Unit Roots

* An autoregressive Process

a(l—) Y =€

has a unit root if
al)=0
 The simplest case is the AR(1) model
(1_ I—) Yi =€

or
Yi = Yia T



Examples of Random Walks
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Random Walk with Drift

e AR(1) with non-zero intercept and unit root
Yi=a+ Y, +E
e This is same as Trend plus random walk
Y, =T, +C,
T,=at
C,=C+e
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Optimal Forecasts in Levels

e Random Walk
Year = Vi
Yeent = Yi

e Random Walk with drift
Yeeng = X T Y,

Yeeng = oh + Yi



Optimal Forecasts in Changes

e Take differences (growth rates if y in logs)

2, =AY, =Y, — Y1
 Optimal forecast: Random walk
Zi e =0
e Optimal forecast: Random walk with drift
Zipy = O



Forecast Errors

By back-substitution
Yi = Yia T6
— yt—h T et—h+1 T et+l _
So the forecast error from an h-step forecast is
et—h+1 Tt et+1
Which has variance
oc’+---+0°=ho
Thus the forecast variance is linear in h

2



Forecast intervals

 The forecast intervals are proportional to the
forecast standard deviation

Vho? =ho

e Thus the forecast intervals fan out with the
square root of the forecast horizon h
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General Case

e If y has a unit root, transform by differencing

Z, =AY, =Y, — Vi1
* This eliminates the unit root, so z is stationary.

a(l—)yt =&
a(L)=b(L)@-L)
b(L)Zt =&

 Make forecasts of z
— Forecast growth rates instead of levels



Forecasting levels from growth rates

e |f you have a forecast for a growth rate, you
also have a forecast for the level

e |f the current level is 253, and the forecasted
growth is 2.3%, the forecasted level is 259

e |f a 90% forecast interval for the growth is
1%, 4%], the 90% interval for the level is

256,263]




Estimation with Unit Roots

e |f a series has a unit root, it is non-stationary,
so the mean and variance are changing over
time.

e Classical estimation theory does not apply

* However, least-squares estimation is still
consistent



Consistent Estimation

e If the true process is

Yi = Yia T&
 And you estimate an AR(1)
Y =+ by, +E€
 Then the coefficient estimates will converge in

probability to the true values (0 and 1) as T
gets large



Example on simulated data

* N=50

Yy Coef. std. Err. t P> | x| [95% Conf. Intervall]
L1¥ -9240092 .0588153 15.71 0.000 -805688 1.04233
_cons .0492537 .1419531 0.35 0.730 -.2363192 -3348266
e N=200
Yy Coef. std. Err. t P>t [95% Conf. Interval]
L1¥ .9737057 .0213262 45.66 0.000 .9316487 1.015763
_cons .0987149 .076367 1.29 0.198 -.0518868 .2493166
* N=400
L1¥ .9899704 .0068761 143.97 0.000 .9764523 1.003489
_cons .0605234 .0596962 1.01 0.311 -.0568368 .1778837



Model with drift

If the truth is
Yi=a+ Y, +E€
And you estimate an AR(1) with trend
Yi :0’2+7’/\t+ﬂyt—1+é\t
Then the coefficient estimates converge in
probability to the true values (a,0,1)

It is important to include the time trend in this
case.



Example with simulated data with drift

* N=50

V' Coef. std. Err. t P>|t] [95% Cconf. Intervall
-0230531 -0159104 1.45 0.154 -.0089728 -055079

y
L1. -8814838 -0697116 12.64 0.000 -7411615 1.021806
_cons -1336359 -2670196 0.50 0.619 —-_4038467 -6711185

e N=200

Y Coef. std. Err. t P>|t] [95% Conf. Interval]
-000763 -0015264 0.50 0.618 -.0022472 .0037732

y
Ll. -9423076 .0187133 50.36 0.000 -9054024 -9792129
_cons -944347 .2474848 3.82 0.000 -4562721 1.432422




