First Midterm Exam

Tuesday Feb 23 in class

Diebold, Chapters 1-7

Review book, lectures, problem sets
Calculators allowed

Mix of conceptual, interpretive, and
computational problems



Linear Processes

Diebold, Chapter 8

Also read Stock and Watson, Chapter 14

In this chapter, we learn about basic time series
models

— Moving average

— Autoregressive

— ARMA

— Linear Processes

These models are linear functions of stochastic
errors



Innovations

 Time-series models are constructed as linear
functions of fundamental forecasting errors e,,
also called innovations or shocks

 These basic building blocks satisfy
— Ee, =0
— var(e,)= Ee,? =0
— Serially uncorrelated
— These errors e, are called white noise

* |In general, if you see an error e,, it should be
interpreted as white noise. We will write
— e, is WN(O, ¢?)



Unforecastable Innovations

White noise processes are linearly unforecastable
A stronger condition is unforecastable.

The innovations e, are unforecastable if
— E(e,]Q, ;) =0
— This means the best forecast is zero

For some purposes, we will assume the errors are
unforecastable



MA(1) Process

 The first-order moving average process, or
MA(1) process, is

Y =€ + ‘%t—l
where e, is WN(0O, 0?)
e The MA coefficient © controls the degree of
serial correlation. It may be positive or negative.

* The innovations e, impact y, over two periods
— An contemporaneous (same period) impact
— A one-period delayed impact



Mean of MA(1)

* The unconditional mean of vy, is
E(yt) = E(et +6Et—1)

— E(et) + 6E(et—1)
=0



Variance of MA(1)

* The unconditional variance of y, is

var(y,) = var(e, + &, _,)
= var(e,) + var(ée, ,) + 2cov(e,, &, ,)
=0’ +60°0° +0

:(1+ 92)02

e This is a function of both the innovation
variance o? and the MA coefficient 6.



Conditional Mean of MA(1)

e If the erroris unforecastable E(e,| Q, ;) = 0 then the
conditional mean of y, is
E(yt | Qt—l) = E(et + 6k, | Q1:—1)

= E(et |Qt—1) T 6E(et—1 | Qt—1)

=k,
* This is the best forecast of y, .
 The optimal forecast error is

Y —EQY [Q4) = (et T ‘%t—l)_ ek,
= e'[



Conditional Variance of MA(1)

* The conditional variance of y, is

var(y, | Q,_,) = var(y, —E(y, | 2.) Q)
= var(et | Qt—l)

2
= O

e The conditional variance, the forecast
variance, and the innovation variance are all
the same thing



Autocovariance of MA(1)

e The first autocovariance is

7(1) — E(yt yt—l)
= E((et T &t_l)(et—l T 6Et—2))

— E (etet—l) + % (etz—l) + £(etet—2) + 92 E (et—let—z)
= O—|—£(et2_1) ‘I‘O‘I‘O

= Qo*



Autocovariance of MA(1)

e The autocovariance for k>1 are

y(K) = E(Y,Y: )
— E((et + &t—l)(et—k + ‘%t—k—l))
—E(ee_ )+ E(e_e_)+&E(ee_ . ,)+60°E(e_e_. )
=0+0+0+0

=0
e Thus the autocovariance function is zero for
k>1



Autocorrelations of MA(1)

* Since ¥(0) = var(y,) (1+6? )o-
y(1) =0c°
y(k) =0,k > 2
then 2 ,
Oo
PO 11
o(k)=0,k > 2

e The autocorrelation function of an MA(1) is zero
after the first lag.



First Autocorrelation

* The first autocorrelation has the same sign as 0

6
1+ 67

p(1) =

e As O ranges from-1to 1, p(1) ranges from - % to %
Yi =€ + ‘%t—l
* O<0 : negative autocorration



Lag Operator Notation

e Remember the lag operator L
LY, = ¥
 We can write the MA(1) as
Y, =€+,
=e, + O0Le,
=(1+AL),
or
Yi :H(L)et

where O6(L)=1+06L is a function of the lag operator.



