Joint Tests

$$y_{t} = \alpha + \beta_{1} y_{t-1} + \dots + \beta_{p} y_{t-p} + e_{t}$$

 How do we assess if a subset of coefficients are jointly zero? Example: 3rd+4th lags

```
. reg gdp L(1/4).gdp,r
Linear regression
```

```
Number of obs = 247
F( 4, 242) = 8.85
Prob > F = 0.0000
R-squared = 0.1584
Root MSE = 3.8132
```

gdp	Coef.	Robust Std. Err. t		P> t	[95% Conf. Interval]		
gdp							
Ľ1.	.327656	.076895	4.26	0.000	.1761871	. 479125	
L2.	.1466135	.0858808	1.71	0.089	0225558	.3157828	
L3.	0980287	.0728951	-1.34	0.180	2416186	.0455611	
L4.	0889209	.0790354	-1.13	0.262	244606	.0667641	
_cons	2.378427	.4731312	5.03	0.000	1.446447	3.310408	

Joint Hypothesis

This is a joint test of

$$\beta_3 = 0$$

$$\beta_4 = 0$$

- This can be done with an "F test"
- In STATA, after regress (reg) or newey
 .test L3.gdp L4.gdp
- List variables whose coefficients are tested for zero.

Joint Tests

- "F test" named after R.A. Fisher
 - -(1890-1992)
 - A founder of modern statistical theory
- Modern form known as a "Wald test", named after Abraham Wald (1902-1950)
 - Early contributor to econometrics

F test computation

- You need to list each variable separately
- STATA describes the hypothesis
- The value of "F" is the F-statistic
- "Prob>F" is the p-value
 - Small p-values cause rejection of hypothesis of zero coefficients
 - Conventionally, reject hypothesis if p-value < 0.05

Example: 2-step-ahead GDP AR(4)

. newey gdp L(2/5).gdp, lag(2)

Regression with Newey-West standard errors maximum lag: 2

Number of obs = 246 F(4, 241) = 3.24 Prob > F = 0.0129

gdp	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
gdp						
Ľ2.	.2410617	.0768239	3.14	0.002	.0897296	.3923938
L3.	0368004	.0703583	-0.52	0.601	1753962	.1017954
L4.	0910108	.0791053	-1.15	0.251	2468369	.0648152
L5.	1128763	.0687243	-1.64	0.102	2482533	.0225006
_cons	3.329426	. 5460059	6.10	0.000	2.253873	4.404979

- . test L3.gdp L4.gdp L5.gdp
 - (1) L3.gdp = 0
 - (2) L4.gdp = 0
 - $\begin{array}{ccc} \textbf{(3)} & \textbf{L5.gdp} = \textbf{0} \end{array}$

$$F(3, 241) = 1.65$$

 $Prob > F = 0.1793$

Testing after Estimation

- The commands predict and test are applied to the most recently estimated model
- The command test uses the standard error method specified by the estimation command
 - reg y x : classical F test
 - reg r x, r: heteroskedasticity-robust F test
 - newey y x, lag(m): correlation-robust F test
 - (The robust tests are actually Wald statistics)

Measures of Fit from AR(p)

- Residual Sum of Squared Errors $SSR = \sum_{t=0}^{T} \hat{e}_{t}^{2}$
- Residual Mean Squared Error $s^2 = \frac{1}{T p 1} \sum_{t=1}^{T} \hat{e}_t^2$ Root MSE (Standard Error of Regression)

$$SER = \sqrt{\frac{1}{T - p - 1}} \sum_{t=1}^{T} \hat{e}_{t}^{2}$$

R-squared

$$R^{2} = \sum_{t=1}^{T} \hat{e}_{t}^{2} / \sum_{t=1}^{T} (y_{t} - \overline{y})^{2}$$

• R-bar-squared
$$\overline{R}^2 = \frac{\frac{1}{T-p-1} \sum_{t=1}^{T} \hat{e}_t^2}{\frac{1}{T-1} \sum_{t=1}^{T} (y_t - \overline{y})^2}$$

Uses

- SSR is a direct measure of the fit of the regression
 - It decreases as you add regressors
- s² is an estimate of the error variance
- SER is an estimate of the error standard deviation
- R² and R-bar-squared are measures of insample forecast accuracy

