Unit Roots

An autoregressive process

$$a(L)y_{t} = e_{t}$$

has a unit root if

$$a(1) = 0$$

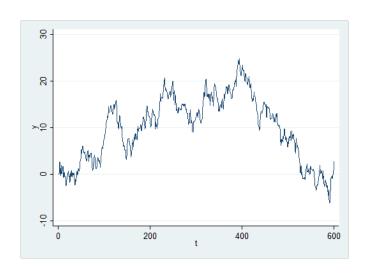
The simplest case is the AR(1) model

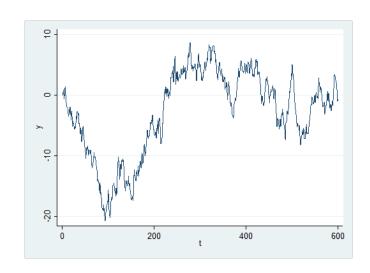
$$(1-L)y_t = e_t$$

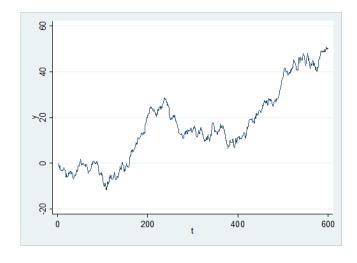
or

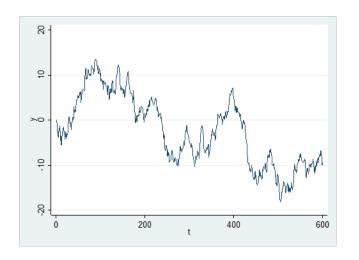
$$y_t = y_{t-1} + e_t$$

Examples of Random Walks









Random Walk with Drift

AR(1) with non-zero intercept and unit root

$$y_t = \alpha + y_{t-1} + e_t$$

This is same as Trend plus random walk

$$y_{t} = T_{t} + C_{t}$$

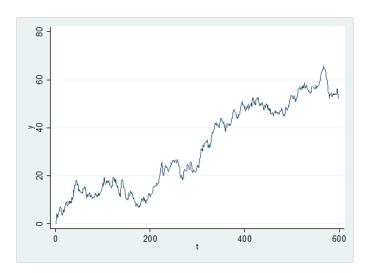
$$T_{t} = \alpha t$$

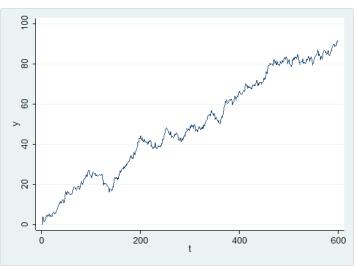
$$C_{t} = C_{t-1} + e_{t}$$

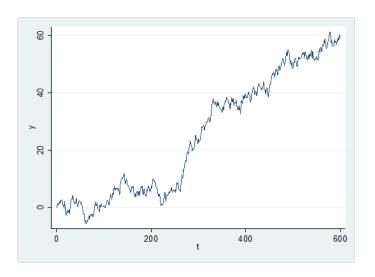
Examples

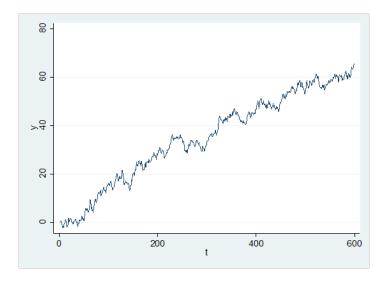
$$y_{t} = 0.1 + y_{t-1} + e_{t}$$

 $e_{t} \sim N(0,1)$









Optimal Forecasts in Levels

Random Walk

$$y_{t+1|t} = y_t$$
$$y_{t+h|t} = y_t$$

Random Walk with drift

$$y_{t+h|t} = \alpha + y_t$$
$$y_{t+h|t} = \alpha h + y_t$$

Optimal Forecasts in Changes

• Take differences (growth rates if y in logs)

