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Under the  rubrics of  path analysis (Duncan, 1966; Land, 1969; 
Heise, 1969) or dependence analysis (Boudon, 1965; 1968), sociologists 
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have recently been introduced to the expression of theories or models 
as systems of structural equations. In  this chapter our purpose is to 
draw attention to the recurrent problem of estimating the parameters 
of overidentified path models which feature unobservable variables. 
Such variables have not been, or perhaps cannot be, measured directly, 
and the structural coefficients pertaining to their causes and effects 
must be inferred from the available measurements and the postulated 
causal structure. While models containing unobservables may be under- 
identified (Siege1 and Hodge, 1968; Duncan, 1969a; Land, 1970) or 
just-identified (Heise, 1969; Wiley and Wiley, 1970; Land, 1969, pp. 
29-33; 1970; Hauser, 1969b, pp. 549-550; and Brewer, Crano, and 
Campbell, 1970), most frequently they are overidentified (Duncan, 
Featherman, and Duncan, 1968; Duncan, Haller, and Portes, 1968; 
Hodge and Treiman, 1968; Duncan, 1969b; Hauser, 1968; 1969a; 196913; 
1970). Overidentification means that alternative estimates of certain 
parameters can be made (Costner, 1969; Blalock, 1969a; 1970). 

Alternative estimates in an overidentified model ~vill not coincide 
in finite samples even where the model is correct, that is, even where 
they would coincide in the population. Hence, some means of reconciling 
the conflicting estimates is required. The theoretical and empirical 
path-analysis literature tends to slur the sample-population distinction, 
and it provides little guidance in estimation for overidentified models.' 
Some ad hoc procedures for estimation of overidentified models con- 
taining unobservables have been suggested. For example, Blalock (1970) 
and Land (1970) have advocated that one or more equations be ignored 
in the estimation process and be introduced only to test for goodness of 
fit. At least one empirical example using this approach (Hodge and 
Treiman, 1968; Hauser, 1969b) predates their work. The technique is 
mentioned in the econometric literature (Christ, 1966, pp. 407-411) 
but with little enthusiasm. Other analysts have used arbitrary averages 
of alternative estimators without considering their statistical properties 
(Duncan, Featherman, and Duncan, 1968; Duncan, Haller, and Portes, 
1968; Hauser, 1968; 1969a; 1970). 

Principles of estimation imply testing procedures, and the treat- 
ment of goodness of fit in the path-analysis literature reflects its casual 
methods of estimation. In numerous instances we are told only to "see" 
whether the correlations implied by estimators for an overidentified 

The sociological literature is occa~ionally vague on the reasons for discrep- 
ancies among alternative estimates (compare Costner, 1969, pp. 252-253, 259, 262). 
However, the explanation is no mole complicated than that  required to account 
for the fact that, in a random sample from a normal population, the mean and the 
median will be different, despite their coincidence in the population. 
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model are "close" to the observed correlations. I t  is not clear how close 
is close enough. For example, Costner (1969, pp. 252-262) states, 

Failure of the data to satisfy this [overidentification] equa- 
tion, at  least approximately, indicates that, in some respect, 
the indicators . . . are not appropriate . . . . [Tlhe several 
estimates . . . should all be identical except for random 
error . . . . I t  may be reasonably asked what is meant when 
we say that the consistency criterion is satisfied. Do we mean 
that the two sides of [the overidentification equation] are 
exactly identical, that they are approximately identical, or 
that they should not differ to a degree that is statistically 
significant a t  the commonly utilized levels of significance? 

The sociological literature on path analysis also conveys the 
misleading impression that certain problems in estimation and testing 
have not been analyzed or even that they are not amenable to rigorous 
analysis. For example, Costner (1969, p. 262) states, "Satisfying the 
additional consistency criteria in the three-indicator model presents 
an additional statistical inference problem, the solution to which does 
not appear to be found in the factor analysis literature." Blalock (1970, 
p. 103) states, 