Example

. reg gdp L(1/4).gdp

Source	SS	df	MS
Model Residual	662.232234 3518.78213	4 242	165.558059 14.540422
Total	4181.01437	246	16.9959934

Number of obs = 247 F(4, 242) = 11.39 Prob > F = 0.0000 R-squared = 0.1584 Adj R-squared = 0.1445 Root MSE = 3.8132

- SSR=3518.78
- $s^2 = 14.54$
- $R^2 = 0.158$
- R-bar-squared=0.144
- SER=3.8132

Access after estimation

- STATA stores many of these numbers in "_result"
- result(1)=T
- _result(2)=MSS (model sum of squares)
- _result(3)=k (number of regressors)
- result(4)=SSR
- result(5)=T-k-1
- _result(6)=F-stat (all coefs=0)
- result(7)= R^2
- _result(8)=R-bar-squared
- _result(9)=SER

Model Selection

- Take the GDP example. Should we use an AR(1), AR(2), AR(3),...?
- How do we pick a forecasting model from among a set of forecasting models?
- This problem is called model selection
- There are sets of tools and methods, but there is no universally agreed methodology.

Selection based on Fit

- You could try and pick the model with the smallest SSR or largest R².
- But the SSR increases (and R² decreases) as you add regressirs.
- So this idea would simply pick the largest model.
- Not a useful method!

Selection Based on Testing

- You could test if some coefficients are zero.
- If the test accepts, then set these to zero.
- If the test rejects, keep these variables.
- This is called "selection based on testing"
- You could either use
 - Sequential t-tests
 - Sequential F-tests

Example: GDP

gdp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
gdp						
L1.	.327656	. 076895	4.26	0.000	.17 61871	. 479125
L2.	. 1466135	.0858808	1.71	0.089	0225558	. 3157828
L3.	0980287	.0728951	-1.34	0.180	2416186	.0455611
L4.	0889209	.0790354	-1.13	0.262	244606	.0667641

- . test L3.gdp L4.gdp
- (1) L3.gdp = 0
- (2) L4.gdp = 0

$$F(2, 242) = 1.76$$

 $Prob > F = 0.1747$

- . test L2.gdp L3.gdp L4.gdp
- (1) L2.gdp = 0
- (2) $L3.\bar{g}d\bar{p} = 0$
- (3) L4.gdp = 0

- . test L1.gdp L2.gdp L3.gdp L4.gdp
- (1) L.gdp = 0
- (2) L2.gdp = 0
- (3) L3.gdp = 0
- (4) L4.gdp = 0

- Sequential F tests do not reject 4th lag, 3rd+4th, and 2nd+3rd+4th
- Rejects 1st+ 2nd+3rd+4th
- Testing method selects AR(1)

Example: GDP

```
Robust
                    Std. Err.
                                          P>|t|
                                                     [95% Conf. Interval]
gdp
           Coef.
                                    t
gdp
          .327656
                     .076895
                                  4.26
                                         0.000
                                                     .1761871
                                                                   .479125
L1.
L2.
         .1466135
                    .0858808
                                  1.71
                                         0.089
                                                   -.0225558
                                                                  .3157828
                                 -1.34
L3.
       -.0980287
                    .0728951
                                         0.180
                                                   -.2416186
                                                                  .0455611
       -.0889209
                    -0790354
                                 -1.13
                                         0.262
                                                     -.244606
                                                                  .0667641
L4.
```

- . test L3.gdp L4.gdp
- (1) L3.qdp = 0

(2)
$$L4.gdp = 0$$

$$F(2, 242) = 1.76$$

 $Prob > F = 0.1747$

- . test L2.gdp L3.gdp L4.gdp
- (1) L2.qdp = 0
- (2) L3.gdp = 0
- (3) L4.qdp = 0

$$F(3, 242) = 1.36$$

 $Prob > F = 0.2552$

- . test L1.gdp L2.gdp L3.gdp L4.gdp
- (1) L.gdp = 0
- (2) L2.gdp = 0
- (3) L3.gdp = 0
- (4) L4.gdp = 0

$$F(4, 242) = 8.85$$

 $Prob > F = 0.0000$

Sequential t-tests

gdp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gdp L1. L2. L3.	.3412071 .1327376 1293765	.0764232 .0826814 .0731709	4.46 1.61 -1.77	0.000 0.110 0.078	.1906738 0301228 2735037	.4917405 .2955981 .0147508
gdp L1. L2.	. 3268403 . 0870349	.076061 .0742668	4.30 1.17	0.000 0.242	.1770265 059245	.476654 .2333148
gdp L1.	.3604753	.0690582	5.22	0.000	.22446	. 4964907

Sequential t-tests also select AR(1)

Select based on Tests?