$$z_t = \Delta y_t = y_t - y_{t-1}$$

Optimal forecast: Random walk

$$z_{t+h|t} = 0$$

Optimal forecast: Random walk with drift

$$z_{t+h|t} = \alpha h$$

Forecast Errors

By back-substitution

$$y_{t} = y_{t-1} + e_{t}$$

= $y_{t-h} + e_{t-h+1} + \dots + e_{t+1}$

So the forecast error from an h-step forecast is

$$e_{t-h+1} + \cdots + e_{t+1}$$

Which has variance

$$\sigma^2 + \cdots + \sigma^2 = h\sigma^2$$

Thus the forecast variance is linear in h

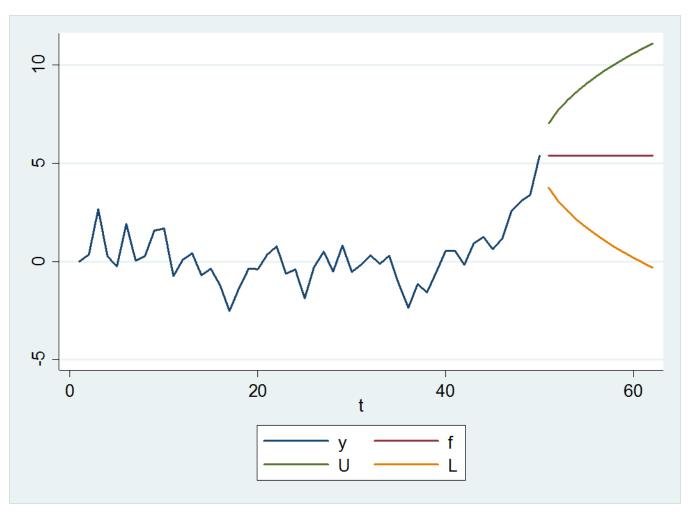
Forecast intervals

The forecast intervals are proportional to the forecast standard deviation

$$\sqrt{h\sigma^2} = \sqrt{h}\sigma$$

 Thus the forecast intervals fan out with the square root of the forecast horizon h

Example: Random Walk



General Case

If y has a unit root, transform by differencing

$$z_t = \Delta y_t = y_t - y_{t-1}$$

• This eliminates the unit root, so z is stationary.

$$a(L)y_{t} = e_{t}$$

$$a(L) = b(L)(1 - L)$$

$$b(L)z_{t} = e_{t}$$

- Make forecasts of z
 - Forecast growth rates instead of levels

Forecasting levels from growth rates

- If you have a forecast for a growth rate, you also have a forecast for the level
- If the current level is 253, and the forecasted growth is 2.3%, the forecasted level is 259
- If a 90% forecast interval for the growth is [1%, 4%], the 90% interval for the level is [256,263]

Estimation with Unit Roots

- If a series has a unit root, it is non-stationary, so the mean and variance are changing over time.
- Classical estimation theory does not apply
- However, least-squares estimation is still consistent

Consistent Estimation

If the true process is

$$y_t = y_{t-1} + e_t$$

And you estimate an AR(1)

$$y_{t} = \hat{\alpha} + \hat{\beta}y_{t-1} + \hat{e}_{t}$$

 Then the coefficient estimates will converge in probability to the true values (0 and 1) as T gets large

Example on simulated data

• N=50

Conf. Interval]	[95% Conf	P> t	t	Std. Err.	Coef.	У
05688 1.04233	. 805688	0.000	15.71	.0588153	. 9240092	у L1.
.3348266	2363192	0.730	0.35	.1419531	.0492537	_cons

• N=200

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
y L1.	.9737057	.0213262	45.66	0.000	.9316487	1.015763
_cons	.0987149	.076367	1.29	0.198	0518868	. 2493166

• N=400

Model with drift

If the truth is

$$y_t = \alpha + y_{t-1} + e_t$$

And you estimate an AR(1) with trend

$$y_{t} = \hat{\alpha} + \hat{\gamma}t + \hat{\beta}y_{t-1} + \hat{e}_{t}$$

- Then the coefficient estimates converge in probability to the true values $(\alpha,0,1)$
- It is important to include the time trend in this case.

Example with simulated data with drift

• N=50

[95% Conf. Interval]	P> t	t	Std. Err.	Coef.	у
0089728 .055079	0.154	1.45	. 0159104	.0230531	t
.7411615 1.021806	0.000	12.64	. 0697116	. 8814838	у L1.
4038467 .6711185	0.619	0.50	. 2670196	. 1336359	_cons

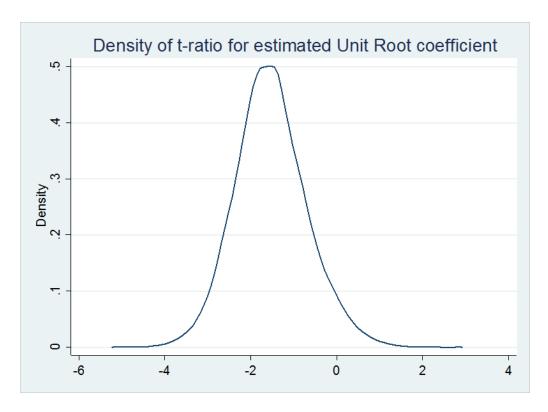
• N=200

у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t	.000763	.0015264	0.50	0.618	0022472	.0037732
у L1.	.9423076	.0187133	50.36	0.000	.9054024	.9792129
_cons	.944347	.2474848	3.82	0.000	.4562721	1.432422

