Forecast Combination

In the press, you will hear about “Blue Chip
Average Forecast” and “Consensus Forecast

1

These are the averages of the forecasts of
distinct professional forecasters.

Is there merit to averaging (combining)
different forecasts?

Or is it better to focus on selecting the best
forecast?



GDP Forecast

e Let’s consider forecasting GDP growth for
2010Q1 (first estimate to be released April 30)

e GDP growth for the four quarters of 2009

-6.4% -0.7% 2.2% 5.6%



Models

* In p.s. #10, you considered models for GDP
— AR(3) plus 3 lags of dt3
— AR(3) plus 3 lags of dt12
— AR(3) plus 3 lags of spread12
— AR(3) plus 3 lags of spread120
— AR(3) plus 3 lags of junk

e The model with junk spread had the lowest
AlC

e Let’s reconsider the number of lags




AIC for different lag structures

e The model with 2 AR

BT 'ass and 2 lags of junk
0 1 2 3

has the lowest AIC

AR(1) 571 570 552 554 e But the models with 1
AR(2) 571 571 552* 554 and 3 AR lags have
AR(3) 571 570 552 554

nearly the same AIC

e And the models with 3
lags of junk are quite
close too



Forecasts

* The point forecasts are

BT ouite different
0 1 2 3 o

AR(1)
AR(2)
AR(3)

4.0
3.9
4.2

3.8
3.7
4.1

The model selected by AIC

S e is much higher than the AR
5.1* 4.3

model
5.3 4.4

e The model with 3 lags of

junk have quite different
forecasts



Average Forecast

The average of the 12 forecasts is

~ _40+39+4.2+38+3.7+4.1+52+5.1+5.3+4.7+4.3+4.4

yaverage T 12
=44

This is similar to a consensus or Blue Chip
forecast.

You could imagine these 12 forecasts as coming
from different forecasters.

Is it useful to combine the forecasts?



Pseudo Out-of-Sample Experiment

Split the sample
— Estimation period: 1954Q2-1994Q4 (30 years)
— Evaluation period: 1995Q1-2009Q4 (15 years)

Estimate the 12 models using 1954Q2-1994Q4
— Fix the parameter estimates

Use these models to forecast 1995Q1-2009Q4
Also, take the average forecast for each period
Create out-of-sample errors for the 12 models
And the out-of-sample error for the average forecast

Compare the performance of the methods by RMSE
— A simplified version of predictive least square (PLS)



Out-of-Sample RMSE

RMSE_junk _lyield _llags |
0 1 2 3

AR(1) 246 238 234
AR(2) 2.46 237  2.32%
AR(3) 241 233 236

m Average forecast

2.18

2.34
2.32
2.37

The comparisons based on out-of-
sample RMSE are similar to AIC on
full sample

The lowest RMSE is 2.32, achieved
by the model with 2 lags of each

But the RMSE of the average
forecasts (the average across all 12
forecasts) is 2.18

We achieve a much lower RMSE by
this simple averaging!

Why?

Why is it useful to combine
forecasts?

Can we do better than a simple
equal-weighted average?



Theory of Forecast Combination

Suppose you have forecasts f, and f, for y

Suppose they are unbiased with variances
var(f,) and var(f,) and suppose they are
uncorrelated.
Then if you take a weighted average

f =wf,+(1-w)f,

The variance of the average is
var(f) =w? var(f,)+(1—w)?var(f,)



Equal weights

e If w=1/2 then

var( f, )+ var( f,)
A

var(f) =



Optimal Weights

var(f) =w’c’ +(1-w)’o;

 Minimizing with respect to w, the optimal weight

* The weight on forecast 1 is inversely proportional
to its variance



Multiple Forecasts

* In general, if you have forecasts f,,..., f,, a
forecast combination is

f=wf +w,f,+---+w,f,

* Where the weights are non-negative and

W, +W, +---+W, =1



Optimal weights

e When the forecasts are uncorrelated, the optimal
weights are

—2
W O

m _2 —2 -2
o, +0, +---+0oy

 The weight on the m’th forecast is inversely
proportional to its variance

* |f they have the same variance, then the weights
are all equal



Bates-Granger Combination

e Bates and Granger (1969)

— An early influential paper

— Suggested using empirical weights based on out-of-
sample forecast variances

~ -2
m

W =

o

G o+, 4Oy

— Even though this was derived under the assumption of
uncorrelated forecasts, this method can work well in
practice.



Bates-Granger Implementation

Take a series of (pseudo) out-of-sample
forecasts and forecast errors

Compute forecast variance (square of RMSE)
Invert.

