Time-Series Components

• Recall that the optimal point forecast of a series y_{t+h} is its conditional mean

$$\mu_t = \mathrm{E}\big(y_{t+h} \mid \Omega_t\big)$$

It is useful to decompose this mean into components

$$\mu_t = T_t + S_t + C_t$$

- $-T_{t}$ = Trend
- $-S_t$ = Seasonal
- $-C_t = Cycle$

Components

- Trend
 - Very long term (decades)
 - Smooth
- Seasonal
 - Patterns which repeat annually
 - May be constant or variable
- Cycle
 - Business cycle
 - Correlation over 2-7 years
- It is useful to consider the components separately
- We start with the Trend

Trend Forecasting

A pure trend model has no seasonal or cycle

$$\mu_t = T_t$$

- In a pure trend model, the optimal point forecast for y_{t+h} is $\mu_t = T_t$.
- An actual forecast is an estimate of T_t .

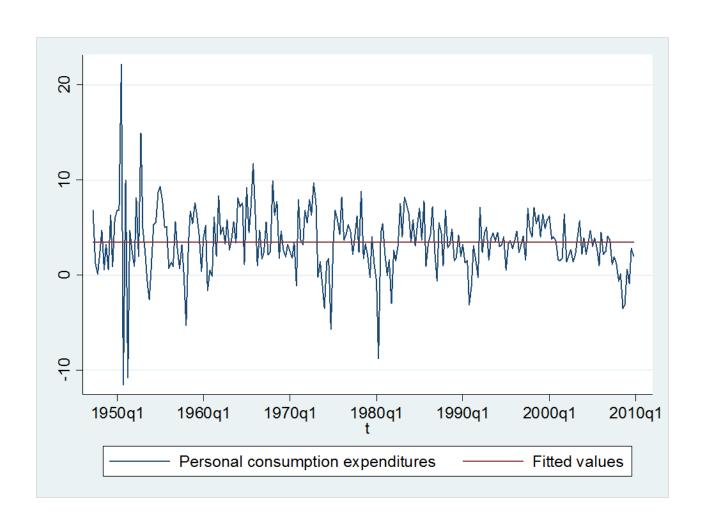
Modeling Trend

- Most trend models are very simple
- Simplest possible trend is a constant

$$T_t = \beta_0$$

- This might seem overly simple, but is appropriate for stationary time-series
 - A series not growing or changing over time
 - Many series reported as percentage changes

U.S. Personal Consumption (Quarterly) Monthly Percentage Change



Estimation

- If $E(y_{t+h} \mid \Omega_t) = \mu_t = T_t = \beta_0$ then the optimal forecast is the mean $\beta_0 = E(y_{t+h})$
- The estimate of β_0 is the sample mean

$$b_0 = \frac{1}{T} \sum_{t=1}^{T} y_{t+h}$$

- This is the estimate of the optimal point forecast when $\mu_t = \beta_0$
- b_0 is also the least-squares estimate in an intercept-only model

Estimation

- In STATA, use the regress command
- See STATA Handout on website
- Sample mean is estimated "constant"
- . use gdp
- . regress consumption

Source	SS	df		MS		Number of obs		251 0.00
Model Residual	0 3017.6648	0 250	12.0	706592		Prob > F R-squared	- = = =	0.0000 0.0000
Total	3017.6648	250	12.0	706592		-	=	
consumption	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]
_cons	3.472112	.219	295	15.83	0.000	3.040211	3	. 904013

Fitted Values

Fitted values are the sample mean

$$\hat{y}_t = \hat{\mu}_t = b_0$$

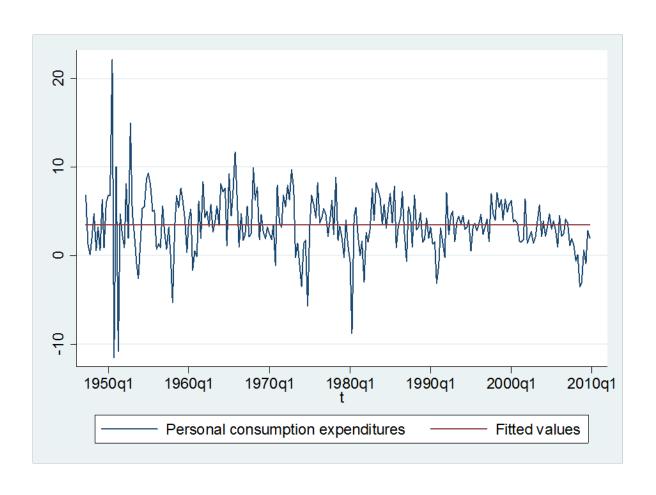
In STATA use the predict command

```
. predict yp
(option xb assumed; fitted values)
```