If there were absolutely no specification or sampling errors, 
the data would fit the model exactly, and it would make no 
difference which equations were treated as redundant. How- 
ever, in practice, no data will fit the model exactly; therefore, 
there is a certain arbitrariness in one's selection of the particu- 
lar equations that will be used for estimation purposes and 
those that will be treated as excess equations used to test the 
model. This difficulty . . . would seem to admit of no com- 
pletely satisfactory solution . . . . Perhaps the issue will re- 
duce to the question of whether one assumes specification 
errors to be more serious than sampling errors . . . . 2 

In fact, the estimation of overidentified models is not an in- 
tractable problem, and it is a central topic in the econometric and psy- 
chometric literature. There, standard principles of statistical inference 
are applied to determine efficient estimates, that is, estimates which 
have minimum sampling variability. Since path models are linear models 
of the type considered in econometrics and psychometrics, it should 

9 These remarks call to mind Boudon's (1968, p. 213) assertion, "Of course, 
when we are dealing with fallible data, these different possible choices will lead to 
different estimates, and there is obviously no reason to think that one estimate is 
better than the other." 
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not be surprising that the efficient estimating procedures developed 
there can be applied to problems of estimation in path analysis. Standard 
principles of statistical inference also imply testing procedures, and these, 
too, are worked out in the econometric and psychometric l i t e r a t ~ r e . ~  

We propose to illustrate the utility of econometric and psycho- 
metric estimation techniques for path models containing unobservable 
variables. Our examples are simple and will not do justice to the more 
elaborate sociological applications. They can be thought of as com- 
ponents of larger models, and they should suffice to document our basic 
theme. We shall treat two classes of models, those where unobservables 
appear only as causes of observable variables and those where unobserv- 
ables appear as both causes and effects of observable variables. These 
have been recognized as distinct cases in path analysis. 

Following Costner (1969), Blalock (1969a, pp. 264-270) discusses 
multiple indicators of correlated unobservable variables. Then, under 
the heading of "the instrumental variable approach" (pp. 270-272), he 
considers the case where causes of the unobservable variables are also 
observed. He correctly indicates that this gives an econometric flavor 
to the model, but his emphasis on instrumental variables is somewhat 
misleading. Land (1970, p. 507) distinguishes "two general cases for 
which sociologists will be interested in utilizing unmeasured variables 
in a causal model." "The first of these," he states, "arises in the study 
of measurement error . . . . The common characteristic of all of these 
applications of path analysis is that the hypothetical (unmeasured) 
variables enter the path models only as causes of the observed variables. 
A second case in which sociologists will utilize unmeasured variables 
is as variables which intervene between measured variables in a causal 
model." 

We shall see that the first type of path model translates directly 
into a confirmatory factor-analysis model which psychometricians have 
studied and for ivhich computer programs are available. The second type 
of path model translates into a form studied by econometricians and for 
which computer programs are also available. There are, we should add, 
cases which require a blending of the factor-analysis and econometric 
approaches. 

As Blalock has implied, efficient estimation of overidentified path 
models may not be a very important topic. Perhaps it is more important 
to  settle for some reasonable estimate and to concentrate on improving 
the model than to search diligently for efficient estimators. Still, it is 

The idea that path analysis involves a mixture of psychometric and econo- 
metric themes is not a new one (see Duncan, 1966, p. 16; Blalock, 1961, pp. 167-169; 
1969a; Werts and Linn, 1970; Wright, 1925; 1934; 1954). 
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worth knowing that there are solutions to some of the puzzles we create, 
and i t  is probably worthwhile to build up the stock of tools in advance 
of the time when rigorous inference becomes the order of the day. 

In  most, and perhaps in all, cases the efficient estimators for an 
overidentified model may be interpreted as appropriately weighted 
averages of the several conflicting estimators. The weights are chosen 
to take account of the sampling variability and covariability of the 
original estimates. Generally, the weights cannot be determined in 
advance but must be estimated from a sample. For this reason, the 
computation required to obtain efficient estimates is often more exten- 
sive than that for ordinary regression or ad hoc averaging of estimates. 
For example, the maximum-likelihood principle offers a standard method 
for efficient estimation of overidentified models (with or without un- 
observable variables), and the method implicitly involves the construc- 
tion of weights with which to reconcile the conflicting estimates. Often, as 
in factor analysis, iterative computation is r e q ~ i r e d . ~  

To avoid elaborate computations, other estimation procedures 
have been developed for certain classes of models. Generalized least- 
squares and two- and three-stage least-squares are econometric exam- 
ples, and the minres criterion for fitting factor-analysis models is an 
example from psychometrics. Under some conditions estimates produced 
by such procedures have the same efficiency as maximum-likelihood 
estimates. 