Inversion of an MA(1)

We can write an MA(1) in terms of lagged y,
Y, =€ + 6,
Rewrite as
e =Y~k
Then lag this equation one period
€1 = Yiu— B,
Then combine . _y _a

= Y- H(yt—l - &t—z)
=Y — @/t—l + ezet—z



Inversion, Continued

* Do this again
€2 =Y _‘%t—s

€ =Y, _6yt—1 + Hzet—z
=Y~ 6yt—1 + ez(yt—z — &t—s)
=Y~ 6yt—1 +6° Yio — 6,3et_3
* Repeat toinfinity ¢ -y —gy , +6%y, , - 6%y, ,+--

* Then 2 3
ytzéyt—l_e yt—2+‘9 Yig t--+€

= _; (_ ‘9)i Yiii +€&



Existence of Inverse

This series converges (and the inversion exists)
if 10]<1.

Recall the lag operator expression
Yi = (1+a—)et

We can write this as
(1+6L)_1 Yi =&

This inversion is valid if |0]<1



Inversion of Lag Polynomial

What does this mean? 1+A)"y, =¢
By taking a power series expansion (from calculus)

1+a)" =1-A+6°12-0°° +--.

This expansion converges if |0]<1
Applying this expression
L+a)ty, =[-a+0°L>—°L3+--)y,
=Y _‘9yt_1+92yt—2 _93yt—3 T

as heeded



Optimal Forecast

* |nthe MA(1) model
Y =€ +‘%t—1

the optimal forecast is Oe, ; but the error is not
directly observed.

 One approach is to use the autoregressive
representation

yt|Qt1 Z yti

i=1

e But this is cumbersome.



Recursive Forecast for MA(1)

Another approach is to use the equation

and realize that this gives a recursive formula
to numerically compute the error
Given 8, and given the initial condition e,=0
e, =Y, — 0k
€, = Y2_‘%1

et:yt_éétl

This gives a recursive formula to compute all
the errors.

The out-of-sample forecast is yr,;,r = Be;



MA(q) Process

* The moving average process of order g, or
MA(q), is

Y, =€ +6€_ +0,6_,+-+0,€._,
where e, is WN(O, o?)
 We can write the equation as
Yo =(l+6L+6,L2 +--+6,LF,
=6(L)e,
where 6(L) is a g’th order polynomial in L



Autocorrelations

 The first q autocorrelations of a MA(q) are
non-zero, the autocorrelations above q are
Zero



Wold’s Theorem

* If y, is a zero-mean covariance stationary
process, then it can be written as an infinite
order moving average, also known as a
general linear process

Yi = Z oe._;
i—0
=6(L)e,

where e, is WN(O, o?)



Linear Process
Yi = ieiet—i
:‘9_(L)et

* Normalization: 6,=1

e Square summability



Interpretation of Wold’s Theorem

* There is a best linear approximation for y, in
terms of is past values

* MA(q) may be useful approximations



Mean and Variance

e Unconditional mean
E(y,) = E(Zé’iet_i) =0
1=0

e Unconditional variance
var(y,) = Vaf(z ge._;)
i1=0

Xy



Relevance of MA(q) Models

e MA(g) models help to build our understanding
and intuition for serial dependence and

autocorrelation
e But, not commonly used for forecasting

e To estimate in STATA, use command

arimay, arima(0,0,q)



Quarterly Consumption Growth

consumption growth

e
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MA(2) Estimates

. arima consumption, arima(0,0,2)

(setting optimization to BHHH)

Iteration 0: Tog likelihood = -669.82978
Iteration 1: Tog Tikelihood = -656.28924
Iteration 2: Tog likelihood = -653.50008
Iteration 3: Tog likelihood = -653.1981
Iteration 4: Tog likelihood = -653.08655
(switching optimization to BFGS)
Iteration 5: Tog likelihood = -653.05643
Iteration 6: Tog likelihood = -653.03835
Iteration 7: Tog likelihood = -653.03759
Iteration 8: Tog likelihood = -653.03758
ARIMA regression
sample: 1947q2 - 2009q4 Number of obs = 251
wald chi2(2) = 74.17
Log likelihood = -653.0376 Prob > chi2 = 0.0000
orPG
consumption Coef. std. Err. z P>|z| [95% Conf. Interval]
consumption
_cons 3.475522 -2940881 11._82 0.000 2_89912 4_051925
ARMA
ma
L1. -0241409 -0409067 0.59 0.555 -.0560349 -1043166
LZ2. -3618992 .045273 7.99 0.000 -2731657 -4506327
/sigma 3.261838 -0830438 39.28 0.000 3.099075 3.424601
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