• This creates a variable "yp" of fitted values

Plot actual against fitted

. tsline consumption yp



Out-of-Sample

Point forecasts are the sample mean

$$\hat{y}_{T+h} = b_0$$

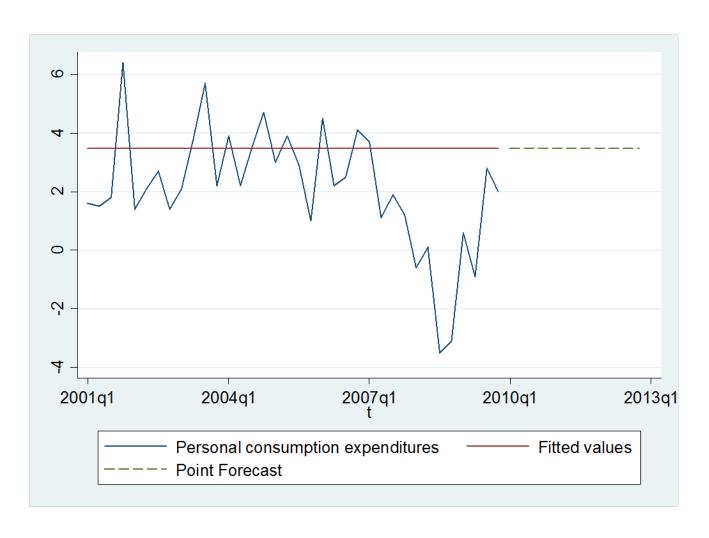
 In STATA, use tsappend to expand sample, and predict to generate point forecasts.

```
. tsappend, add(12)
```

```
. predict p if t>tq(2009q4)
(option xb assumed; fitted values)
(251 missing values generated)
```

. tsline consumption yp p if t>tq(2000q4)

Out-of-Sample



Forecast Errors

• The forecast error e_t is the difference between the realized value and the conditional mean.

$$e_t = y_{t+h} - \mu_t$$

or equivalently

$$y_{t+h} = \mu_t + e_t$$

• We call e_t the forecast error.

Residuals

- The residuals are the in-sample fitted errors.
- The difference between the realized value and the in-sample forecast.

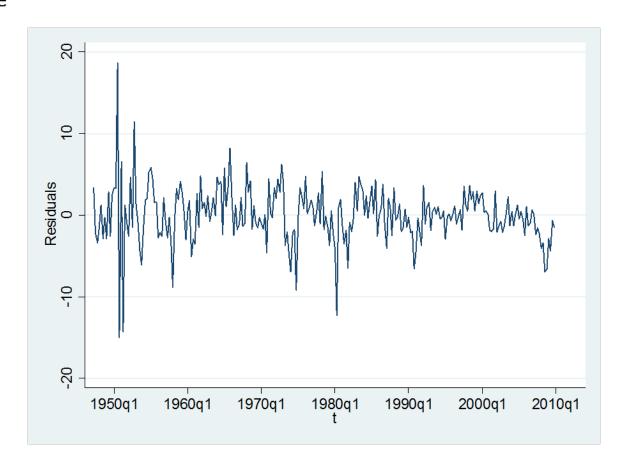
$$\hat{e}_t = y_{t+h} - \hat{\mu}_t$$
$$= y_{t+h} - b_0$$

 In general, it is useful to plot the residuals against time, to see if any time series pattern remains.

Calculate and Plot Residuals

predict e, residuals(12 missing values generated)

. tsline e



Estimation Uncertainty

The sample mean

$$b_0 = \frac{1}{T} \sum_{t=1}^{T} y_{t+h}$$

is an estimate of $\beta_0 = E(y_{t+h})$

The estimation error is

$$b_0 - \beta_0 = \frac{1}{T} \sum_{t=1}^{T} y_{t+h} - \beta_0$$

$$= \frac{1}{T} \sum_{t=1}^{T} (y_{t+h} - \beta_0)$$

$$= \frac{1}{T} \sum_{t=1}^{T} e_t$$

Estimation Variance

Under classical conditions,

$$\operatorname{var}(b_0) = \frac{\sigma^2}{T}$$

where $\sigma^2 = \text{var}(e_t)$

• The standard error for b_0 is an estimate of the standard deviation

$$sd(b_0) = \sqrt{\frac{\hat{\sigma}^2}{T}}$$

Forecast Variance

• When the sample mean b_0 is used as the forecast for y_{T+h} then the prediction error is

$$y_{T+h} - b_0 = e_{T+h} + \beta_0 - b_0$$

which is the sum of the forecast error e_{T+h} and the estimation uncertainty β_0 - b_0 .

