Conditional Mean Forecasts

 Under squared error loss, the optimal unconditional point forecast is the mean Ey

$$E(y) = \int y f(y) dy$$

Under squared error loss, the optimal conditional point forecast is the conditional mean

$$E(y \mid x) = \int y f(y \mid x) dy$$

where f(y|x) is the conditional density of y given x

Conditional Variables

- The variable x is the information available for us to forecast y
- For example, to forecast the wage we let x be the person's sex, race and educational level.
- The unconditional mean Ey is the average wage in the entire population
- The conditional mean E(y|x) is the average wage in the population for the subpopulation with the variables x.

Conditional Mean

- What is E(y|x)?
- When x is discrete, then E(y|x) is simply the mean in the subpopulation.
- For example, the average wage among white male college graduates.
- When *x* is continuously distributed, this definition does not work.

Conditional Mean

• Let f(y,x) denote the joint density of y and x. Then the conditional density of y given x is

$$f(y \mid x) = \frac{f(y, x)}{f(x)}$$

- $f(y|x) = \frac{f(y,x)}{f(x)}$ It is the distribution of y holding x fixed.
- It is a slice of the joint density
- Then the conditional mean is

$$E(y \mid x) = \int y f(y \mid x) dy$$

Forecast Intervals

- Forecast intervals are constructed from the conditional distribution F(y|x).
- The endpoints are the conditional quantiles.
- Definition: The α 'th conditional quantile of y given x is the number $q_{\alpha}(x)$ which satisfies

$$\alpha = F(q_{\alpha}(x) \mid x)$$

• It looks more complicated, but it is identical with the case with no x.

When does Conditioning Help?

- It helps if y and x are dependent or correlated.
- If y and x are independent, then f(y|x)=f(y) and E(y|x)=E(y).
 - There is no gain from conditioning.
- To optimally forecast unknown y we want to use observable variables x which are highly correlated with y.

Summary – Conditional Forecasts

- Information improves forecasts
- Conditioning on relevant variables reduces the risk (expected loss) of forecasts
- Point and interval forecasts are functions of the conditioning variables

Forecasting Economic Time Series

Economic forecasts rely on time series data – observations which are recorded sequentially over time.

Time Series Data

- A time series is written as y_t
- The index *t* denotes the time period.
- A time period may be a year, quarter, month, week, day, transaction, or any other time unit.
- We call this the data frequency.

Lags and Leads

- We will often talk about lags and leads
- The first lag of y_t is written y_{t-1}
 - It is the observation from the previous period
 - For example, the lag of November is October
- The second lag is y_{t-2} , the k'th lag is y_{t-k}
- The first lead of y_t is y_{t+1}
- The k'th lead is y_{t+k}

Time Series Samples

 A historical sample is a set of observations in contiguous time, written as

$$\{y_1, y_2, ..., y_T\}$$

- T is the number of observations in-sample.
- The number of observations does not equal the number of years, unless the frequency is annual

Examples

- Number of Unemployed
- Unemployment Rate
- GDP
- Real GDP
- Price Level
- Inflation Rate
- New Housing Starts

Wisconsin Unemployment Rate

Forecast Period

- In-sample observations: $\{y_1, y_2, ..., y_T\}$
- Out-of-sample period: $\{y_{T+1}, y_{T+2}, ..., y_{T+h}\}$
- h is called the forecast horizon

Forecast Notation

- We denoted \hat{y} as the point forecast for y.
- This suggests \hat{y}_{T+h} as the point forecast for y_{T+h} .
- But is not enough. While it is the forecast for the time series at time period *T*+*h*, it is not clear when the forecast is made.
 - At time period T
 - At time period T+1
 - − At time period T+h-1

Notation

We will use the notation

$$\hat{y}_{t+h|t}$$

to refer to the forecast of y_{t+h} made at time t.

• Thus $\hat{y}_{T+h|T}$, $\hat{y}_{T+h|T+1}$, $\hat{y}_{T+h|T+2}$, etc. are the sequence of forecasts of y_{T+h} made in time periods T, T+1, T+2, etc.

