Distribution of Estimates

 From Econometrics (410)
e Linear Regression Model Y =a+px +e

— Assume (y,,x,) is iid and E(x.e,)=0
e Estimation Consistency

— The estimates approach the true values as the
sample size increases

— Estimation variance decreases as the sample size
Increases



lllustration of Consistency

Take random sample of U.S. white men

Estimate linear regression of log(wages) on
education

Total sample = 2089

Start with 100 observations, sequentially
Increase to 2089
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Asymptotic Normality
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lllustration of Asymptotic Normality
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Time Series

Do these results apply to time-series data?
— Consistency
— Asymptotic normality
— Variance formula

 Time-series models
— AR models, i.e., x,=y, 4
— Trend and seasonal models
— One-step and multi-step forecasting



Derivation of Variance Formula

e For simplicity
— Assume the variables have zero mean

— The regression has no intercept

e Model with no intercept:

Yi :lé)xt_l_et



e Model with no intercept

Yi = /3Xt + &
e OLS minimizes the sum of squares
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e The first-order condition is
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* Now substitute vy,

e Solution




e We h 1 !
e nave ) sztet

e The denominator is the sample variance
(when x has mean zero), so
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* From the covariance formula

var(ivtj = ivar(vt )+ ic:ov(vt Vi)

J#t

* When the observations are independent,
the covariances are zero.

* And since var(vt): var(xtet)

.
we obtain var(thj =T var(xe, )

t=1



 We have found

varl 3 il Val’(xtet) Var(xtet)
) [Tvar(x ) Tlvar(x,)f

as stated at the beginning



Extension to Time-Series

 The only place in this argument where we
used the assumption of the independence of
observations was to show that v.=x.e, has
zero covariance with vi=x.e;

* This is saying that v, is not autocorrelated.
e When does this happen in time-series?



Unforecastable one-step errors

 Claim: In one-step-ahead forecasting, if the

regression error is unforecastable then v, is
not autocorrelated

e |n this case, the variance formula for the least-
squares estimate is the same as in regression

2 var(xe,)

var(ﬁ)~ T[var(x, )|




Why is the claim true?

The error is unforecastable if E(e, | Q, ,;)=0

For simplicity suppose x,=1

Then for t#j

cov(v,,v;) = E(etej):o



Summary

* In one-step-ahead time-series models, if the error
is unforecastable, then least-squares estimates
satisfy the asymptotic (approximate) distribution

B~N(s.02)

2 _ 1 var(x.e, )

7T |var(x)f

e Asthe samplesize T isin the demoninator, the
variance decreases as the sample size increases.

* This means that least-squares is consistent




Variance Formula

 The variance formula for the least-squares
estimate takes the form

. _ 1 var(xe,)
T [var(x,)f

e This formula is valid in time-series regression
when the error is unforcastable

U



Classical Variance Formula

If we make the simplifying assumption

var(x.e, )= var(x, )var(e, )

then 2 _ 1 var(xe ) 1 var(e)

F T var(x )f T var(x,)

This can be a useful simplification




Homoskedasticity

 The variance simplication is valid under
“conditional homoskedasticity”

E(et | Qt—l): 0
E(et2 |Qt—1): o°

e This is a simplifying assumption made to make
calculations easier, and is a conventional

assumption in introductory econometrics courses
* [tis not used in serious econometrics



Variance Formula : AR(1) Model

e Take the AR(1) model with unforecastable
homoskedastic errors

Yi = a_l_ﬂyt—l_l_et
E(et | Qt—l): 0
E(e?1Q,)=0"
e Then the variance of the OLS estimate is
, lvarle) 1 var(e)
O~ = —
£ Tvar(x) T var(y,,)

since x,=y, , in this model




AR(1) Asymptotic Variance

e We know that

varfe)
. SO Var(yt—l)_ 1_ﬂ2
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 The asymptotic distribution is very simple
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e The variance is a function of the unknown
true value of f3

e As |B]| increases, the variance decreases,
so the OLS estimate is actually more precise
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