A simple example may clarify the logic of efficient estimation. 
Suppose we have two independent, unbiased estimates, ml and mz, of a 
parameter p ,  which have variances ull and a22, respectively. We wish to 
construct m, the minimum-variance unbiased estimator of p.  That is, we 
want to find weights, a l  and a2, such that E(m) = p, where m = alml + 
azmz and Var(m) is minimized. Clearly, we will choose al  + az = 1, 
since 

The fully recursive model with uncorrelated errors provides an important 
exception to this pattern. For that model Boudon (1965; 1968) developed an averag- 
ing scheme, with weights determined by the sample. However, his estimates are 
less efficient than those produced by ordinary least-squares regression, which gives 
all the weight to the regression estimate and ignores the conflicting instrumental- 
variable estimates (Goldberger, 1970b). 
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Subject to this, we wish to choose the a l  and a2  which will minimize the 
sampling variance of m, namely, 

Rlultiplying equation (2) by (ma - ml)" we obtain 

Koting that a l  = 1 - az and a2 = 1 - al, we rewrite this as 

Finally, dividing equation (4) by alla2z and cancelling like terms in the 
numerator and denominator, we have 

where all = l /a l l  and a" = l/c22, \vhich we cnn proceed directly to 
nlininiize with respect to m. Setting the derivative of expression (5 )  
with respect to m equal to zero, we find that 

all a22 al = --- all + ,,22 and a2 = ---- .11 + (12L 

are the desired weights. 
While we could have nlinilnized equation (2) directly, \ve chose 

the more tortuous path in order to point out that expression (5 )  gives 
the function minimized by the principle of generalized least-squares, 
namely, the weighted sum of squared deviations of the conflicting 
estimates from the desired estimate, I!-here each  eight is inverse to 
the variance of the corresponding estimate. 

If the estimates were not independent but had covariance ulz # 0, 
then the GLS principle says that the estimate m should be chosen to 
minimize 

where the u's with superscripts are elements in the inverse matrix 
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The resulting estimate, which has the property of minimum-variance 
unbiasedness, is 

which is again a weighted average of ml and m2, with the weights now 
taking account of sampling covariability as well as variability. 

In practice, the cr's are unknown and must be replaced by esti- 
mates of them. When this is done, we refer to the procedure as modified 
generalized least-squares (MGLS). Under quite general conditions the 
MGLS procedure produces estimates which are as efficient as those 
produced by the maximum-likelihood principle. 

MULTIPLE INDICATORS OF CAUSALLY RELATED 
UNOBSERVABLE VARIABLES 

Specification of the Model 

Consider a model in which we observe multiple indicators of two 
causally related unobservable variables, as shown in Figure 1. In alge- 
braic form the system consists of: 

a linear equation expressing the determination of the unobservable 
variable y* by the unobservable variable x* and an unobservable dis- 
turbance e; 

a set of K linear equations expressing each observa,ble indicator z k  of z* 
in terms of z* and an unobservable disturbance vk(k = 1, . . . , K); and 
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a set of M linear equations expressing each observable indicator y,,, of y* 
in terms of y* and an unobservable disturbance w,(m = 1, . . . , M). I t  
is assumed that the disturbances are independent of z* and y* and are 
mutually independent as well. 

The a, P's, and 7's are path coefficients to be estimated along 
with the disturbance variances, a:, a:,, . . . , ui,, a:,, . . . , u:,. We 
are following the econometric and psychometric convention which 
leaves the disturbances unstandardized; our variances are just the 
squares of the residual paths which would appear if the path-analysis 
convention (in which the disturbances are standardized) had been 
followed. The unobservables, z* and y*, are standardized as are the 
observables (although the latter is not at  all essential). 

Costner (1969) and Blalock (1969a) considered at  length systems 
of this type without making it clear that such models have already been 
thoroughly investigated in the psychometric literature. To clarify the 
situation, a matrix formulation is convenient. 

