Joint Tests

Yi = a_I_IBlyt—l +"'+:prt—p + €
How do we assess if a subset of coefficients
are jointly zero? Example: 3"9+4t |ags

- reg gdp L(1/4) .gdp,r

Linear regression Number of obs = 247
F( 4, 242) = 8.85
Prob > F = 0.0000
R-squared = 0.1584
RooOt MSE = 3.8132
Robust

gdp Coef. std. Err. t P>t [95% Conf. Interval]

gdp
L1. -327656 -076895 4_26 0.000 -1761871 479125
L2. -1466135 -0858808 1.71 0.089 -.0225558 -3157828
L3. -.0980287 -0728951 -1.34 0.180 -.2416186 -0455611
L4 -.0889209 -0790354 -1.13 0.262 -.244606 -0667641
_cons 2_378427 -4731312 5.03 0.000 1_446447 3.310408




Joint Hypothesis

This is a joint test of
ps=0
p,=0
This can be done with an “F test”

In STATA, after regress (reg) or newey
test L3.gdp L4.gdp

List variables whose coefficients are tested for
Zero.



Joint Tests

e “Ftest” named after R.A. Fisher
— (1890-1992)

— A founder of modern statistical
theory

e Modern form known as a “Wald
test”, named after Abraham Wald
(1902-1950)

— Early contributor to econometrics




F test computation

. test L3.gdp L4.gdp

(1) 1L3.gdp =0
(2) L4.gdp =0

F(C 2, 242) = 1.76
Prob > F = 0.1747

You need to list each variable separately
STATA describes the hypothesis
The value of “F” is the F-statistic

“Prob>F” is the p-value

— Small p-values cause rejection of hypothesis of zero
coefficients

— Conventionally, reject hypothesis if p-value < 0.05




Example: 2-step-ahead GDP AR(4)

- newey gdp L(2/5).gdp, lag(2)

Regression with Newey-West standard errors Number of obs = 246
maximum lag: 2 F( 4, 241) = 3.24
Prob > F = 0.0129
Newey-West
gdp Coef. std. Err. t P>t [95% Conf. Intervall]
gdp
L2. .2410617 .0768239 3.14 0.002 .0897296 -3923938
L3. -.0368004 .0703583 -0.52 0.601 -.1753962 -.1017954
L4. -.0910108 .0791053 -1.15 0.251 -.2468369 .0648152
L5. -.1128763 .0687243 -1.64 0.102 -.2482533 .0225006
_cons 3.329426 - 5460059 6.10 0.000 2.253873 4.404979
. test L3.gdp L4.gdp L5.gdp
(1) L3.gdp =0
(2) LA.gdp =0
(3) L5.gdp =0
F( 3, 241) = 1.65
Prob > F = 0.1793



Testing after Estimation

e The commands predict and test are applied to
the most recently estimated model

e The command test uses the standard error
method specified by the estimation command
—regy X : classical F test
—regr X, r: heteroskedasticity-robust F test
— newey Y X, lag(m): correlation-robust F test

 (The robust tests are actually Wald statistics)



Measures of Fit from AR(p)

Residual Sum of Squared Errors SSR=iét2
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Uses

SSR is a direct measure of the fit of the
regression

— It decreases as you add regressors

s is an estimate of the error variance

SER is an estimate of the error standard
deviation

R? and R-bar-squared are measures of in-
sample forecast accuracy



Example

- reg gdp L(1/4).qgdp

source SS df MS

Model 662.232234 4 165.558059
Residual 3518.78213 242 14.540422

Total 4181.01437 246 16.9959934

SSR=3518.78
s?=14.54

R%?=0.158
R-bar-squared=0.144
SER=3.8132

Number of obs = 247
F( 4, 242) = 11.39
Prob > F = 0.0000
R-squared = 0.1584
Adj R-squared = 0.1445
Root MSE = 3.8132



STATA stores many of these numbers in “ result”

_resu
_resu
_resu
_resu
_resu
_resu
_resu
_resu
_resu

Access after estimation

t(1)=T

t(2)=MSS (model sum of squares)
t(3)=k (humber of regressors)
t(4)=SSR

t(5)=T-k-1

t(6)=F-stat (all coefs=0)

t(7)=R2
t(8)=R-bar-squared
t(9)=SER




Model Selection

Take the GDP example. Should we use an
AR(1), AR(2), AR(3),...?

How do we pick a forecasting model from
among a set of forecasting models?

This problem is called model selection

There are sets of tools and methods, but there
is no universally agreed methodology.



Selection based on Fit

You could try and pick the model with the
smallest SSR or largest R?.

But the SSR increases (and R? decreases) as
you add regressirs.

So this idea would simply pick the largest
model.

Not a useful method!