Notation

• Similarly, the forecast distribution and density for y_{t+h} made at time t will be written as

$$F_{t+h|t}(y)$$

and

$$f_{t+h|t}(y)$$

Extrapolative Forecasts and Fan Charts

- At time T, make a sequence of forecasts for time periods T+1, T+2, T+3,..., T+h
- Point forecasts: $\hat{y}_{T+1|T}$, $\hat{y}_{T+2|T}$, ..., $\hat{y}_{T+h|T}$
- Add interval forecasts
- Plot over forecast horizon
- This is called a fan chart.
- The intervals tend to fan out with the forecast horizon.

Wisconsin Unemployment Rate

Extrapolative Forecasts

	Point Forecast	50% Interval Forecast	80% Interval Forecast
2009:12	8.1%	(7.9%, 8.3%)	(7.9%, 8.4%)
2010: 1	8.1%	(7.8%, 8.3%)	(7.7%, 8.6%)
2010: 2	8.0%	(7.6%, 8.3%)	(7.4%, 8.6%)
2010: 3	7.8%	(7.3%, 8.2%)	(7.2%, 8.5%)
2010: 4	7.7%	(7.1%, 8.1%)	(6.9%, 8.5%)
2010: 5	7.7%	(7.0%, 8.1%)	(6.8%, 8.6%)
2010: 6	7.6%	(6.9%, 8.1%)	(6.7%, 8.6%)
2010: 7	7.6%	(6.7%, 8.1%)	(6.5%, 8.8%)
2010: 8	7.5%	(6.6%, 8.1%)	(6.4%, 8.9%)
2010: 9	7.4%	(6.4%, 8.0%)	(6.2%, 8.8%)
2010:10	7.3%	(6.2%, 8.0%)	(5.9%, 8.8%)
2010:11	7.1%	(6.0%, 7.8%)	(5.7%, 8.6%)

Information Set

- To forecast y_{t+h} at time t we use relevant information.
- Most information is values of other economic variables.
- Those observed up to time t.
- This includes previous values of the variable y_t .
- It can also include other relevant variables.
- All this information is the *Information Set*, written as Ω_t .
- For example $\Omega_t = \{y_1, y_2, y_3, ..., y_t\}$ is the set of previous values.
- $\Omega_t = \{y_1, x_1, y_2, x_2, y_3, x_3, ..., y_t, x_t\}$ includes another variable x_t

Forecast from the Information Set

• The conditional density of y_{t+1} given Ω_t is

$$f(y_{t+1} | \Omega_t) = \frac{f(y_{t+1}, \Omega_t)}{f(\Omega_t)}$$

- This is the (conditional) probability density, given the information Ω_t .
- The conditional distribution is its integral

$$F(y \mid \Omega_t) = \int_{-\infty}^{y} f(u \mid \Omega_t) du$$

Forecasts

The point forecast is the conditional mean

$$E(y_{t+h} \mid \Omega_t) = \int y f(y \mid \Omega_t) dy$$

• Interval forecasts are quantiles of the conditional distribution function $F(y|\Omega_t)$

Forecast Density and Distribution

Actual Forecasting

- Even if the variables in the information set Ω_t are known, the conditional mean function $E(y_{t+h} \mid \Omega_t)$ is unknown
 - The functional form is unknown
 - The parameters of the function are unknown
- Thus to make an actual forecast, we need to:
 - Create an approximate model for $E(y_{t+h} \mid \Omega_t)$
 - Estimate the model parameters from data.

Diebold's Six Considerations

1. Decision Environment

– Do you have a specialized loss function?

2. Forecast Object

- A time series
- An event (a binary time series)
 - In this case the forecast should be a probability
- A duration or timing

3. Forecast Statement

- Is the goal point estimation alone?
- Do you want an interval or density forecast?

4. Forecast Horizon

- 1-step-ahead
- h-step-ahead
- h-step-ahead extrapolation (1 through h)

5. The Information Set

- Univariate (past history of series alone)
- Multivariate (multiple series)

6. Methods and Complexity

- How do you approximate the unknown functions?
- Do you use a mechanical forecasting rule (e.g. exponential smoothing) or a statistical model?
- How do you estimate the parameters?
- To keep from overfitting
 - Enforce simplicity
 - Parsimony principle: Fewer parameters is better
 - Shrinkage principle: Coax your model towards simplicity
 - KISS principle: Keep It Sophisticatedly Simple