonal

— Patterns which repeat annually

— May be constant or variable

Cycle

— Business cycle

— Correlation over 2-7 years

It is useful to consider the components separately

We start with the Trend



Trend Forecasting

* A pure trend model has no seasonal or cycle
Hy :Tt

* In a pure trend model, the optimal point
forecast for y,,, is u=T,.

* An actual forecast is an estimate of T,.



Modeling Trend

 Most trend models are very simple
e Simplest possible trend is a constant

Tt — :Bo
* This might seem overly simple, but is
appropriate for stationary time-series
— A series not growing or changing over time

— Many series reported as percentage changes



U.S. Personal Consumption (Quarterly)
Monthly Percentage Change
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Estimation

If E(y,., | Q) =u,=T,=B, then the optimal forecast
is the mean B,=E(y,)

The estimate of B, is the sample mean
1 T
bO :?Z Yisn
t=1

This is the estimate of the optimal point forecast
when u,= B,

b, is also the least-squares estimate in an
intercept-only model



Estimation

e |n STATA, use the regress command
e See STATA Handout on website
e Sample mean is estimated “constant”

. use gdp

. regress consumption

source SS df MS Number of obs = 251

FC 0, 250) = 0.00

Model 0 0 . Prob > F = .
Residual 3017 .6648 250 12.0706592 R-squared = 0.0000
Adj R-squared = 0.0000

Total 3017 .6648 250 12.0706592 Root MSE = 3.4743
consumption Coef. std. Err. t P>|t] [95% conf. Interval]
_cons 3.472112 .219295 15.83 0.000 3.040211 3.904013




Fitted Values

e Fitted values are the sample mean
yt::jhzzt%
e In STATA use the predict command

. predict yp
(option xb assumed; fitted values)

e This creates a variable “yp” of fitted values



Plot actual against fitted

tsline consumption yp
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Out-of-Sample

e Point forecasts are the sample mean

9T+h = bo
e [n STATA, use tsappend to expand sample, and
predict to generate point forecasts.

. tsappend, add(12)

. predict p if t>tq(2009g4)
(option xb assumed; fitted values)
(251 missing values generated)

. tsline consumption yp p if t>tq(2000qg4)



Out-of-Sample
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Forecast Errors

* The forecast error e, is the difference
between the realized value and the
conditional mean.

€ = Yin — 44
or equivalently
Yien = #; T €

* We call e, the forecast error.



Residuals

 The residuals are the in-sample fitted errors.

e The difference between the realized value and
the in-sample forecast.

€ = Yin — 4
— yt+h o bO

* [n general, it is useful to plot the residuals

against time, to see if any time series pattern
remains.



Calculate and Plot Residuals

. predict e, residuals
(12 missing values generated)

. tsline e
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Estimation Uncertainty

e The sample mean

1
b, :?tzﬂ: Yisn

is an estimate of B,=E(y,.,)
 The estimation error is
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Estimation Variance

e Under classical conditions,

2
var(b, )= %

where o’=var(e,)
* The standard error for b, is an estimate of the
standard deviation

~2
Sd(bo): O-?



Forecast Variance

When the sample mean b, is used as the
forecast for y,, then the prediction error is

Yrin — 0o =€r, + 5y —Dy
which is the sum of the forecast error e,,, and
the estimation uncertainty B,-b,.

The forecast variance is
Var(YTm B bo): Var(enh )"‘ Var(ﬂo - bo)



Standard Deviation of Forecast

e The standard deviation of the forecast is the

estimate ;
ST h = \/(14—?)&2

e This is slightly larger than the regression
standard deviation &



Normal Forecast Intervals

Let y.,, be a forecast fory,,,
The prediction erroris y .- V7.,
Let s.,, be the st. deviation of the forecast

If the prediction errors are normally distributed,
the (1-a)% forecast interval endpoints are

LT+h = Y10 TSrinlase

U= 9T+h T5rinligr2
where z,,, and z; , ,are the a/2 and 1-a /2
guantiles of the normal distribution

e.g. yr.,x1.64 s, for a 90% interval



predict s, stdf
generate ypl=yp-1.645%s
generate yp2=yp+1.645%s

tsline consumption yp ypl yp2
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Deficiency of Normal Intervals

e The normal forecast interval is based on the
assumption that the prediction errors are
normally distributed.

e This requires that the conditional distribution
of y,., be normal, which is rarely valid.

e Instead, we can compute forecast intervals
based on the empirical distribution of the
forecast residuals.



