Stability

e Coefficients may change over time
— Evolution of the economy
— Policy changes



Time-Varying Parameters

Yi = + Xtﬂt + €,

e Coefficients depend on the time period

e |f the coefficients vary randomly and are
unpredictable, then they cannot be estimated

— As there would be only one observation for each
set of coefficients

— We cannot estimate coefficients from just one
observation!



Smoothly Time-Varying Parameters

Yi = + Xtﬂt + €,

e |f the coefficients change gradually over time,
then the coefficients are similar in adjacent time
periods.

 We could try to estimate the coefficients for time
period t by estimating the regression using
observations [t- w/2,..., t+ w/2] where w is
called the window width.

e w is the number of observations used for local
estimation



Rolling Estimation

This is called rolling estimation

For a given window width w, you roll through
the sample, using w observations for
estimation.

You advance one observation at a time and
repeat

Then you can plot the estimated coefficients
against time



What to expect

Rolling estimates will be a combination of true
coefficients and sampling error

The sampling error can be large

— Fluctuations in the estimates can be just error

If the true coefficients are trending

— Expect the estimated coefficients to display trend plus
noise

If the true coefficients are constant

— Expect the estimated coefficients to display random
fluctuation and noise



Example: GDP Growth

- reg gdp L(1/3).gdp,r

Linear regression Number of obs = 248
FC 3, 244) = 10.73
Prob > F = 0.0000
R-squared = 0.1527
Root MSE = 3.815
Robust

gdp Coef. std. Err. t P>|t] [95% Conf. Interval]

gdp
L1. -3412071 -0764232 4.46 0.000 -1906738 -4917405
L2. -1327376 -0826814 1.61 0.110 -.0301228 -2955981
L3. -.1293765 -0731709 -1.77 0.078 —-.2735037 -0147508
_cons 2.193251 -412281 5.32 0.000 1.381167 3.005335




STATA rolling command

e STATA has a command for rolling estimation:
.rolling, window(100) clear: regress gdp L(1/3).gdp
e In this command:
— window(100) sets the window width
e w=100
e The number of observations for estimation will be 100

— clear
e Clears out the data in memory
 The data will be replaced by the rolling estimates
* Itis necessary



rolling command

.rolling, window(100) clear: regress gdp L(1/3).gdp
 The part after the “:”
— regress gdp L(1/3).gdp

— This is the command that STATA will implement using
the rolling method

— An AR(3) will be fit using 100 observations, rolling
through the sample



Example

e GDP is quarterly 1947Q1 through 2009Q4
— 251 observations

e Using w=100
— The first estimation window is 1947Q2-1972Q1
— The second is 1947Q3-1972Q2

— There are 152 estimation windows
— The final is 1985Q1-2009Q4




e STATA Execution:

- rolling, window(100) clear: regress gdp L(1/3).qgdp
(running regress on estimation sample)

Rolling replications (152
—1—F2—F— 3 —F— 44— 5




After Rolling Execution

The original data have been cleared from memory

STATA shows new variables

— start

— end

— _stat 1

— _stat 2

— _stat 3

— b _cons

start and end are starting/ending dates for each window
— start runs from 1947Q2 to 1985Q1

— end runs from to 1972Q1 2009Q4

The others are the rolling estimates, AR and intercept



Time reset

As the original data have been cleared, so has your time
index.

So the tsline command does not work until you reset the
time

You can set the time to be start or end

— .tsset start

— .tsset end

Or, more elegantly, you can set the time to be the mid-
point of the window

— .gen t=round((start+end)/2)

— .format t %tq

— .tssett

— This time index runs from 1959Q4 through 1997Q3



Time reset example

e Example

. gen t=round((start+end)/2)
. format t %tq
- Tsset t
time variable: t, 1959q4 to 1997q3
delta: 1 quarter

. tsline _b_cons



Plot Rolling Coefficients

e Now you can plot the estimated coefficients
against time
— You can use separate or joint plots
— .tsline _b_cons
— tsline _stat 1 stat 2 stat 3



Rolling Intercept
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Rolling AR coefficients
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Analysis