We introduce the vectors 

and the matrix 

and w ~ i t e  equations (12) and (13) compactly as 

The population variance-covariance matrix of the observable indicators 
is then 

a = E(xxl) = E(Af + u) (Af + u)' = AECff1)A' + E(uuf) 
= A ~ A '  + z (16) 

where we have introduced = E m ' )  as the variance-covariance matrix 
of the two unobservable variables, 2 = E(uul) as the variance-covari- 
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ance matrix of the disturbances, and used ECfu') = 0. I t  follows from 
equation (11) that 

and from the assun~ptions on the independence of the disturbances that 

I t  should now be apparent that what we have is a factor-analysis 
model (compare Harman, 1967, Chapter 2; Morrison, 1967, Chapter 8). 
More specifically, the unobservables z* and y* represent oblique factors, 
and the absence of direct paths from z* to the y's and from y* to the z's 
represents certain zero factor loadings. 

If we examine the population correlation matrix of the indicators 
given in equation (16), we see that the model is typically overidentified. 
The $(K + M)(K + A I  + 1) distinct elements of the symmetric matrix 
fi are expressible in terms of only 1 + 2(K + A4) parameters, a, PI ,  . . . , 

2 PK, 71, . . . , ~ . v ,  at,, . . . , u2VIC, uW1, . . . u i M ;  the variance ug being 
determined by the standardization of y*. For example, if M = 2 = K, 
we have +(K + M)(K + 11.1 + 1) = 10 and 1 + 2(K + h1) = 9, so 
that there is one overidentifying restriction. 

The maximum-likelihood principle offers a straightforward ap- 
proach to estimation of the parameters of the model. It must be em- 
phasized that, having specified certain zero factor loadings in advance, 
we are concerned with confirmatory factor analysis. In  the more 
traditional exploratory factor analysis, various rotations are used to 
obtain approximate zero factor loadings in the desired places, but these 
would not do justice to the present model. On the important distinction 
between confirmatory and exploratory factor analysis, see Joreskog and 
Lawley (1968). Computational procedures for confirmatory maximum- 
likelihood estimation are spelled out in Lawley and Maxwell (1963, 
Chapters 2, 6) and Joreskog (1969a). 

Path Analysis Approach to Estimation 

Before describing the efficient estimation procedure, we pause 
to review the path-analysis approach to fitting the model. For the sake 
of concreteness, we take K = Af = 2 as in Costner (1969, Figure 4). By 
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inspection of the path diagram, or from equations (11) through (13), 
the following "estimating equations" are produced: 

(compare Blalock, 1969a, p. 251, equations (1) through (6)). In equation 
(19) there are six equations from which to estimat'e the five parameters 
a, P1, 62, 7 1 , ~ ~ ;  the disturbance variances being estimable subsequently. 
Clearly, the system is overdetermined, there being one excess equation. 

In particular, we can estimate a as a('), the square root of 
(r~l,lr,~u~)/(r,lz2rulu2); and then, with this value in hand, we can go on to 
solve for estimates of pl, p2, 71, 7 2 ,  say b;", b:", cj", c:". Alternatively, we 
can estimate a as ac2), the square root of (r,zulr,luz)/(r,l,zrulu2); and with 
that value in hand, we can go on to solve for estimates of 61, 62, 71, 7 2 ,  
say b r )  b(2) C(2) (2) .  

? 2 ,  1 ? C 2  

Even if the model is correct in the population, the distinct esti- 
mates of the same parameters will fail to coincide in any sample. Some- 
times, the advice given is to average them; thus, Blalock (1969a, p. 266) 
in effect suggests taking $(a?' + a:')) as the estimate of a and, with this 
value in hand, going on to solve for estimates of the 61, 62, 71, 7 2 .  Such 
averaging procedures are obviously arbitrary. In a sense, they put equal 
weight on conflicting estimates in forming the average. However, the 
several conflicting estimates are unlikely to have the same sampling 
variability, and an efficient estimation procedure should take this into 
account. 