- Somewhat popular, but testing does not lead to good forecasting models
- Testing asks if there is strong statistical evidence against a restricted model
- If the evidence is not strong, testing selects the restricted model
- Testing does not attempt to evaluate which model will lead to a better forecast.

Bayes Criterion

- Thomas Bayes (1702-1761)
 is credited with inventing
 Bayes Theorem
 - $-M_1 = model 1$
 - $-M_2 = model 2$
 - D=Data

$$P(M_1 | D) = \frac{P(D | M_1)}{P(D | M_1)P(M_1) + P(D | M_2)P(M_2)}$$

Bayes Selection

- The probabilities P(M₁) and P(M₂) are "priors" believed by the user
- The probabilities $P(D|M_1)$ and $P(D|M_2)$ come from probability models.
- We can then compute the posterior probability of model 1

$$P(M_1 | D) = \frac{P(D | M_1)}{P(D | M_1)P(M_1) + P(D | M_2)P(M_2)}$$

Simplification

AR(p) with normal errors and uniform priors

$$P(M_1 | D) \propto \exp\left(-\frac{T}{2} \cdot BIC\right)$$

where

$$BIC = N \ln \left(\frac{SSR}{T} \right) + (p+1) \ln(N)$$

is known as the *Bayes Information Criterion* or *Schwarz Information Criterion* (SIC). The number *N* is the total number of observations, while T is the number used for estimation of the AR(p).

Bayes Selection

- The Bayes method is to select the model with the highest posterior probability
 - the model with the smallest value of BIC
- Sometimes BIC is written a bit differently
- But are all equivalent for model selection

$$BIC_1 = N \ln \left(\frac{SSR}{T} \right) + (p+1) \ln(N)$$

$$BIC_2 = \ln\left(\frac{SSR}{T}\right) + (p+1)\frac{\ln(N)}{N}$$

Trade-off

- When we compare models, the larger model (the AR with more lags) will have
 - Smaller SSR
 - Larger p
- The BIC trades these off.
 - The first term is decreasing in p
 - The second term is increasing in p

$$BIC = N \ln \left(\frac{SSR}{T} \right) + (p+1) \ln(N)$$

Computation

- N=total number of observations
- For every AR(p) model

$$BIC = N \ln \left(\frac{SSR}{T} \right) + (p+1) \ln(N)$$

- As you change the AR order, the number of observations used for estimation T changes.
 - Do not change N as you vary AR models

Computation

- For a baseline model, record N (example N=250)
- Direct calculation

```
.dis ln(_result(4)/_result(1))*250+(1+_result(3))*ln(250)
or
.dis ln(e(rss)/e(N))*250+e(rank)*ln(250)
    __result(1)=e(N)=T
    __result(3)=p
        e(rank)=p+1
    __result(4)=e(rss)=SSR
```

- Warning:
 - STATA has estimates and estat commands which report "BIC", but they assume N=T which is not appropriate for AR comparisons
 - Use the direct calculation

Example: AR for GDP

- There are N=251 observations
- An AR(0) uses T=251
- An AR(1) uses T=250 observations
- An AR(p) uses T=251-p observations

Example: AR(1) for GDP

. reg gdp L.gdp

Number of obs = 250		MS		đŤ	SS	Source
F(1, 248) = 37.13 Prob > F = 0.0000 R-squared = 0.1302		8.5238 738347		1 248	548.5238 3663.91099	Model Residual
Adj R-squared = 0.1267 Root MSE = 3.8437		L74088	16.91	249	4212.43479	Total
[95% Conf. Interval]	P> t	t	Err.	Std.	Coef.	gdp
.2439562 .4769944	0.000	6.09	L 59 5	.0591	.3604753	gdp L1.
1.532321 2.763054	0.000	6.87	2436	.312	2.147687	_cons

dis ln(_result(4)/_result(1))*251+(1+_result(3))*ln(251) 684.94211

$$BIC = N \ln \left(\frac{SSR}{T} \right) + (1+p) \ln(N) = 251 \times \ln \left(\frac{3664}{250} \right) + 4 \ln(251) = 684.9$$