Non-Standard Distribution

- A problem is that the sampling distribution of the least-squares estimates and t-ratios are not normal when there is a unit root
- Critical values quite different than conventional

Density of t-ratio



- Non-Normal
- Negative bias

Testing for a Unit Root

- Null hypothesis:
 - There is a unit root
- In AR(1)
 - Coefficient on lagged variable is "1"
- In AR(k)
 - Sum of coefficients is "1"

AR(1) Model

Estimate

$$y_{t} = \hat{\alpha} + \hat{\beta}y_{t-1} + \hat{e}_{t}$$

Or equivalently

$$\Delta y_{t} = \hat{\alpha} + \hat{\rho} y_{t-1} + \hat{e}_{t}$$
$$\hat{\rho} = \hat{\beta} - 1$$

- Test for $\beta=1$ same as test for $\rho=0$.
- Test statistic is t-ratio on lagged y

AR(k+1) model

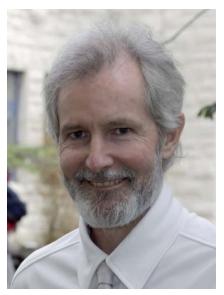
Estimate

$$\Delta y_{t} = \hat{\alpha} + \hat{\rho} y_{t-1} + \hat{\beta}_{1} \Delta y_{t-1} + \dots + \hat{\beta}_{k} \Delta y_{t-k} + \hat{e}_{t}$$

- Test for $\rho=0$
- Called ADF test
 - Augmented Dickey-Fuller
 - (Test without extra lags is called Dickey-Fuller, test with extra lags called Augmented Dickey-Fuller)

Theory of Unit Root Testing

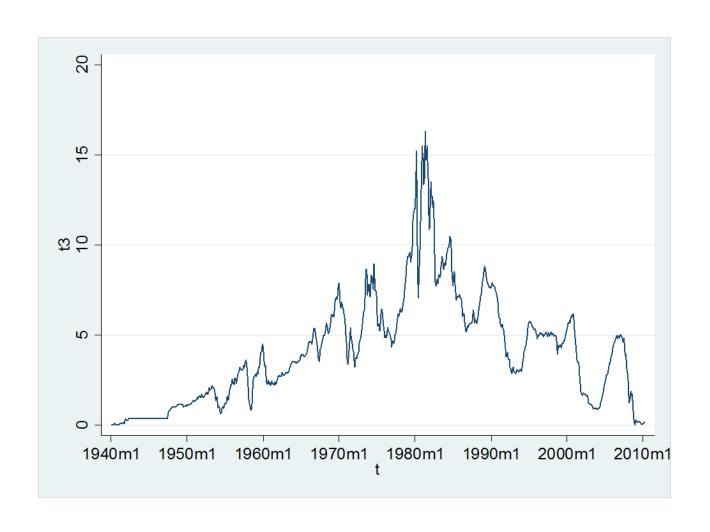
- Wayne Fuller (Iowa State)
 - David Dickey (NCSU)
 - Developed DF and ADF test
- Peter Phillips (Yale)
 - Extended the distribution theory



STATA ADF test

- dfuller t3, lags(12)
- This implements a ADF test with 12 lags of differenced data
- Equivalent to an AR(13)
- Alternatively
- reg d.t3 L.t3 L(1/12).d.t3

Example: 3-month T-bill



Example: 3-month T-bill

. dfuller t3, lags(12)

Augmented	Dickey-Fuller test	for unit root	Number of obs	=	902
	Test Statistic	———— Inte 1% Critical Value	erpolated Dickey-Fu 5% Critical Value		Critical Value
Z(t)	-2.004	-3.430	-2.860		-2.570

MacKinnon approximate p-value for z(t) = 0.2849

- The p-value is not significant
- Equivalently, the statistic of -2 is not smaller than the 10% critical value
- Do not reject a unit root for 3-month T-Bill

