Stability

- Coefficients may change over time
 - Evolution of the economy
 - Policy changes

Time-Varying Parameters

$$y_t = \alpha_t + x_t \beta_t + e_t$$

- Coefficients depend on the time period
- If the coefficients vary randomly and are unpredictable, then they cannot be estimated
 - As there would be only one observation for each set of coefficients
 - We cannot estimate coefficients from just one observation!

Smoothly Time-Varying Parameters

$$y_t = \alpha_t + x_t \beta_t + e_t$$

- If the coefficients change gradually over time, then the coefficients are similar in adjacent time periods.
- We could try to estimate the coefficients for time period t by estimating the regression using observations [t-w/2,..., t+w/2] where w is called the window width.
- w is the number of observations used for local estimation

Rolling Estimation

- This is called *rolling* estimation
- For a given window width w, you roll through the sample, using w observations for estimation.
- You advance one observation at a time and repeat
- Then you can plot the estimated coefficients against time

What to expect

- Rolling estimates will be a combination of true coefficients and sampling error
- The sampling error can be large
 - Fluctuations in the estimates can be just error
- If the true coefficients are trending
 - Expect the estimated coefficients to display trend plus noise
- If the true coefficients are constant
 - Expect the estimated coefficients to display random fluctuation and noise

Example: GDP Growth

. reg gdp L(1/3).gdp,r

Linear regression

Number of obs = 248 F(3, 244) = 10.73 Prob > F = 0.0000 R-squared = 0.1527 Root MSE = 3.815

gdp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gdp L1. L2. L3.	.3412071 .1327376 1293765	.0764232 .0826814 .0731709	4.46 1.61 -1.77	0.000 0.110 0.078	.1906738 0301228 2735037	.4917405 .2955981 .0147508
_cons	2.193251	.412281	5.32	0.000	1.381167	3.005335

STATA rolling command

- STATA has a command for rolling estimation:
- .rolling, window(100) clear: regress gdp L(1/3).gdp
- In this command:
 - window(100) sets the window width
 - w=100
 - The number of observations for estimation will be 100
 - clear
 - Clears out the data in memory
 - The data will be replaced by the rolling estimates
 - It is necessary

rolling command

.rolling, window(100) clear: regress gdp L(1/3).gdp

- The part after the ":"
 - regress gdp L(1/3).gdp
 - This is the command that STATA will implement using the rolling method
 - An AR(3) will be fit using 100 observations, rolling through the sample

Example

- GDP is quarterly 1947Q1 through 2009Q4
 - 251 observations
- Using w=100
 - The first estimation window is 1947Q2-1972Q1
 - The second is 1947Q3-1972Q2
 - There are 152 estimation windows
 - The final is 1985Q1-2009Q4

STATA Execution:

After Rolling Execution

- The original data have been cleared from memory
- STATA shows new variables
 - start
 - end
 - _stat_1
 - _stat_2
 - _stat_3
 - _b_cons
- start and end are starting/ending dates for each window
 - start runs from 1947Q2 to 1985Q1
 - end runs from to 1972Q1 2009Q4
- The others are the rolling estimates, AR and intercept

Time reset

- As the original data have been cleared, so has your time index.
- So the tsline command does not work until you reset the time
- You can set the time to be start or end
 - tsset start
 - tsset end
- Or, more elegantly, you can set the time to be the midpoint of the window
 - .gen t=round((start+end)/2)
 - .format t %tq
 - tsset t
 - This time index runs from 1959Q4 through 1997Q3

Time reset example

Example

Plot Rolling Coefficients

- Now you can plot the estimated coefficients against time
 - You can use separate or joint plots
 - .tsline _b_cons
 - .tsline _stat_1 _stat_2 _stat_3

Rolling Intercept

Rolling AR coefficients

Analysis

- The estimated intercept is decreasing gradually
- The AR(1) coef is quite stable
- The AR(2) coef starts increasing around 1990
- The AR(3) coef is 0 most of the period, but is negative from 1960-1973 and after 1995
- All of the graphs go a bit crazy over 1990-1997

Sequential (Recursive) Estimation

- As an alternative to rolling estimation, sequential or recursive estimation uses all the data up to the window width
 - First window: [1,w]
 - Second window: [1,w+1]
 - Final window: [1,T]
- With sequential estimation, window is the length of the first estimation window