EFFICIENT ESTIMATION OF THE 
M ULTIPLE-INDICATOR MODEL 

Derivation of Procedure 

If we consult the factor-analysis literature, we find that the 
maximum-likelihood principle calls for the estimates to be chosen as the 
values of A,  @, 2, which minimize 

log det (0) + t r  (W1 W) (20) 

where i-2 = A@A' + 8, W is the sample variance-covariance matrix of 
the indicators, log stands for natural logarithm, det stands for deter- 
minant, and tr  stands for trace. Specifically, with M = 2 = K, we 
have from equations (14), (17), and (18), 
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Also, 

(Here and throughout the paper we omit the subdiagonal elements of 
symmetric matrices.) 

The equations for minimizing expression (20) and an iterative 
procedure for solving them can be found in Lawley and Maxwell (1963, 
pp. 79-81). 

The heuristic interpretation is that the maximum-likelihood 
method seeks parameter values (elements of a) which reproduce the 
observed correlations (elements of W) as closely as possible. The over- 
identifying restriction prevents perfect reproduction, of course. 

The estimates produced by the maximum-likelihood method are 
guaranteed to be efficient, that is, to have minimum sampling variability. 

Numerical Illustration 

To illustrate the efficient estimation procedure we draw on 
Hauser's (1969a) study of schools and the stratification process. The 
sample consists of some 17,000 white public-school students enrolled 
in grades 7 through 12. The observed variables (original symbols follow 
in parentheses) are zl = arithmetic mark (A), z2 = English mark (E), 
yl = educational aspiration (T), and y z  = occupational aspiration (J). 
The within-school correlations given above the diagonal in Hauser 
(1969a, Table 3) are presented here in Table 1. 

In  our model, shown in Figure 2, the marks zl and zz are assumed 
to be indicators of an unobservable variable z* = academic performance, 
which determines an unobservable variable y* = ambition, for which 
yl and yz serve as indicators. The maximum-likelihood estimates are 
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Table 1 
Correlations of Academic Performance and Ambition Indicators 

W = Observed Correlations 

reported in Table 2. Our estimates of a, PI, /3z , r1 ,~2  appear as elements 
of 6 and A; the residual paths to the indicators are the square roots of 
the elements in 5; and the standardization of y* gives the residual path 
of y* as the square root of 1 - a2, where a is the estimate of a. Also 
reported in Table 2 is our implied correlation matrix fi ' + 5.5 

Our implied correlations in 6 naturally differ from the observed 
correlations in W; after all, the latter did not satisfy the overidentifying 
restriction. The differences are rather small, but the sample size is very 
large. To translate such remarks into a formal test of the causal model, 
one can simply draw on the likelihood-ratio test of factor analysis 
(Lawley and Maxwell, 1963, pp. 84-86). The relevant statistic is T log 
[det(fi)/det(~)],  where T is the sample size. On the null hypothesis 
that the overidentifying restrictions are correct, this statistic is distrib- 
uted as x2 with degrees of freedom equal to the number of overidenti- 
fying restrictions. In  our illustration we have one restriction, a sample 
size of 17,000, and the determinants are det(6) = 0.434 and det(W) = 
0.423. This gives a test statistic of 442, which is significant even at  the 1 

Table 2 
Efficient Estimates for Causal Model of Figure 2 

= Factor Loadings 5 = Unique Variances 

z* Y* 
21 0.77 0 
z2 0.82 0 
Y l  0 0.66 
Y t  0 0.69 

= Factor Correlations 
z* 1.00 0.47 
Y* 1.00 

6 = Implied Correlations 
21 1.00 0.63 0.24 
22 1.00 0.26 
Y l  1.00 
Yx 

Starting with Hauser's correlation matrix, we found the efficient estimation 
required about three hours on a desk calculator. Computer program are in fact 
available (see Joreskog, 1967). 
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per cent level. Routine procedures of statistical inference, therefore, 
would lead us to reject the causal model. 

Comments 

I n  Table 3 we present the two conflicting sets of parameter esti- 
mates obtained by the path-analysis approach sketched above in the 
section "Path-Analysis Approach to Estimation" along with our 
efficient estimates. In this case, the efficient estimates of the individual 
parameters do not all lie within the range of the two conflicting estimates. 