Normalize by sum across all models



Example

RMSE_junk _lyield _llags |
0 1 2 3

AR(1) 2.46 238 234 234
AR(2) 2.46 237 232 232
AR(3) 241 233 236 237

Take the first model with
RMSE=2.46

Square and invert to find 0.16
Sum across all 12 modelsis 2.14
Divide 0.16/2.14=0.08

This is the weight for this
model/forecast

Because the RMSE is similar
across models, the weights are
very similar, all 0.08 or 0.09

Bates-Granger weights essentially
are the same as equal weights



Granger-Ramanathan Combination

Granger and Ramanathan (1984)

Introduced a regression method to combine
forecasts

Similar to a Mincer-Zarnowitz regression
Regress the actual value on the forecasts

Two forecasts:
Yi = 161 flt +/82 f2t + €,



Multiple Forecasts

Yi :ﬂlflt +182f2t "'""":BM fMt+et

e Should use a constrained regression
— Omit intercept
— Enforce non-negative coefficients
— Constrain coefficients to sum to one



STATA implementation

reg option noconstant removes the intercept

Constrained regression command cnsreg
enforces linear constraints defined by
constraint

For example, if you regress gdp on (p,p,,P3,P4)
.constraint 1 pl+p2+p3+p4=1

.cnsreg gdp pl p2 p3 p4, constraints(1)
noconstant



Non-negativity

e |n STATA it is difficult to enforce the non-negative
condition on the weights

e You can do this manually

— Estimate the regression
— Eliminate a forecast with the most negative weight

— Restimate
— Keep eliminating forecasts until only positive weights are
found.

e Another problem
— If the forecasts are highly correlated, STATA may exclude
redundant forecasts

— That is okay, they were not helping anyway.



. reg gdp pl p2 p3 p4 p5

Example

p6 p7 p8 p9 pl0 pll pl2, noconstant

note: p2 omitted because of collinearity
note: p3 omitted because of collinearity
note: p4 omitted because of collinearity
note: p5 omitted because of collinearity
note: p8 omitted because of collinearity
note: pl0 omitted because of collinearity
Source SS df MS Number of obs = 60
F( 6, 54) = 20_13
Model 580.076891 6 96.6794819 Prob > F = 0.0000
Residual 259_363104 54 4.80302044 R-squared = 0.6910
Adj R-squared = 0.6567
Total 839_439995 60 13.9906666 RoOOT MSE = 2.1916
gdp Coef. std. Err. t P>t [95% conf. Intervall]
pl1 -2.011758 1.285095 -1.57 0.123 -4_588218 -564703
p2 (omitted)
p3 (omitted)
pa4 (omitted)
p5 (omitted)
p6 2_319188 1.252291 1.85 0.070 -.1915046 4_829881
p7 -4674386 2_565805 0.18 0_856 -4_676691 5.611568
p8 (omitted)
p9 -.1637144 2.78425 -0.06 0.953 -5.7458 5.418371
pl10 (omitted)
pll 1.232494 2_661173 0.46 0.645 -4.102837 6.567825
pl2 -1.032479 2_707502 -0.38 0.704 -6.460693 4_395735




Example

. constraint 1 pli+p6+p7+p9+pll+pl2=1

. cnsreqg gdp pl p6 p7 p9 pll pl2, constraints(l) noconstant

Constrained linear regression Number of obs = 60
RoOt MSE = 2.2429
(1) pL+p6 +p7 +p9+pll+pl2z =1
gdp Coef. std. Err. t P>t [95% conf. Interval]
pl -.9284845 1.178581 -0.79 0.431 -3.290413 1.433444
p6 1.387255 1.17916 1.18 0.244 -.9758353 3.750346
p7 -1.858702 2_307476 -0.81 0.424 -6.482987 2_765583
p9 2_234642 2_539583 0_.88 0.383 -2._.854797 7_.324081
pll 3.530808 2.42568 1.46 0.151 -1.330363 8_39198
pl2 -3.365519 2_.469361 -1.36 0.178 -8.314229 1.583192
. constraint 1 p6+p9=1
. cnsreq gdp p6 p9, constraints{(l) noconstant
constrained linear regression Number of obs = 60
RoOt MSE = 2_2396
(1) p6+p9=1
gdp Coef. std. Err. t P>ltl [95% conf. Intervall
p6 -5196649 -1549455 3.35 0.001 -2096197 -82971
p9 -4803351 -1549455 3.10 0.003 -17029 -7903803




Granger-Ramanathan Weights and

Forecast
 We found the following estimated weights
— Model 6: 0.52
— Model 9: 0.48

e Combination Forecast
— 0.52*%4.1+0.48*5.3=4.7%



Bayesian Model Averaging

* |n our discussion of model selection, we pointed
out that Bayes theorem says that when there are
a set of models, one of which is true, then the
probability that a model is true given the data is

P(M,|D)ec exp(—%}

 These can be used for forecast weights

* This is a simplified form of Bayesian model
averaging (BMA) which is very popular