Non-Standard Distribution

e A problem is that the sampling distribution of
the least-squares estimates and t-ratios are
not normal when there is a unit root

e Critical values quite different than
conventional



Density of t-ratio

Density of t-ratio for estimated Unit Root coefficient

* Non-Normal

 Negative bias



Testing for a Unit Root

* Null hypothesis:

— There is a unit root
e In AR(1)

— Coefficient on lagged variable is “1”
* In AR(k)

— Sum of coefficients is “1”



AR(1) Model

Estimate
Yo =a+ Y, +€
Or equivalently
Ay, =a+pYy,, +6€
p=p-1
Test for B=1 same as test for p=0.
Test statistic is t-ratio on lagged y



AR(k+1) model

e Estimate

Ayt =a+ ﬁyt—l + /BlAyt—l Tt /BkAyt—k T é\t

e Test for p=0

e Called ADF test

— Augmented Dickey-Fuller

— (Test without extra lags is called Dickey-Fuller, test
with extra lags called Augmented Dickey-Fuller)



Theory of Unit Root Testing

e Wayne Fuller (lowa State)
— David Dickey (NCSU)
— Developed DF and ADF test

e Peter Phillips (Yale)

— Extended the distribution
theory




STATA ADF test

dfuller t3, lags(12)

This implements a ADF test with 12 lags of
differenced data

Equivalent to an AR(13)
Alternatively
reg d.t3 L.t3 L(1/12).d.t3



Example: 3-month T-bill
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Example: 3-month T-bill

. dfuller t3, lags(12)

Augmented Dickey-Fuller test for unmit root Number of obs = 902
Interpolated Dickey-Fuller
Test 1% critical 5% critical 10% critical
Statistic value value value

z(x) -2 .004 -3.430 -2 .860 -2.570

MacKinnon approximate p-value for z(t) = 0.2849

 The p-value is not significant

e Equivalently, the statistic of -2 is not smaller
than the 10% critical value

Do not reject a unit root for 3-month T-Bill



Alternatively

. reg d.t3 L.t3 L(1/12)_d.t3

sSource 55 df M5 Number of obs = 902
F( 13, 888) = 22.51
Model 33.1413569 13 2.54933515 Prob > F = 0.0000
Residual 100.553334 888 .113235736 R-squared = 0.2479
Adj] R-squared = 0.2369
Total 133.694691 901 .148384784 Root MSE = .33651
D.t3 Coef. std. Err. t Pt [95% Conf. Interval]
3
L1. —-.0073918 - 0036887 =2.00 0.045 —-.0146313 —. 0001522
LD. . 423496 .0331993 12.76 0.000 .3583377 . 4886542
L2D. -.1981413 . 0359696 -5.51 0.000 —-.2687365 —.1275461
L3D. .0724363 .036451 1.99 0.047 . 0008961 . 1439764
L4D. —-.0813267 . 0362508 -2.24 0.025 —-.1524738 —-.0101795
L5D. . 1612079 . 0362909 4.44 0.000 . 089982 .2324338
L6D. —.2564737 . 0366887 —-6.99 0.000 —.3284804 —.184467
L7D. - 001805 . 0366299 0.05 0.961 —-. 0700863 . 0736962
L8D. . 0705703 . 0362659 1.95 0.052 —. 0006067 .1417472
L9D. .1423339 .0362211 3.93 0.000 .071245 .2134227
L10D. —.0837876 . 0364683 -2.30 0.022 —-.1553616 -.0122135
L11D. .1031842 .0359034 2.87 0.004 .0327189 . 1736496
L12D. —.1287975 .033262 -3.87 0.000 —-.1940787 -.0635163
_cons . 0286559 . 0181922 1.58 0.116 —. 0070488 . 0643605

e ThetforlLl.t3is-2
e |gnore reported p-value, compare with table



Interest Rate Spread
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ADF test for Spread

. dfuller spreadl2, lags(12)