Table 3 
Conflicting and Efficient Estimates of a, 81, 82, yl ,  ya 

j b y )  bp) cp)  ,Ij) 
1 0.45 0.72 0.88 0.65 0.70 
2 0.48 0.68 0.92 0.62 0.73 

Efficient a = 0 . 4 7  b 1 = 0 . 7 7  b t = 0 . 8 2  c l = 0 . 6 6  c ,=0 .69  

We have argued that models with multiple indicators of causally 
related unobservable variables fall directly under the scope of factor 
analysis, but our illustration was confined to the case of two unobserva- 
ble variables. Our argument, in fact, requires qualification when there 
are more than two unobservables bound together in a recursive model. 
If all direct paths are present in the recursive model, no difficulty arises, 
there being a one-to-one correspondence between the factor correlations 
and the paths connecting the unobservables. Estimates of @ can be con- 
verted directly into estimates of the path coefficients in the main model. 
But, if some direct paths are ruled out of the recursive system, as in 
Costner (1969, Figure 6), the one-to-one correspondence breaks down. 
The structuring of the @ matrix will also have to be taken into account 
in efficient estimation. This can be done by formulating a "second-order 
factor analytic model" as in Joreskog's (1970) general method for anal- 
ysis of covariance structures. The specific device is spelled out in Joreskog 
(1969b, pp. 13-18).6 

MULTIPLE CAUSES AND MULTIPLE INDICATORS 
OF AN UNOBSERVABLE VARIABLE 

Specification of the Model 

We now turn to a model in which we observe multiple causes and 

His approach also allows for one to specify that certain direct paths be 
equal as in Blalock (1970, pp. 106-110). 
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multiple indicators of a single unobservable variable as shown in Figure 3. 
In  algebraic form the model consists of 

a linear equation expressing the unobservable variable y* in terms of its 
observable causes XI, . . . , xk, . . . , XK and an unobservable dis- 
turbance e, and 

a set of A l  linear equations expressing each observable indicator y, in 
terms of y* and an unobservable disturbance um(m = 1, . . . , M).  I t  
is assumed that the disturbances are independent of the x's and are 
mutually independent as well. 

The a's and @'s are path coefficients to be estimated along with the 
variances of the disturbances a,,, all, . . . , UMM; we are again following 
the unstandardized-disturbance convention. The unobservable y* is 
standardized, as are the observables (although the latter is not at  all 
essential). 

We can solve the model into its reduced form by inserting (21) 
into (22), thus expressing each indicator in terms of the causes and 
disturbances. The reduced-form equations are 

say. Here the reduced-form coefficients are 

and the reduced-form disturbances are 

The variances and covariances of the v,, are 

and 

Wmn = E(vrnvn) = @ m @ t t ~ t a  (nz, 71 = 1, . . . , ill; m z n) (27) 

Note that the v's are not independent of each other since they all have 
the disturbance t in common. 
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A matrix formulation is convenient. We introduce the vectors 

and write equations (21) and (22) compactly as 

The reduced form is now 

where 

2)' = (v,, . . . , vy) 
with 

n = E(vv') = E(P E + u ) ( P  E + u)' = Q r r P P '  + Z 

P:Q€,  + Q l l  . . . P l P M Q , ,  

- - 
. - fi&'Jce + U M M  

Examination of the reduced form reveals that the model incor- 
porates two sorts of overidentification: (1) The K X M regression- 
coefficient matrix 11 is expressible as the product of a K X 1 vector a 
and a 1 X M vector P ' .  In  other words, the K X M parameters n,k 

are expressible in terms of only K + M parameters ' 1 ,  . . . , ax, Dl,  
. . . , P , l f .  

(2) The ;M(M + 1) distinct elements of the symmetric vari- 
ance-covariance matrix Q are expressible in terms of the 1 X 1 scalar 

the M X 1 vector P ,  and the M nonzero elements of the diagonal 
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matrix 8. In  other words, the $ M ( M  + 1) distinct parameters w,, are 
expressible in terms of only 1 + 2M parameters u,,, PI, . . . , PM, u11, 
. . . , u.uM. Furthermore, the 6's here are the same as under (1). 

Taking the two sorts together and allowing for the standardiza- 
tion of y*, we find that the (K  X M) + &M(M + 1) distinct re- 
duced-form parameters are expressible in terms of only 2M + K dis- 
tinct structural parameters. This means that the model will typically 
be overidentified. For example, with K = 3 = M we have (K X M) + 
+ M ( M  + 1) = 15 and 2M + K = 9 so that there are six overidentify- 
ing restrictions. 