The forecast variance is

$$\operatorname{var}(y_{T+h} - b_0) = \operatorname{var}(e_{T+h}) + \operatorname{var}(\beta_0 - b_0)$$
$$= \sigma^2 + \frac{\sigma^2}{T}$$
$$= \left(1 + \frac{1}{T}\right)\sigma^2$$

Standard Deviation of Forecast

The standard deviation of the forecast is the estimate

$$S_{T+h} = \sqrt{\left(1 + \frac{1}{T}\right)} \hat{\sigma}^2$$

• This is slightly larger than the regression standard deviation $\hat{\sigma}$

Normal Forecast Intervals

- Let \hat{y}_{T+h} be a forecast for y_{T+h}
- The prediction error is y_{T+h} \hat{y}_{T+h}
- Let s_{T+h} be the st. deviation of the forecast
- If the prediction errors are normally distributed, the $(1-\alpha)\%$ forecast interval endpoints are

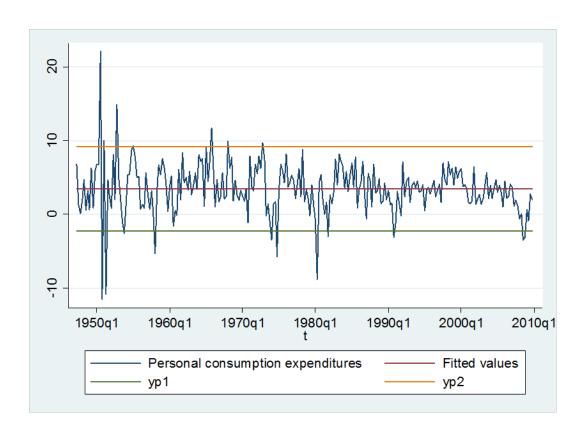
$$L_{T+h} = \hat{y}_{T+h} + s_{T+h} z_{\alpha/2}$$

$$U_{T+h} = \hat{y}_{T+h} + s_{T+h} z_{1-\alpha/2}$$

where $z_{\alpha/2}$ and $z_{1-\alpha/2}$ are the $\alpha/2$ and $1-\alpha/2$ quantiles of the normal distribution

• $e.g. \hat{y}_{T+h} \pm 1.64 s_{T+h}$ for a 90% interval

- . predict s, stdf
- . generate yp1=yp-1.645*s
- . generate yp2=yp+1.645*s
- . tsline consumption yp yp1 yp2



Deficiency of Normal Intervals

- The normal forecast interval is based on the <u>assumption</u> that the prediction errors are normally distributed.
- This requires that the conditional distribution of y_{T+h} be normal, which is rarely valid.
- Instead, we can compute forecast intervals based on the empirical distribution of the forecast residuals.

Empirical Forecast Intervals

• Let \hat{y}_{t+h} be fitted values for y_{t+h} with residuals

$$\hat{e}_t = y_{t+h} - \hat{y}_{t+h}$$

- Let $q_{\alpha/2}$ and $q_{1-\alpha/2}$ be the $\alpha/2$ and $1-\alpha/2$ quantiles of the residuals.
- The $(1-\alpha)$ % forecast interval endpoints are

$$L_{T+h} = \hat{y}_{T+h} + q_{\alpha/2}$$

$$U_{T+h} = \hat{y}_{T+h} + q_{1-\alpha/2}$$

Empirical Forecast Intervals

 The basic method to obtain forecast intervals is the same for any regression model

$$y_{t+h} = \mu_t + e_t$$

• The $(1-\alpha)$ % forecast interval endpoints are

$$L_{T+h} = \mu_T + q_{\alpha/2}$$
 $U_{T+h} = \mu_t + q_{1-\alpha/2}$

where $q_{\alpha/2}$ and $q_{1-\alpha/2}$ are the $\alpha/2$ and $1-\alpha/2$ quantiles of the distribution of e_t .