BMA formula

 We can write the weights as follows

e Let BIC* be the smallest BIC
— The BIC of the best-fitting model

e Let ABIC=BIC-BIC* be the “BIC difference”

. ( ABIij
W =exp| —
2
W,
W = v



Implementation

Compute BIC for each model
Find best-fitting BIC*
Compute difference ABIC and exp(-ABIC/2)

Sum up all values and re-normalize



bicJunkyied logs |
0 1 2 3

AR(1) 578 580  566* 571
AR(2) 581 584 569 574
AR(3) 585 587 573 578

aoic/2 Junk_lyied logs |
0 1 2 3

AR(1) -6 7 0 2.5
AR(2) -75 -9 15 -4
AR(3) -11.5 -105 -3.5 -

mmm-

AR(1) 0.00 0.00 0.75 0.06
AR(2) 0.00 0.00 0.15 0.02
AR(3) 0.00 0.00 0.02 0.00

BMA puts the most weight
on the model with the
smallest BIC

It puts very little weight on a
model which has a BIC value
quite different from the
minimum

In some cases, several
models receive similar
weight

In this example, most weight
(75%) goes on the model
with the AR(1) plus 2 lags of
the junk spread

15% also on AR(2) plus 2 lags



BMA Weights and Forecast

e BMA Forecast

e 0.75*%5.2+0.15*5.1+.02*5.3+.06*4.7+.02*4.3
=5.1%



Weighted AIC (WAIC)

e Some authors have suggested replacing BIC
with AIC in the weight formula

( AIC]
W oc exp e

 There is not a strong theoretical foundation
for this suggestion

e But, it is simple and works quite well in
practice.



WAIC formula

e Let AIC* be the smallest AIC
— The AIC of the best-fitting model

e AAIC=AIC-AIC* is the “AIC difference”




e lunk lyid logs |
0 1 2 3

AR(1) 571 570  552* 554
AR(2) 571 571 552 554
AR(3) 571 570 552 554

AT

2
AR(1) -85 -8 0 -1
AR(2) -85 -85 O -1
AR(3) -85 0

mm-

AR(1) 0.00 0.00 024 0.09
AR(2) 0.00 0.00 024 0.09
AR(3) 0.00 0.00 024 0.09

WAIC splits weight
more than BMA

It puts 24% on each of
the three models with
the best near-
equivalent AIC

Puts positive weight on
6 models

Puts zero weight on 6
models



WAIC Forecast

e WAIC Forecast
o 24%52+.24%51+.24*53
+.09*4.7+.09%4.3+.09%4.4
=4.95%



Advantages of Combination Methods

e When the selection criterion (AIC, BIC) are very close
for competing models, it is troubling to select one over
the other based on a small different

— In this setting WAIC and BMA will give the two models
near-equal weight

e |f the selection criterion are different, simple averaging
gives all models the same weight, which seems naive.

— In this setting WAIC and BMA will give the models different
weight
— And will give zero weight if the different is sufficiently large
* |f the difference in the criterion is above 10.



GDP Combination Forecasts

AlIC Selection: 5.1%

BIC Selection: 5.2%

Simple Average: 4.4%

Bates-Granger combination: 4.4%
Granger-Ramanathan combination: 4.7%
BMA: 5.1%

WAIC: 4.95%



Example: Unemployment Rate

Estimated on 1950-1995
. ———ee L L

AR(4) -1792 -1771

AR(5) -1799 .005 -1774* 74
AR(6) -1800 .01 -1770 10
AR(7) -1798 .005 -1764 0
AR(8) -1797 0 -1758 0
AR(9) -1795 0 -1752 0
AR(10) -1793 0 -1746 0
AR(11) -1800 .01 -1748 0
AR(12) -1799 .005 -1743 0
AR(13) -1808* .57 -1748 0
AR(14) -1806 21 -1742 0
AR(15) -1804 .08 -1735 0
AR(16) -1803 .05 -1760 0
AR(17) -1802 .03 -1724 0
AR(18) -1800 .01 -1718 0
AR(19) -1799 .005 -1712 0
AR(20) -1798 .005 -1708 0



Out-of-Sample RMSE
1996-2010

AlC .145
BIC .145
BMA .145
WAIC .145

Best Model (AR(12)) .143



Which should you use?

* Current research suggests that combination
methods achieve lower MSFE than selection

— BMA achieves lower MSFE than BIC
— WAIC achieves lower MSFE than AIC

* Naive combination (simple averaging) works
quite well

— But the other methods can do better

 WAIC works well in practice
— Bates-Granger also works well in many settings



Forecast Intervals

How do you construct intervals for a combination
forecast?

Do not combine forecast intervals

Given the weights, you can construct the
sequence of sample forecasts and forecast errors

Use these errors as you have before to construct
the forecast interval
— Compute the RMSE of the combination forecast error
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