The efficient procedure for estimating the model will have to 
take account of all these restrictions. Nevertheless, it is instructive 
to consider the two sorts of overidentification separately. 

The first sort of overidentification is of the type dealt with in 
econometrics (where reduced-form coefficients are combinations of 
structural coefficients), whereas the second sort of overidentification 
is of the type dealt with in factor analysis (where covariance matrices 
are built up from factor loadings, factor variance, and unique variances). 
Note that t plays the role of a common factor, 6 the role of factor load- 
ings, and u the role of a unique factor in the expression v = pe + u? 

The maximum-likelihood principle offers a straightforward ap- 
proach to efficient estimation of the model, since it takes into account 
both sorts of overidentifying restrictions. The computation can be 
performed by Joreskog's (1970) general method for the analysis of 
covariance structures. 

For present purposes, however, we will be content to consider 
only the first sort of overidentification. To do so, we simply drop the 
assumption that the indicator disturbances are mutually independent. 
In  some contexts, no doubt, this is substantively justified and not merely 
done for the sake of analytical convenience. For example, we might 
expect to find positively correlated errors among multiple indicators of a 
single underlying attitude when the indicators are ascertained consecu- 

This mixture of econometric and psychometric themes is presumably what 
Blalock (1969a, pp. 270-272) had in mind in asserting that "Once the basic ideas 
of each approach [instrumental variables and multiple indicators] have become 
generally familiar, however, i t  should become possible to apply them in various 
combinations to a wide variety of causal models." But, as we have seen in the section 
"Multiple Indicators of Causally Related Unobservable Variables," the multiple- 
indicator approach essentially is a factor analysis model. Further, the instrumental- 
variable approach is simply a particular method for estimation of econometric models. 
Blalock gives no advice for reconciling the alternative instrumental-variable esti- 
mates, nor for reconciling the alternative multiple-indicator estimates, let alone for 
reconciling both sets. The issues involved are sketched in Goldberger (1971). 
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tively in a survey interview. If the uJs are freely correIated, then the 
correlations of the v's are no longer patterned as they were in equations 
(26) and (27) or in equation (31), and the factor-analytic considerations 
disappear. 

I n  that event, we may as well rewrite the model to make the 
unobservable variable an exact function of its causes, absorbing the 
disturbance t into the u's and relabelling the latter directly as vlsl as 
in Figure 4. I n  algebraic form the structural model now reads 

with 

the a's being unrestricted. Forcing an unobservable variable to  be an 
exact function of its observable causes may seem strange. But, once 
the disturbances in the indicator equations are allowed to be correlated 
freely, nothing is gained by retaining a disturbance in the causal equa- 
tion. Partial correlation among the indicators, controlling on the ob- 
servable causes, is already present. To put it another way, it would be 
impossible to distinguish en~pirically whether the partial correlation 
was attributable to the common disturbance t or to inherent correlation 
among the disturbances u. We may as well adopt the latter formula t i~n .~  

On the understanding that tlie disturbance variances and co- 
variances are unrestricted, me see the reduced-form system (23) or 
(30) is just a particularly simple example of the reduced forms which 
arise in the simultaneous equation models of econometrics (Johnston, 
1963, Chapter 7). Indeed, examples of this type have been explicitly 

In the two-indicator situation (Jf = 2) our case may be made more strongly. 
Even if one made the assumption that ul and u~ were uncorrelated, nothing would 
be lost by dropping c and permitting the 0's to be freely correlated; for only two 
indicators the factor-analysis model is empty. Then, if one insisted on presenting a 
disturbance in the y* equation and uncorrelated indicator disturbances, the estimates 
of the three variances, u.,, ,TI,, uz2, could be recovered from unrestricted estimates 
of the three (co)variances, WII, ~ 2 2 ,  and WIZ. 