Quantiles

- The x'th quantile of a set of numbers is the value q_x such that x% are smaller than q_x and (1-x)% are larger than q_x .
- You can find q_x by sorting the data.
- In STATA, use the qreg command
 - (for quantile regresion)

. greg e, quantile(.05)

Iteration 1: WLS sum of weighted deviations = 500.77838

Iteration 1: sum of abs. weighted deviations = 517.45 Iteration 2: sum of abs. weighted deviations = 213.47

.05 Quantile regression Raw sum of deviations

Number of obs = 213.91 (about -5.0721116)

251

251

Min sum of deviations

213.47

Pseudo R2

0.0021

=

е	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_cons	-4.672112	1.468371	-3.18	0.002	-7.564066	-1.780157

. predict al

(option xb assumed; fitted values)

- . generate yp1=yp+q1
- . greg e, quantile(.95)

Iteration 1: WLS sum of weighted deviations = 502.46952

Iteration 1: sum of abs. weighted deviations = 507.45001 Iteration 2: sum of abs. weighted deviations = 183.47

.95 Quantile regression Raw sum of deviations

183.47 (about 4.7278881)

Number of obs =

Pseudo R2 -0.0000=

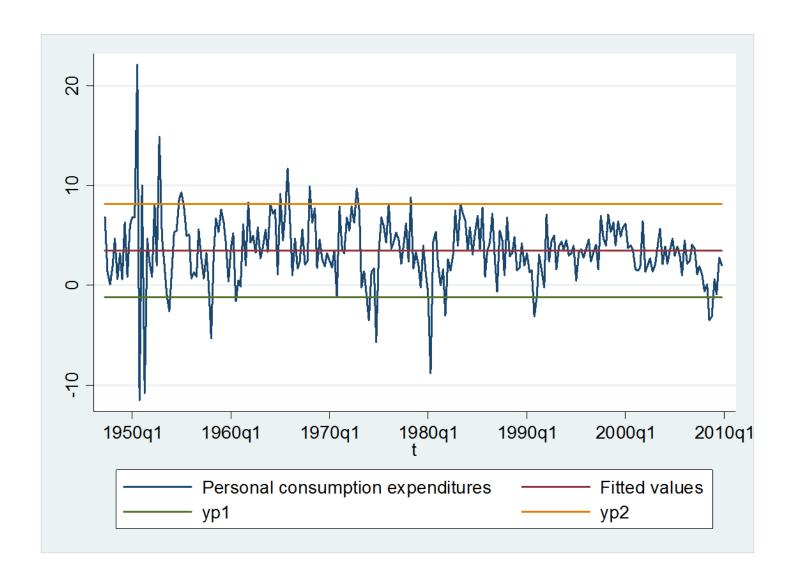
Min sum of deviations 183.47

Std. Err.	t	P> t	[95% Conf. Interval]

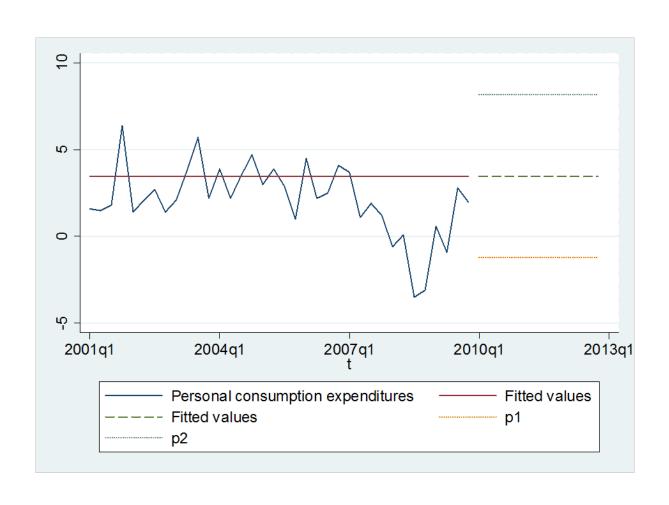
e	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
_cons	4.727888	1.77628	2.66	0.008	1.229507	8.226269

. predict q2 (option xb assumed; fitted values)