Selection Based on Testing

You could test if some coefficients are zero.
If the test accepts, then set these to zero.
If the test rejects, keep these variables.
This is called “selection based on testing”
You could either use

— Sequential t-tests
— Sequential F-tests



Example: GDP

Prob > F

Robust

gdp Coef. std. Err. t P>|t] [95% conf. Intervall

gdp

L1. -327656 -076895 4_26 0.000 1761871 -479125

L2. - 1466135 -0858808 1.71 0.089 —-.0225558 -3157828

L3. —-. 0980287 -0728951 -1.34 0.180 -.2416186 -0455611

L4. —. 0889209 -0790354 -1.13 0.262 —-.244606 -0667641
. test L3.qgdp L4_gdp
(1) 13.90 =0 e Sequential F tests do
(2) L4.gdp =0

= - 1 th

FC 2, 2= 176 not reject 4" |ag,
. test L2.qgdp L3.gdp L4.gdp rd+ th nd+ rd+ th
Lo 39+4% and 2"%+3M9+4
(2) L3.gdp =0
(3) La.gdp =0 . st ndp2ardg Ath

o
e 3 aam o 13 Rejects 1°'+ 2"9+3+4
Prob > F = 0.2552

. tost LLgth 12,90 L3.90b L4.9 * Testing method selects
(B Lenos,

LZ2. =
(3) L3.gdp-0 AR(].)
(4 L4.gdp =0

F( 4, 242)



Example GDP

Robust
gdp Coef. std. Err. P>|t] [95% conf. Interval]
gdp
L1. -.327656 -.076895 4.26 0.000 .1761871 -479125
L2. -1466135 -.0858808 1.71 0.089 -.0225558 -3157828
L3. -.0980287 -0728951 -1.34 0.180 -.2416186 -0455611
LA. -.0889209 -.0790354 -1.13 0.262 -.244606 -.0667641
. test L3.gdp L4.qgdp
(1) 1 3.gdp =0
(2) L4.gdp =0
F( 2, 242) = 1.76
Prob > F = 0.1747
. test L2.qgdp L3.qgdp L4._qgdp
(1) L2.qdp =0
{(2)  3.qdp =0
(3) L4.gdp =0
F( 3, 242) = 1.36
Prob > F = 0.2552
. test L1.qgdp L2.qgdp L3.gdp L4_qgdp
(1) L.gdp =0
(2) L 2.qdp =0
{3) L 3.gdp =0
{4) L4.qdp =0
F( 4, 242) = 8.85
Prob > F = 0.0000



Sequential t-tests

Robust

gdp Coef. std. Err. t P>t [95% Conf. Interval]
gdp
L1. .3412071 .0764232 4.46 0.000 .1906738 .4917405
L2. 1327376 .0826814 1.61 0.110 -.0301228 .2955981
L3. -.1293765 .0731709 -1.77 0.078 -.2735037 .0147508
gdp
Ll1. .3268403 .076061 4.30 0.000 .1770265 .476654
L2. .0870349 .0742668 1.17 0.242 -.059245 .2333148

gdp

L1. .3604753 .0690582 5.22 0.000 .22446 -4964907

e Sequential t-tests also select AR(1)



Select based on Tests?

Somewhat popular, but testing does not lead
to good forecasting models

Testing asks if there is strong statistical
evidence against a restricted model

If the evidence is not strong, testing selects
the restricted model

Testing does not attempt to evaluate which
model will lead to a better forecast.



Bayes Criterion

e Thomas Bayes (1702-1761)
is credited with inventing
Bayes Theorem
— M, =model 1
— M, =model 2
— D=Data

) P(D|M1)
100 5o 1M M.+ PO T PO



Bayes Selection

* The probabilities P(M,) and P(M,) are “priors”
believed by the user

e The probabilities P(D|M;) and P(D|M,) come
from probability models.

 We can then compute the posterior
probability of model 1

P(D|M,)
P(D|M,)P(M,)+P(D|M,)P(M,)

P(Ml | D):



Simplification

e AR(p) with normal errors and uniform priors

P(M, | D)ocexp(—TE-Ble

where

BIC =N In(S_IS_—Rj+(p+1)In(N)

is known as the Bayes Information Criterion or Schwarz
Information Criterion (SIC). The number N is the total
number of observations, while T is the number used

for estimation of the AR(p).



Bayes Selection

* The Bayes method is to select the model with the
highest posterior probability

— the model with the smallest value of BIC
e Sometimes BIC is written a bit differently

e But are all equivalent for model selection

SSR

BIC, =N In(—j+(p+1)ln(N)

-
BIC, :|n(5$_Rj+(p+1)'”(N)

N



Trade-off

* When we compare models, the larger model
(the AR with more lags) will have
— Smaller SSR
— Larger p
 The BIC trades these off.
— The first term is decreasing in p
— The second term is increasing in p

BIC =N In(s_?—Rj+(p+l)ln(N)



Computation

e N=total number of observations
e For every AR(p) model
4
BIC =N In S_IS_—Rj+(p+1)In(N)
\

* As you change the AR order, the number of
observations used for estimation T changes.