BIC picks AR(1) for GDP Growth

AR order	BIC
P=0 (no lag)	714.4
P=1	684.9*
P=2	689.2
P=3	690.2
P=4	694.4
P=5	698.8

Problem with BIC

- This is the theory behind the BIC
- If one of the models is true, and the others false,
 - Then BIC selects the model most likely to be true
- If none of the models are true, all are approximations
 - BIC does not pick a good forecasting model
- BIC selection is not designed to produce a good forecast

Selection to Minimize MSFE

- Our goal is to produce forecasts with low MSFE (mean-square forecast error).
- If \hat{y} is a forecast for y, the MSFE is

$$R(\hat{y}) = E(y - \hat{y})^2$$

- If we had a good estimate of the MSFE, we could pick the model (forecast) with the smallest MSFE.
- Consider the estimate: The in-sample sum of square residuals, SSR

SSR

In-sample MSFE

$$SSR = \sum_{T=1}^{T} (y_t - \hat{y}_t)^2$$
$$= \sum_{T=1}^{T} \hat{e}_t^2$$

- Two troubles
 - It is a biased estimate (overfitting in-sample)
 - It decreases as you add regressors, it cannot be used for selection

Bias

It can be shown that (approximately)

$$E(SSR) = E(MSFE) - 2\sigma^{2}(p+1)$$

and

$$E(MSFE) = T\sigma^2$$

Shibata (1980) suggested the bias adjustment

$$S_p = SSR \cdot \left(1 + \frac{2(p+1)}{N}\right)$$

Known as the Shibata criteria.

Akaike

 If you take Shibata's criterion, divide by T, take the log, and multiply by N, then

$$N \ln \left(\frac{S_p}{T}\right) = N \ln \left(\frac{SSR}{T}\right) + N \ln \left(1 + \frac{2(p+1)}{N}\right)$$

$$\approx N \ln \left(\frac{SSR}{T}\right) + 2(p+1)$$

$$= AIC$$

- This looks somewhat like BIC, but "2" has replaced "ln(N)".
- Called the "Akaike Information criterion" (AIC)

Formulas and Comparison

$$AIC = N \ln \left(\frac{SSR}{T}\right) + 2(p+1)$$

$$BIC = N \ln \left(\frac{SSR}{T}\right) + \ln(N)(p+1)$$

- Intuitively, both trade-off make similar trade-offs
 - Larger models have smaller SSR, but larger p
 - The difference is that BIC puts a higher penalty on the number of parameters
 - The AIC penalty is 2
 - The BIC penalty is ln(N)>2 (if N>7)
 - For example, if N=240, ln(N)=5.5 is much larger than 2

Hirotugu Akaike

- 1927-2009
- Japanese statistician
- Famous for inventing the AIC

Motivation for AIC

- Motivation 1: The AIC is an approximately unbiased estimate of the MSFE
- Motivation 2 (Akaike's): The AIC is an approximately unbiased estimate of the Kullback-Liebler Information Criterion (KLIC)
 - A loss function on the density forecast
 - Suppose f(y) is a density forecast for y, and g(y) is the true density. The KLIC risk is

$$KLIC(f,g) = E \ln \left(\frac{f(y)}{g(y)} \right)$$

Akaike's Result

- Akaike showed that in a normal autoregression the AIC is an approximately unbiased estimator of the KLIC
- So Akaike recommended selecting forecasting models by finding the one model with the smallest AIC
- Unlike testing or BIC, the AIC is designed to find models with low forecast risk.