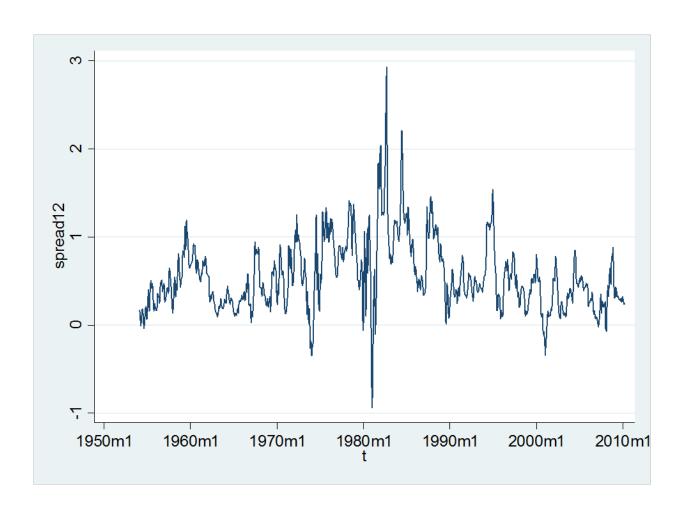
Alternatively

. reg d.t3 L.t3 L(1/12).d.t3

Source Model Residual	SS 33.1413569 100.553334	df 13 888		MS 933515 235736		Number of obs F(13, 888) Prob > F R-squared	= 22.51 = 0.0000 = 0.2479
Total	133.694691	901	.1483	384784		Adj R-squared Root MSE	= 0.2369 = .33651
D.t3	Coef.	Std. I	Err.	t	P> t	[95% Conf.	Interval]
t3							
L1.	0073918	. 00368	387	-2.00	0.045	0146313	0001522
ம.	. 423496	. 03319	993	12.76	0.000	. 3583377	. 4886542
L 2 D.	1981413	. 03596	596	-5.51	0.000	 2687365	1275461
L3D.	. 0724363	.0364	451	1.99	0.047	.0008961	. 1439764
L4D.	0813267	. 0362	508	-2.24	0.025	 1524738	0101795
L5D.	. 1612079	. 03629	909	4.44	0.000	. 089982	. 2324338
L6D.	25 64 737	. 03668	387	-6.99	0.000	3284804	184467
L7D.	. 001805	. 03662	299	0.05	0.961	0700863	. 0736962
L8D.	. 0705703	. 0362€	559	1.95	0.052	0006067	. 1417472
L 9 D.	. 1423339	. 03622	211	3.93	0.000	. 071245	. 2134227
L10D.	0837876	. 03646	583	-2.30	0.022	 1553616	0122135
L11D.	. 1031842	. 03590	034	2.87	0.004	. 0327189	. 1736496
L12D.	12879 75	.0332	262	-3.87	0.000	 1940787	0635163
_cons	. 0286559	. 01819	322	1.58	0.116	0070488	. 0643605

- The t for L1.t3 is -2
- Ignore reported p-value, compare with table

Interest Rate Spread



ADF test for Spread

```
. dfuller spread12, lags(12)
Augmented Dickey-Fuller test for unit root
                                                     Number of obs
                                                                              671
                                           Interpolated Dickey-Fuller
                                1% Critical
                                                                     10% Critical
                                                   5% Critical
               Statistic
                                    Value
                                                       Value
                                                                          Va lue
Z(t)
                                                        -2.860
                  -4.816
                                     -3.430
                                                                           -2.570
MacKinnon approximate p-value for Z(t) = 0.0001
```

- The test of -4.8 is smaller than the critical value
- The p-value of .0001 is much smaller than 0.05
- We reject the hypothesis of a unit root
- We find evidence that the spread is stationary

Testing for a unit Root with Trend

If the series has a trend

$$\Delta y_t = \hat{\alpha} + \hat{\rho} y_{t-1} + \hat{\gamma} t + \hat{\beta}_1 \Delta y_{t-1} + \dots + \hat{\beta}_k \Delta y_{t-k} + \hat{e}_t$$

- Again test for $\rho=0$.
- dfuller y, trend lags(2)

Example: Log(RGDP)

ADF with 2 lags

```
. dfuller y, trend lags(2)
Augmented Dickey-Fuller test for unit root
                                                     Number of obs
                                                                               249
                                          – Interpolated Dickey-Fuller -
                                1% Critical
                                                    5% Critical
                                                                     10% Critical
                   Test
                Statistic
                                     Va Tue
                                                        Value
 Z(t)
                   -2.604
                                      -3.990
                                                         -3.430
                                                                            -3.130
MacKinnon approximate p-value for z(t) = 0.2779
```

- The p-value is not significant.
- We do not reject the hypothesis of a unit root
- Consistent with forecasting growth rates, not levels.