— Do not change N as you vary AR models



Computation

e For a baseline model, record N (example N=250)

* Direct calculation

.dis In(_result(4)/_result(1))*250+(1+_result(3))*In(250)
or
.dis In(e(rss)/e(N))*250+e(rank)*In(250)

_result(1)=e(N)=T
_result(3)=p
e(rank)=p+1
_result(4)=e(rss)=SSR
* Warning:
— STATA has estimates and estat commands which report

“BIC”, but they assume N=T which is not appropriate for
AR comparisons

— Use the direct calculation



Example: AR for GDP

There are N=251 observations
An AR(O) uses T=251

An AR(1) uses T=250 observations
An AR(p) uses T=251-p observations




Example: AR(1) for GDP

. reg gdp L.gdp

Source SS df MS Number of obs = 250
F(C 1, 248) = 37.13
Mode | 548.5238 1 548_.5238 Prob > F = 0.0000
Residual 3663.91099 248 14.7738347 R-squared = 0.1302
Adj R-squared = 0.1267
Total 4212 .43479 249 16.9174088 Root MSE = 3.8437
gdp Coef. std. Err. t P>|t]| [95% Conf. Interval]

adp
L1. .3604753 -0591595 6.09 0.000 -.2439562 -4769944
_cons 2.147687 -312436 6.87 0.000 1.532321 2.763054

. dis InCresult(4)/_result(1))*251+(1+ _result(3))*1In(251)
684.94211

BIC=N In(s_ls_—Rj+(l+ p)In(N) =251x In(%)+4ln(251) =684.9



BIC picks AR(1) for GDP Growth

AR order BIC
P=0 (no lag) 714.4
P=1 684.9*
P=2 689.2
P=3 690.2
P=4 694.4
P=5 698.8




Problem with BIC

This is the theory behind the BIC

If one of the models is true, and the others
false,

— Then BIC selects the model most likely to be true
If none of the models are true, all are
approximations

— BIC does not pick a good forecasting model

BIC selection is not designhed to produce a
good forecast



Selection to Minimize MSFE

Our goal is to produce forecasts with low
MSFE (mean-square forecast error).

If y is a forecast for y, the MSFE is
R(§)=E(y-9)
If we had a good estimate of the MISFE, we

could pick the model (forecast) with the
smallest MISFE.

Consider the estimate: The in-sample sum of
square residuals, SSR



SSR

* In-sample MSFE
;
SSR=>"(y, - ¥.)

T=1
T
= Zétz
T=1

e Two troubles

— It is a biased estimate (overfitting in-sample)

— It decreases as you add regressors, it cannot be
used for selection



Bias
* |t can be shown that (approximately)

E(SSR)= E(MSFE)-25%(p+1)

and E(MSFE)=To?

e Shibata (1980) suggested the bias adjustment

S, =SSR -(1+ 2((|)\|+1)j

e Known as the Shibata criteria.




Akaike

e |f you take Shibata’s criterion, divide by T, take
the log, and multiply by N, then

N In[%) =N |n(5$_Rj+ \ ,n(1+ 2(|c|)\|+1)j
~ N In(S_IS_—RjJrZ(erl)

= AIC
 This looks somewhat like BIC, but “2” has
replaced “In(N)”.

e Called the “Akaike Information criterion” (AIC)




Formulas and Comparison

AIC =N |n(‘°’$—Rj+2(p+1)

BIC=N In(S_IS_—Rj+In(N)(p+1)

e |ntuitively, both trade-off make similar trade-offs
— Larger models have smaller SSR, but larger p
— The difference is that BIC puts a higher penalty on the
number of parameters
e The AIC penalty is 2
e The BIC penalty is In(N)>2 (if N>7)
e For example, if N=240, In(N)=5.5 is much larger than 2



Hirotugu Akaike

e 1927-2009
e Japanese statistician
 Famous for inventing the AIC




Motivation for AIC

 Motivation 1: The AIC is an approximately
unbiased estimate of the MSFE

 Motivation 2 (Akaike’s): The AIC is an
approximately unbiased estimate of the
Kullback-Liebler Information Criterion (KLIC)

— A loss function on the density forecast

— Suppose f(y) is a density forecast for y, and g(y) is
the true density. The KLIC risk is

KLIC(f,qg)= Eln[wj
g(y)



Akaike’s Result

e Akaike showed that in a normal

autoregression the AIC is an approximately
unbiased estimator of the KLIC

e So Akaike recommended selecting forecasting

models by finding the one model with the
smallest AIC

e Unlike testing or BIC, the AIC is desighed to
find models with low forecast risk.