Recursive Estimation

• STATA command is similar, but adds recursive after comma

.rolling, recursive window(100) clear: regress gdp L(1/3).gdp

- STATA clears data set, replaces with *start*, *end*, and recursive coefficient estimates *b cons*, *stat* 1, etc.
- Use end for time variable
 - tsset end
 - This sets the time index to the end period used for estimation

Recursive Intercept

Recursive AR coefficients

Analysis

- The recursive intercept fluctuates, but decreases
 - Drops around 1984, and 1990
- The recursive AR(1) and AR(2) coefs are very stable
- The recursive AR(3) coef increases, and then becomes stable after 1984.

Summary

- Use rolling and recursive estimation to investigate stability of estimated coefficients
- Look for patterns and evidence of change
- Try to identify potential breakdates
- In GDP example, possible dates:
 - **1970, 1984, 1990**

Testing for Breaks

- Did the coefficients change at some breakdate t*?
- We can test if the coefficients before and after
 t* are the same, or if they changed
- Simple to implement as an F test using dummy variables
- Known as a Chow test

Gregory Chow

- Professor Gregory Chow of Princeton University (emeritus)
- Proposed the "Chow Test" for structural change in a famous paper in 1960

Dummy Variable

- For a given breakdate t*
- Define a dummy variable d
 - $-d=1 \text{ if } t>t^*$
- Include d and interactions d*x to test for changes

Model with Breaks

Original Model

$$y_t = \alpha + x_t \beta + e_t$$

Model with break

$$y_t = \alpha + x_t \beta + \delta d_t + \gamma d_t x_t + e_t$$

- Interpreting the coefficients
 - $-\delta$ =change in intercept
 - γ=change in slope

Chow Test

$$y_{t} = \alpha + x_{t}\beta + \delta d_{t} + \gamma d_{t}x_{t} + e_{t}$$

- The model has constant parameters if $\delta = \gamma = 0$
- Hypothesis test:
 - H_0 : δ =0 and γ =0
- Implement as an F test after estimation
- If prob>.05, you do not reject the hypothesis of stable coefficients

Example: GDP

```
. gen d=(t>tq(1974q1))
. gen x1=d*L.gdp
(1 missing value generated)
. gen x2=d*L2.gdp
(2 missing values generated)
. gen x3=d*L3.gdp
(3 missing values generated)
```

. reg gdp L(1/3).gdp d x1 x2 x3,r

Linear regression

Number of obs = 248 F(7, 240) = 6.21 Prob > F = 0.0000 R-squared = 0.1662 Root MSE = 3.8158

gdp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gdp						
Ĺ1.	.3220439	.111703	2.88	0.004	.1020005	. 5420873
L2.	.1225762	.1097826	1.12	0.265	0936842	. 3388366
L3.	1994019	.1035398	-1.93	0.055	4033648	.0045609
d	-1.321552	.9254528	-1.43	0.155	-3.144599	.5014957
x1	.0108441	.1466639	0.07	0.941	2780688	. 2997569
x 2	.0100876	.1606384	0.06	0.950	3063537	.3265289
x 3	.1489167	.1495265	1.00	0.320	1456352	.4434686
_cons	3.014221	.8146597	3.70	0.000	1.409424	4.619017

Chow test

. test d x1 x2 x3

```
(1) d = 0

(2) x1 = 0

(3) x2 = 0

(4) x3 = 0

F(4, 240) = 0.72
Prob > F = 0.5797
```

- The p-value is larger than 0.05
- It is not significant
- We do not reject hypothesis of constant coefficients

Fishing for a Breakdate

- An important trouble with the Chow test is that it assumes that the breakdate is known – before looking at the data
- But we selected the breakdate by examining rolling and recursive estimates
- This means that are too likely to find misleading "evidence" of non-constant coefficients

Fishing

- We could consider picking multiple possible breakdates $t^*=[t_1,t_2,...,t_M]$
- For each breakdate t^* , we could estimate the regression and compute the Chow statistic $F(t^*)$
- Fishing for a breakdate is similar to searching for a big (significant) Chow statistic.