Augmented Dickey-Fuller test for umit root Number of obs = 671
Interpolated Dickey-Fuller
Test 1% critical 5% critical 10% critical
statistic value value value
z(t) -4_816 -3_430 -2_860 -2_570

Mackinnon approximate p-value for z(t) = 0.0001

 The test of -4.8 is smaller than the critical value
 The p-value of .0001 is much smaller than 0.05
 We reject the hypothesis of a unit root

 We find evidence that the spread is stationary



Testing for a unit Root with Trend

e |f the series has a trend

AYt =a+ ﬁyt—l + 72: + /BlAyt—l Tt /BkAyt—k T é\t
e Again test for p=0.
o dfullery, trend lags(2)



Example: Log(RGDP)

 ADF with 2 lags

. dfuller y, trend lags(2)

Augmented Dickey-Fuller test for unit root Number of obs = 249
Interpolated Dickey-Fuller
Test 1% critical 5% critical 10% critical
statistic value value value
z(t) -2.604 -3.990 -3.430 -3.130

MacKinnon approximate p-value for z(t) = 0.2779

 The p-value is not significant.
e We do not reject the hypothesis of a unit root
 Consistent with forecasting growth rates, not levels.



Unit Root Tests in Practice

Examine your data.

— Is it trended?

— Does it appear stationary?

If it may be non-stationary, apply ADF test
— Include time trend if trended

If test rejects hypothesis of a unit root

— The evidence is that the series is stationary
If the test fails to reject

— The evidence is not conclusive

— Many users then treat the series as if it has a unit root
e Difference the data, forecast changes or growth rates



Spurious Regression

e One problem caused by unit roots is that it
can induce spurious correlation among time
series
— Clive Granger and Paul Newbold (1974)

* Observed the phenomenon
e Paul Newbold a UW PhD (1970)

— Peter Phillips (1987)

* Invented the theory




Spurious Regression

e Suppose you have two independent time-
series y, and x,

e Suppose you regress y, on X,

e Since they are independent, you should
expect a zero coefficient on x, and an
insignificant t-statistics, right?



Example
Two independent Random Walks




Regression of y on X

.regyx
source SS df MS Number of obs = 500
FC 1, 498) = 339.92
Model 21379_9809 1 21379.9809 Prob > F = 0.0000
Residual 31322_.7492 498 62.8970868 R-squared = 0.4057
Adj R-squared = 0.4045
Total 52702.7302 499 105.616694 RoOOL MSE = 7.9308
Y Coef. std. Err. t P>t [95% conf. Intervall]
X -6096435 -0330664 18_44 0.000 -5446765 -6746104
_cons -1.062265 -.7635661 -1_39 0.165 -2.562473 -437943

e X has an estimated coefficient of .6
e A t-staitsitc of 18! Highly significant!
e Butxandy are independent!



Spurious Regression

This is not an accident

It happens whenever you regress a random
walk on another.

Traditional implication:

— Don’t regress levels on levels

— First difference your data

Even better

— Make sure your dynamic specification is correct
— Include lags of your dependent variable



Dynamic Regression

e Regressyon laggedy, plus x

.regyLyX

Source L df MS Number of obs = 499

F( 2, 496) =26485.68
Model 52032.1184 2 26016.0592 Prob > F = 0.0000
Residual 487 _205408 496 _982268967 R-squared = 0.9907
Adj R-squared = 0.9907
Total 52519.3238 498 105.46049 Root MSE = .99109
y Coef . std. Err. t >t [95% conf. Intervall
y
L1. -9917958 -.0055978 177.18 0.000 -9807974 1.002794
X -0059606 .0053662 1.11 0.267 -.0045827 -0165038
_cons -.0458114 -0960418 -0.48 0.634 -.2345104 -1428875

e Now X has insignificant t-statistic, and much
smaller coefficient estimate

e Coefficient estimate on lagged v is close to 1.



Message

e |f your data might have a unit root
— Try an ADF test
— Consider forecasting differences or growth rates

— Always include lagged dependent variable when
series is highly correlated
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