Unit Root Tests in Practice

- Examine your data.
 - Is it trended?
 - Does it appear stationary?
- If it may be non-stationary, apply ADF test
 - Include time trend if trended
- If test rejects hypothesis of a unit root
 - The evidence is that the series is stationary
- If the test fails to reject
 - The evidence is not conclusive
 - Many users then treat the series as if it has a unit root
 - Difference the data, forecast changes or growth rates

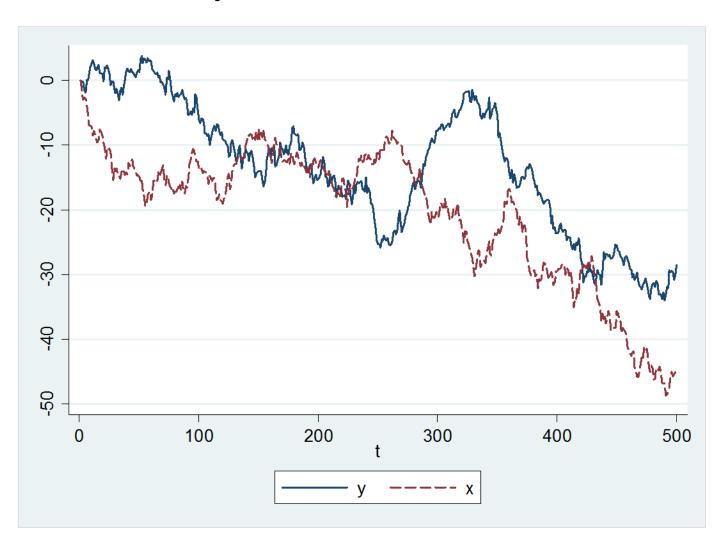
Spurious Regression

- One problem caused by unit roots is that it can induce spurious correlation among time series
 - Clive Granger and Paul Newbold (1974)
 - Observed the phenomenon
 - Paul Newbold a UW PhD (1970)
 - Peter Phillips (1987)
 - Invented the theory

Spurious Regression

- Suppose you have two independent timeseries y_t and x_t
- Suppose you regress y_t on x_t
- Since they are independent, you should expect a zero coefficient on x_t and an insignificant t-statistics, right?

Example Two independent Random Walks



Regression of y on x

. reg y x

Number of obs = 500 F(1, 498) = 339.92 Prob > F = 0.0000 R-squared = 0.4057 Adj R-squared = 0.4045		MS 79.9809 8970868	2137 62.8	df 1 498	SS 21379.9809 31322.7492	Source Model Residual
Root MSE = 7.9308 [95% Conf. Interval]	P> t	616694 	Err.	499 	52702.7302 Coef.	Total
.5446765 .6746104 -2.562473 .437943	0.000 0.165	18.44 -1.39	0664	.0330 .7635	.6096435 -1.062265	x _cons

- X has an estimated coefficient of .6
- A t-staitsitc of 18! Highly significant!
- But x and y are independent!

Spurious Regression

- This is not an accident
- It happens whenever you regress a random walk on another.
- Traditional implication:
 - Don't regress levels on levels
 - First difference your data
- Even better
 - Make sure your dynamic specification is correct
 - Include lags of your dependent variable

Dynamic Regression

Regress y on lagged y, plus x

```
. reg y L.y x
                      SS
                                dҒ
                                          MS
                                                           Number of obs =
                                                                                 499
      Source
       Mode 1
                 52032.1184
                                    26016.0592
    Residual
                 487 _ 205408
                               496
                                     -982268967
                                                           R-squared
                                                           Adi R-squared
       Total
                 52519.3238
                                      105.46049
                               498
                                                           Root MSF
                                                                              _99109
                                                               [95% Conf. Interval]
                     Coef_
                              Std. Err.
                                                    P>|t|
           y
                                              t
         L1.
                  .9917958
                              -0055978
                                          177.18
                                                    0.000
                                                               _9807974
                                                                            1.002794
                  -0059606
                              -0053662
                                            1.11
                                                    0.267
                                                              -_0045827
                                                                            -0165038
                                                              -_2345104
                 -_0458114
                              -0960418
                                           -0.48
                                                    0.634
                                                                            - 1428875
       cons
```

- Now x has insignificant t-statistic, and much smaller coefficient estimate
- Coefficient estimate on lagged y is close to 1.

Message

- If your data might have a unit root
 - Try an ADF test
 - Consider forecasting differences or growth rates
 - Always include lagged dependent variable when series is highly correlated