Empirical Forecast Intervals

* Lety,,, be fitted values for y,,, with residuals
é\t = Yo — 9t+h

* Letgqg,, and q,,,bethea/2 and 1-a /2
guantiles of the residuals.

 The (1-a)% forecast interval endpoints are

Lron = Yran T 0002
UT+h = Yrin T Uisi2



Empirical Forecast Intervals

e The basic method to obtain forecast intervals
is the same for any regression model

Yien = M T €
 The (1-a)% forecast interval endpoints are
Li.n =14 +0,,,
Ui =4 +0 4

where q,, and q,,,,are the a/2 and 1-a /2
quantiles of the distribution of e,.



Quantiles

 The x'th quantile of a set of numbers is the
value g, such that x% are smaller than g,
and (1-x)% are larger than gq,.

* You can find g, by sorting the data.
e [n STATA, use the qreg command

— (for quantile regresion)



. qreg e, quantile(.05)

Iteration 1: WwLS sum of weighted deviations = 500.77838
Iteration 1: sum of abs. weighted deviations = 517.45
Iteration 2: sum of abs. weighted deviations = 213.47
.05 Quantile regression Number of obs = 251
Raw sum of deviations 213.91 (about -5.0721116)
Min sum of deviations 213.47 Pseudo R2 = 0.0021
e coef. std. Err. t P> |t] [95% conf. Interval]
_cons -4.672112 1.468371 -3.18 0.002 -7 .564066 -1.780157
. predict ql
(option xb assumed; fitted values)
. generate ypl=yp+ql
. qreg e, quantile(.95)
Iteration 1: WLS sum of weighted deviations = 502.46952
Iteration 1: sum of abs. weighted deviations = 507.45001
Iteration 2: sum of abs. weighted deviations = 183.47
.95 Quantile regression Number of obs = 251
Raw sum of deviations 183.47 (about 4.7278881)
Min sum of deviations 183.47 Pseudo R2 = -0.0000
e coef. std. Err. t P> |t] [95% conf. Interval]
_cons 4.727888 1.77628 2.66 0.008 1.229507 8.226269
. predict q2

(option xb assumed; fitted values)
. generate yp2=yp+q2

. tsline consumption yp ypl yp?2
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Out-of-Sample
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Mean Shifts

e Sometimes the mean of a series changes over
time

* |t can drift slowly, or change quickly
— Possibly due to a policy change

* In this case, forecasting based on a constant
mean model can be misleading



State and Local Government Spending
Percentage Growth Rate (Quarterly)

e Average for 1947-2009: 3.6%
e But this has not been the typical rate in recent years.
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Alternatives

e Subsample estimation
— Estimate the mean on subsamples
— Forecasts are based on the most recent

e Dummy Variable formulation

iy = P+ ,Bldt
d, =1(t > 7)

* T isthe breakdate
— The date when the mean shifts
— The coefficient B, is the mean before t=t
— The coefficient B, is the shift at t=t
— The sum B,+B; is the mean after t=t



Forecast

* Linear Regression y,,, ond,

e Example

— State and Local Government Percentage Growth
— Mean breaks in 197091 and 200291

regress state dl d2

Source SS df MS Number of obs = 251
F(C 2, 248) = 26.08

Model 853.758681 2 426.879341 Prob > F = 0.0000
Residual 4058.72436 248 16.365824 R-squared = 0.1738
Adj R-squared = 0.1671

Total 4912.48304 250 19.6499322 Root MSE = 4.0455
state Coef. std. Err. t P>|t| [95% Conf. Interval]

dl -3.125867 .5547091 -5.64 0.000 -4.218409 -2.033326

d2 -2.160156 .7995561 -2.70 0.007 -3.734943 -.58537
_cons 5.851648 .4240804 13.80 0.000 5.01639 6.686907




Fitted

e Qut-of-sample forecast falls from 3.6% to 0.6%!
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Should you use Mean Shifts?

Only after great hesitation and consideration.

Should use shifts and breaks reluctantly and with
care.

Do you have a model or explanation?

What is the forecasting power of a mean shift?

— If they have happened in the past, will there be more
in the future?

Yet, if there has been an obvious shift, a simple
constant mean model will forecast terribly.



How to Select Breakdates

e Judgmental
— Dates of known policy shifts
— Important events
— Economic crises
* |[nformal data-based
— Visual inspection

e Formal data-based
— Estimate regression for many possible breakdates
— Select one which minimizes sum of squared error
— This is the least-squares breakdate estimator
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