The estimated intercept is
decreasing gradually

The AR(1) coef is quite stable

The AR(2) coef starts increasing
around 1990

The AR(3) coef is 0 most of the
period, but is negative from
1960-1973 and after 1995

All of the graphs go a bit crazy
over 1990-1997
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Sequential (Recursive) Estimation

* As an alternative to rolling estimation,
sequential or recursive estimation uses all the
data up to the window width

— First window: [1,w]
— Second window: [1,w+1]
— Final window: [1,T]
 With sequential estimation, window is the
length of the first estimation window



Recursive Estimation

e STATA command is similar, but adds recursive after comma

.rolling, recursive window(100) clear: regress gdp
L(1/3).gdp

e STATA clears data set, replaces with start, end, and
recursive coefficient estimates b cons, stat 1, etc.

e Use end for time variable
— .tsset end
— This sets the time index to the end period used for estimation



Recursive Intercept
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Recursive AR coefficients
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Analysis

 The recursive intercept
fluctuates, but decreases

— Drops around 1984, and 1990

e The recursive AR(1) and
AR(2) coefs are very stable

 The recursive AR(3) coef
increases, and then becomes
stable after 1984.
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Summary

Use rolling and recursive estimation to
investigate stability of estimated coefficients

Look for patterns and evidence of change
Try to identify potential breakdates

In GDP example, possible dates:
— 1970, 1984, 1990



Testing for Breaks

Did the coefficients change at some breakdate
t*?

We can test if the coefficients before and after
t* are the same, or if they changed

Simple to implement as an F test using
dummy variables

Known as a Chow test



Gregory Chow

e Professor Gregory Chow of
Princeton University
(emeritus)

 Proposed the “Chow Test”
for structural change in a
famous paper in 1960




Dummy Variable

 For a given breakdate t*

e Define a dummy variable d
—d=1if t>t*

* Include d and interactions d*x to test for
changes



Model with Breaks

e Original Model
YV, =a+X[+e,

e Model with break

Yi :0‘+thg+5dt+7’dtxt+et

* |nterpreting the coefficients
— 0=change in intercept
— y=change in slope



Chow Test

Yi :0‘+thg+5dt+7’dtxt+et

The model has constant parameters if 6=y=0
Hypothesis test:

— Hy: 6=0 and y=0

Implement as an F test after estimation

If prob>.05, you do not reject the hypothesis of
stable coefficients



Example: GDP

. gen d=(t>tq(1974q9l1))

. gen x1=d*L.qgdp
(1 missing value generated)

. gen x2=d*L2.gdp
(2 missing values generated)

. gen x3=d*L3.gdp
(3 missing values generated)



- reg gdp L(1/3).qgdp d x1 x2 x3,r

Linear regression Number of obs = 248
FC 7, 240) = 6.21
Prob > F = 0.0000
R-squared = 0.1662
Root MSE = 3.8158
Robust

gdp Coef. std. Err. t P>|t] [95% Conf. Interval]

gdp
L1. -3220439 -111703 2.88 0.004 -1020005 -5420873
L2. -1225762 -1097826 1.12 0.265 -.0936842 -3388366
L3. -.1994019 -1035398 -1.93 0.055 -.4033648 -0045609
d -1.321552 -9254528 -1.43 0.155 -3.144599 -5014957
x1 -0108441 -1466639 0.07 0.911 —-.2780688 -2997569
x2 -0100876 -1606384 0.06 0.950 -.3063537 -3265289
x3 -1489167 -1495265 1.00 0.320 -.1456352 -4434686
_cons 3.014221 -8146597 3.70 0.000 1.409424 4.619017




Chow test

. test d x1 x2 x3

(1) d=0
(2) x1=0
(3 x2=0
(4) x3 =0
F( 4, 240) = 0.72
Prob > F = 0.5797

e The p-value is larger than 0.05
e [tis not significant
e We do not reject hypothesis of constant coefficients



Fishing for a Breakdate

 An important trouble with the Chow test is
that it assumes that the breakdate is known —
before looking at the data

e But we selected the breakdate by examining
rolling and recursive estimates

* This means that are too likely to find
misleading “evidence” of nhon-constant
coefficients



Fishing

 We could consider picking multiple possible
breakdates t*=[t,,t,,..., t,]

e For each breakdate t*, we could estimate the
regression and compute the Chow statistic
F(t*)

* Fishing for a breakdate is similar to searching
for a big (significant) Chow statistic.