- . generate yp2=yp+q2
- . tsline consumption yp yp1 yp2



Out-of-Sample

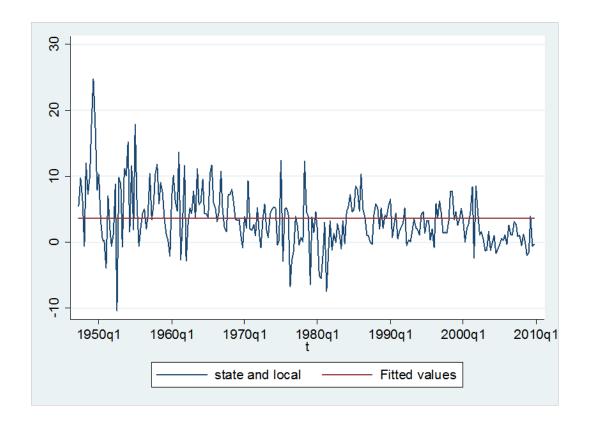


Mean Shifts

- Sometimes the mean of a series changes over time
- It can drift slowly, or change quickly
 - Possibly due to a policy change
- In this case, forecasting based on a constant mean model can be misleading

State and Local Government Spending Percentage Growth Rate (Quarterly)

- Average for 1947-2009: 3.6%
- But this has not been the typical rate in recent years.



Alternatives

- Subsample estimation
 - Estimate the mean on subsamples
 - Forecasts are based on the most recent
- Dummy Variable formulation

$$\mu_{t} = \beta_{0} + \beta_{1}d_{t}$$
$$d_{t} = 1(t \ge \tau)$$

- τ is the breakdate
 - The date when the mean shifts
 - The coefficient β_0 is the mean before $t=\tau$
 - The coefficient β_1 is the shift at $t=\tau$
 - The sum $\beta_0 + \beta_1$ is the mean after $t=\tau$

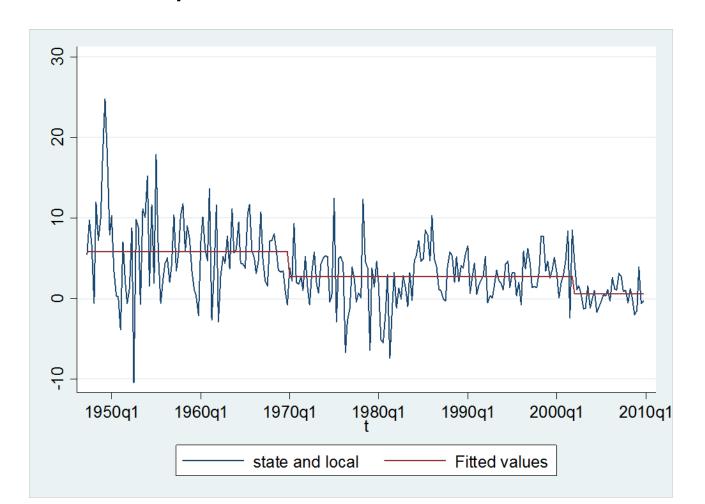
Forecast

- Linear Regression y_{t+h} on d_t
- Example
 - State and Local Government Percentage Growth
 - Mean breaks in 1970q1 and 2002q1
- . regress state d1 d2

Source	ss	df	MS		Number of obs F(2, 248)		251 26.08
Model Residual	853.758681 4058.72436		6.879341 6.365824		Prob > F R-squared Adj R-squared	= 0 = 0	0.0000 0.1738
Total	4912.48304	250 19	.6499322		Root MSE		.0455
state	Coef.	Std. Err	·. t	P> t	[95% Conf.	Inte	rval]
d1 d2 _cons	-3.125867 -2.160156 5.851648	.5547091 .7995561 .4240804	-2.70	0.000 0.007 0.000	-4.218409 -3.734943 5.01639		33326 58537 86907

Fitted

Out-of-sample forecast falls from 3.6% to 0.6%!



Should you use Mean Shifts?

- Only after great hesitation and consideration.
- Should use shifts and breaks reluctantly and with care.
- Do you have a model or explanation?
- What is the forecasting power of a mean shift?
 - If they have happened in the past, will there be more in the future?
- Yet, if there has been an obvious shift, a simple constant mean model will forecast terribly.

How to Select Breakdates

- Judgmental
 - Dates of known policy shifts
 - Important events
 - Economic crises
- Informal data-based
 - Visual inspection
- Formal data-based
 - Estimate regression for many possible breakdates
 - Select one which minimizes sum of squared error
 - This is the least-squares breakdate estimator