Computation

- For given N (e.g. N=251)
- Direct calculation

```
.dis ln(_result(4)/_result(1))*251+(1+_result(3))*2

Or
.dis ln(e(rss)/e(N))*251+e(rank)*2

_result(1)=e(N)=T

_result(3)=p

e(rank)=p+1
```

result(4)=e(rss)=SSR

Example: AR(3) for GDP

Source	SS	df	MS
Model Residual	639.828998 3551.16846	3 244	213.276333 14.5539691
Total	4190.99745	247	16.967601

Number of obs = 248 F(3, 244) = 14.65 Prob > F = 0.0000 R-squared = 0.1527 Adj R-squared = 0.1422 Root MSE = 3.815

gdp	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
gdp L1. L2. L3.	.3412071 .1327376 1293765	.0634035 .0664123 .0633675	5.38 2.00 -2.04	0.000 0.047 0.042	.2163191 .001923 2541935	.4660952 .2635523 0045595
_cons	2.193251	.361578	6.07	0.000	1.481039	2.905464

. dis ln(_result(4)/_result(1))*251+(1+_result(3))*2
676.06241

$$AIC = N \ln \left(\frac{SSR}{T}\right) + 2(1+p) = 251 \times \ln \left(\frac{3551}{248}\right) + 2 \times 4 = 676.1$$

AIC picks AR(3) for GDP Growth

AR order	BIC	AIC
P=0 (no lag)	714.4	710.8
P=1	684.9*	677.9
P=2	689.2	678.6
P=3	690.2	676.1*
P=4	694.4	676.8
P=5	698.8	677.7

Comments

- BIC picks AR(1), AIC picks AR(3)
- This is common
 - AIC typically selects a larger model than BIC
 - Mechanically, it is because BIC puts a larger penalty on the dimension of the model]
 - (ln(N) versus 2)
 - Conceptually, it is because
 - BIC assumes that there is a true finite model, and is trying to find the true model
 - AIC assumes all models are approximations, and is trying to find the model which makes the best forecast.
 - Extra lags are included if (on balance) they help to forecast

Selection based on Prediction Errors

- A sophisticated selection method is to compute true out-of-sample forecasts and forecast errors, and pick the model with the smallest out-of-sample forecast variance
 - Instead of forecast variance, you can apply any loss function to the forecast errors

Forecasts

- Your sample is [y₁,y_T] for observations [1,...,T]
- For each y_t , you construct an out-of-sample forecast \hat{y}_t .
 - This is typically done on a the observations [R+1,...,T]
 - R is a start-up number
 - P=T-R is the number of out-of-sample forecasts

Out-of-Sample Forecasts

- By out-of sample, \hat{y}_t must be computed using only the observations [1,...,t-1]
- In an AR(1) $\hat{y}_{t} = \hat{\alpha}_{t-1} + \hat{\beta}_{t-1} y_{t-1}$
- Where the coefficients are estimated using only the observations [1,...,t-1]
- Also called "Pseudo Out-of-Sample" forecasting
 - Diebold, Section 10.3
 - Stock-Watson, Key Concept 14.10
- The out-of-sample forecast error is

$$\widetilde{e}_t = y_t - \hat{y}_t$$

Forecast error

- The out-of-sample (OOS) forecast error is different than the full-sample least-squares residual
- It is a true forecast error
- An estimate of the mean-square forecast error is the sample variance of the OOS errors

$$\widetilde{\sigma}^2 = \frac{1}{P} \sum_{t=R+1}^{T} \widetilde{e}_t^2$$

Selection based on pseudo OOS MSE

 The predictive least-squares (PLS) criterion is the estimated MSFE using the OOS forecast errors

$$PLS = \sqrt{\frac{1}{P} \sum_{t=R+1}^{T} \tilde{e}_t^2}$$

- PLS selection picks the model with the smallest PLS criterion
- This is very popular in applied forecasting

Comments on PLS

- PLS has the advantage that it does not depend on approximations or distribution theory
- It can be computed for any forecast method
 - You just need a time-series of actual forecasts
 - You can use it to compare published forecasts
- Disadvantages
 - It requires the start-up number of observations R
 - The forecasts in the early part of the sample will be less precise than in the later part
 - Averaging over these errors can be misleading
 - Will therefore tend to select smaller models than AIC
 - Less strong theoretical foundation for PLS than for AIC

Jorma Rissanen

 The idea of PLS is due to Jorma Rissanen, a Finnish information theorist

Computation

- Numerical Computation of PLS in STATA is unfortunately tricky
- We will discuss it later when we discuss recursive estimation

PLS picks AR(2) for GDP Growth

AR order	BIC	AIC	PLS
P=0 (no lag)	714.4	710.8	3.58
P=1	684.9*	677.9	3.435
P=2	689.2	678.6	3.432*
P=3	690.2	676.1*	3.47
P=4	694.4	676.8	3.53
P=5	698.8	677.7	3.52