The Quandt Likelihod Ratio (QLR) Statistic

(also called the “sup-Wald” statistic)

The QLR statistic = the maximal Chow statistics

Let F(7) = the Chow test statistic testing the hypothesis of no
break at date .

The QLR test statistic 1s the maximum of all the Chow F-
statistics, over arange of 7, 7p < 7< 1y:
QLR — IIlaX[F(T()), F(T()‘|‘1) oo F(Tl—l), F(Tl)]

A conventional choice for 7y and 7; are the inner 70% of the
sample (exclude the first and last 15%.



Richard Quandt

e Professor Richard Quandt (1930-)
— Princeton University
— Estimation of breakdate (Quandt, 1958)
— QLR test (Quandt, 1960)



QLR Critical Values

QLR =max[F(r), F(wt1),..., F(z—1), F(71)]

Should you use the usual critical values?
The large-sample null distribution of F(7) for a given (fixed,
not estimated) 7 1s Fg

But if you get to compute two Chow tests and choose the
biggest one, the critical value must be larger than the critical
value for a single Chow test.

If you compute very many Chow test statistics — for example,
all dates 1n the central 70% of the sample — the critical value

must be larger still!



Get this: in large samples, QLR has the distribution,

1 L B ()’
maxagssl—a (q |Z:1: S(l — S) ] ,

where {Bi}, 1 =1,...,n, are independent continuous-time
“Brownian Bridges” on 0 <s <1 (a Brownian Bridge is a
Brownian motion deviated from its mean), and where a = .15
(exclude first and last 15% of the sample)

Critical values are tabulated in SW Table 14.6...



TABLE 14.6  Critical Values of the QLR Statistic with 15% Trimming

Number of Restrictions (q) 10% 5% 1%
1 712 8.68 12.16
2 5.00 5.86 7.78
3 4.09 4.71 6.02
4 3.59 4.09 512
5 3.26 3.66 4.53
6 3.02 337 4.12
7 2.84 3.15 3.82
8 2.69 2.98 3.57
9 2.58 2.84 3.38

10 2.48 2.7 3.23

Note that these critical values are larger than the F,, critical

values — for example, F; ., 5% critical value 1s 3.84.



QLR Theory

e Distribution theory for the QLR statistic
 Developed by

— Professor Donald Andrews (Yale)



Has the postwar U.S. Phillips Curve been
stable?

Consider a model of Alnf; given Unemp; — the empirical
backwards-looking Phillips curve, estimated over (1962 — 2004):

Alnf, = 1.30 — .42AInf, — .37AInf, + .06AlInf, 5 — .04AlInf, 4
(.44) (.08) (.09) (.08) (.08)

— 2.64Unem¢ ; + 3.04Unem¢, — 0.38Unem; 5 + .25Unemp; 4
(.46) (.86) (.89) (.45)

Has this model been stable over the full period 1962-2004?



QLR tests of stability of the Phillips curve.

dependent variable: Alnf;
regressors: intercept, Alnfy,..., Alnfy,
Unemp4,..., Unemp4
test for constancy of intercept only (other coefficients are
assumed constant): QLR =2.865 (q=1).

10% critical value = 7.12 = don’t reject at 10% level
test for constancy of intercept and coefficients on Unemp,,...,
Unemp; (coefficients on Alnfi_,,..., Alnf_4 are constant):
QLR =5.158 (q=5)

1% critical value = 4.53 = reject at 1% level

Break date estimate: maximal F occurs in 1981:1V

Conclude that there 1s a break 1n the inflation —
unemployment relation, with estimated date of 1981:1V



F-Statistic
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Implementation

It is difficult to compute QLR without using
some programming.
But it is well approximated by

— Examining rolling and recursive estimates for
possible breaks

— Computing Chow test at potential breakdates.
Don’t use STATA's p-value!
Use Table 14.6 from SW (or earlier slide).
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