The Quandt Likelihod Ratio (QLR) Statistic

(also called the "sup-Wald" statistic)

The QLR statistic = the maximal Chow statistics

- Let $F(\tau)$ = the Chow test statistic testing the hypothesis of no break at date τ .
- The *QLR* test statistic is the *maximum* of all the Chow *F*-statistics, over a range of τ , $\tau_0 \le \tau \le \tau_1$:

$$QLR = \max[F(\tau_0), F(\tau_0+1), ..., F(\tau_1-1), F(\tau_1)]$$

• A conventional choice for τ_0 and τ_1 are the inner 70% of the sample (exclude the first and last 15%.

Richard Quandt

- Professor Richard Quandt (1930-)
 - Princeton University
 - Estimation of breakdate (Quandt, 1958)
 - QLR test (Quandt, 1960)

QLR Critical Values

$$QLR = \max[F(\tau_0), F(\tau_0+1), ..., F(\tau_1-1), F(\tau_1)]$$

- Should you use the usual critical values?
- The large-sample null distribution of $F(\tau)$ for a given (fixed, not estimated) τ is $F_{q,\infty}$
- But if you get to compute two Chow tests and choose the biggest one, the critical value must be larger than the critical value for a single Chow test.
- If you compute very many Chow test statistics for example, all dates in the central 70% of the sample the critical value ³must be larger still!

• Get this: in large samples, QLR has the distribution,

$$\max_{a \le s \le 1-a} \left(\frac{1}{q} \sum_{i=1}^{q} \frac{B_i(s)^2}{s(1-s)} \right),$$

where $\{B_i\}$, i=1,...,n, are independent continuous-time "Brownian Bridges" on $0 \le s \le 1$ (a Brownian Bridge is a Brownian motion deviated from its mean), and where a=.15 (exclude first and last 15% of the sample)

Critical values are tabulated in SW Table 14.6...

TABLE 14.6 Critical Values of the QLR Statistic with 15% Trimming				
Number of Rest	rictions (q)	10%	5%	1%
1		7.12	8.68	12.16
2		5.00	5.86	7.78
3		4.09	4.71	6.02
4		3.59	4.09	5.12
5		3.26	3.66	4.53
6		3.02	3.37	4.12
7		2.84	3.15	3.82
8		2.69	2.98	3.57
9		2.58	2.84	3.38
10		2.48	2.71	3.23

Note that these critical values are larger than the $F_{q,\infty}$ critical values – for example, $F_{1,\infty}$ 5% critical value is 3.84.

QLR Theory

- Distribution theory for the QLR statistic
- Developed by
 - Professor Donald Andrews (Yale)

Has the postwar U.S. Phillips Curve been stable?

Consider a model of ΔInf_t given $Unemp_t$ – the empirical backwards-looking Phillips curve, estimated over (1962 – 2004):

$$\Delta Inf_{t} = 1.30 - .42\Delta Inf_{t-1} - .37\Delta Inf_{t-2} + .06\Delta Inf_{t-3} - .04\Delta Inf_{t-4}$$

$$(.44) (.08) (.09) (.08) (.08)$$

$$-2.64Unem_{t-1} + 3.04Unem_{t-2} - 0.38Unem_{t-3} + .25Unemp_{t-4}$$
(.46) (.86) (.89) (.45)

Has this model been stable over the full period 1962-2004?

QLR tests of stability of the Phillips curve.

dependent variable: ΔInf_t regressors: intercept, $\Delta Inf_{t-1},...,\Delta Inf_{t-4},$ $Unemp_{t-1},...,Unemp_{t-4}$

- test for constancy of intercept only (other coefficients are assumed constant): QLR = 2.865 (q = 1).
 - 10% critical value = $7.12 \Rightarrow$ don't reject at 10% level
- test for constancy of intercept and coefficients on $Unemp_t,...$, $Unemp_{t-3}$ (coefficients on $\Delta Inf_{t-1},...,\Delta Inf_{t-4}$ are constant): $QLR = 5.158 \ (q = 5)$
 - 1% critical value = $4.53 \Rightarrow$ reject at 1% level
 - Break date estimate: maximal F occurs in 1981:IV
- Conclude that there is a break in the inflation unemployment relation, with estimated date of 1981:IV

Implementation

- It is difficult to compute QLR without using some programming.
- But it is well approximated by
 - Examining rolling and recursive estimates for possible breaks
 - Computing Chow test at potential breakdates.
- Don't use STATA's p-value!
- Use Table 14.6 from SW (or earlier slide).