Computation

e For given N (e.g. N=251)

* Direct calculation

.dis In(_result(4)/_result(1))*251+(1+_result(3))*2
Or
.dis In(e(rss)/e(N))*251+e(rank)*2

_result(1)=e(N)=T

_result(3)=p
e(rank)=p+1

_result(4)=e(rss)=SSR



Example: AR(3) for GDP

Source SS df MS Number of obs = 248
F( 3, 244) = 14.65
Mode | 639.828998 3 213.276333 Prob > F = 0.0000
Residual 3551.16846 244 14.5539691 R-squared = 0.1527
Adj R-squared = 0.1422
Total 4190.99745 247 16.967601 Root MSE = 3.815
gdp Coef. std. Err. t P>|t]| [95% Conf. Interval]
adp
L1. -.3412071 -0634035 5.38 0.000 .2163191 -4660952
L2. .1327376 -.0664123 2.00 0.047 -001923 .2635523
L3. -.1293765 -.0633675 -2.04 0.042 -.2541935 -.0045595
_cons 2.193251 -.361578 .07 0.000 1.481039 2.905464

. dis InCresult(4)/_result(1))*251+(1+ _result(3))*2

676.06241

SSR

AIC=NIn| — [+ 2(1+ p) =251xIn 31 +2x4=676.1
T 248



AIC picks AR(3) for GDP Growth

AR order BIC AlIC
P=0 (no lag) 714.4 710.8
P=1 684.9* 677.9
P=2 689.2 678.6
P=3 690.2 676.1*
P=4 694.4 676.8
P=5 698.8 677.7




Comments

e BIC picks AR(1), AIC picks AR(3)

* This is common
— AIC typically selects a larger model than BIC

— Mechanically, it is because BIC puts a larger penalty on
the dimension of the model |
e (In(N) versus 2)

— Conceptually, it is because
e BIC assumes that there is a true finite model, and is trying to
find the true model

e AIC assumes all models are approximations, and is trying to
find the model which makes the best forecast.
— Extra lags are included if (on balance) they help to forecast



Selection based on Prediction Errors

* A sophisticated selection method is to
compute true out-of-sample forecasts and
forecast errors, and pick the model with the
smallest out-of-sample forecast variance

— Instead of forecast variance, you can apply any
loss function to the forecast errors



Forecasts

* Your sample is [y, ,y;] for observations [1,...,T]

* For eachy,, you construct an out-of-sample
forecasty..

— This is typically done on a the observations
[R+1,...,T]

— Ris a start-up number
— P=T-R is the number of out-of-sample forecasts



Out-of-Sample Forecasts

By out-of sample, y, must be computed using only the
observations [1,...,t-1]

In an AR(1) n n A
Yi =1t /Bt—l Yia

Where the coefficients are estimated using only the
observations [1,...,t-1]

Also called “Pseudo Out-of-Sample” forecasting
— Diebold, Section 10.3
— Stock-Watson, Key Concept 14.10

The out-of-sample forecast error is

€ =YY



Forecast error

 The out-of-sample (OOS) forecast error is
different than the full-sample least-squares
residual

e |tis atrue forecast error

* An estimate of the mean-square forecast error
is the sample variance of the OOS errors

T R
O :Ezet

t=R+1



Selection based on pseudo OOS MSE

 The predictive least-squares (PLS) criterion is
the estimated MSFE using the OOS forecast
errors

t=R+1

1 o,
PLS = Eze‘

e PLS selection picks the model with the
smallest PLS criterion

e This is very popular in applied forecasting



Comments on PLS

PLS has the advantage that it does not depend on
approximations or distribution theory

It can be computed for any forecast method

— You just need a time-series of actual forecasts

— You can use it to compare published forecasts

Disadvantages
— It requires the start-up number of observations R

— The forecasts in the early part of the sample will be less
precise than in the later part
e Averaging over these errors can be misleading
e Will therefore tend to select smaller models than AIC

— Less strong theoretical foundation for PLS than for AIC



Jorma Rissanen

e The idea of PLS is due to Jorma
Rissanen, a Finnish information
theorist




Computation

e Numerical Computation of PLS in STATA is
unfortunately tricky

e \We will discuss it later when we discuss
recursive estimation



PLS picks AR(2) for GDP Growth

AR order BIC AIC PLS
P=0(nolag)| 714.4 710.8 3.58
P=1 684.9* 677.9 3.435
P=2 689.2 678.6 | 3.432*
P=3 690.2 676.1% 3.47
P=4 694.4 676.8 3.53

P=5 698.8 677.7 3.52
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