Strictly speaking, even in the ,TI = 2 caqe, we find an exception to our argu- 
ment that a disturbed y* equation with uncorrelated indicator disturbances is opera- 
tionally equivalent to an exact y* equation with correlated indicator disturbances. The 
former precludes a correlation between v, and v ,  opposite in sign from the product 
of Dm and pa, as can be seen from equation (27); the latter has no such restriction. 
This exception is a version of the "Heywood case" of factor analysis; compare Har- 
man (1967, pp. 117-118). 
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analyzed by Zellner (1970) and Goldberger (1970a). I n  developing an 
efficient estimation procedure, we can draw on that literature. 

Path Analysis Approach to Estimation 

We pause to  sketch how a path-analysis approach to fitting the 
model might proceed. For the sake of concreteness, we take M = 2. By 
inspection of the path diagram, or from equations (32) and (33)) the 
following "estimating equations" are produced: 

Here rj* denotes the correlation of x, and y*, r j k  the correlation of xi 
and xk, r** the correlation of y* with itself, r,, the correlation of x, and 
ym, and r,, the correlation of y, and y,. 

In  equations (35) through (35) there are 3K + 4 equations from 
which to estimate the 2K + 5 unknowns, rl*, . . . , r ~ * ,  al, . . . , a ~ ,  
PI, P2, W I I ,  ~ 2 2 )  wI2 .  After solving out the r,* and wm, via equations (35) 
and (35) respectively, we find there remain 1 + 2K equations from 
which to estimate the K + 2 parameters, al, . . . , a ~ ,  PI, Pz. Clearly 
the system is overidentified, there being K - 1 excess equations. 

I n  particular, for given rj* there are K distinct estimates of PI 
provided by equation (37)) namely 

bp) = 2 
rj* 

and similarly, there are K distinct estimates of P2,  namely 

/$I = r?2 ( j = l , .  . . , K )  
Tj* (40) 

Even if the model is correct in the population, the distinct estimates 
will fail to  coincide in any sample. One might arbitrarily discard excess 
equations until a just-determined system obtains which is then solvable 
for unique estimates. Or, an ad hoc averaging procedure could be adopted 
(compare Hauser, 1968, pp. 280-287). Thus, equation (37) implies 
P1/P2 = rj1/rj2; so one might estimate P1/P2 by 
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Then, for given &, 62, there are two distinct estimates of each rj* pro- 
vided by equation (37), namely 

which can be averaged into 

r j l  + r j z  
T j *  = - 

P I  + P2 

With values of the r,* in hand, the normal equations (35) are then solved 
for estimates of the a's.9 

Such averaging procedures are obviously arbitrary since they, 
in a sense, put equal weight on conflicting estimates. An efficient estima- 
tion procedure should take into account the differences in the sampling 
variabilities of the conflicting estimates. 

EFFICIEXT ESTIMATION OF MULTIPLE-CAUSE 
AND MULTIPLE-INDICATOR JlODEL 

Derivation of the Procedure 

Adopting the econometric approach and proceeding to the general 
Jf-indicator case, we consider first the estimates of the reduced-form 
equations obtained by regressing each of the M indicators on all of the 
observable causes. The normal equations for the typical reduced-form 
regression equation are 

0 In this description, we have skipped a step in going from bl/b2 to $1 and b2. 
This step is a bit awkward in the present formulation in which the y' disturbance 
has been absorbed into the 0's. Still, from equation (38) we have r12 = Bl,92 + wla  

whence 

where 4 = 1 - (wlz/rlz) is temporarily unknown. Combining equations (41) and 
(i), we have 81 and 8% up to a factor of proportionality; then equation (42) gives the 
PI* up to a factor of proportionality. The solution to the normal equations (35) will 
then estimate the a's up to a factor of proportionality. Finally, the factor of pro- 
portionality is determined by equation (36). A more conventional treatment would 
have w l z  = 0, whence + = 1, giving 81 and 62 separately, and estimating a,, from 
'Jcr = 1 - ~ l ~ k a , ~ k r l k .  The distinction is computational rather than substantive. 
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where the p,k denote the least-squares regression coefficients. These 
p's are estimates of the a's but will not satisfy the overidentifying re- 
strictions. According to the model, Hmk = P m a ~ ;  but except by a remark- 
able coincidence, there will be no set of numbers bl, . . . , b . ~ ,  al, . . . , 
a~ such that pmk = bmab Put  somewhat differently, the model im- 
plies "consistency criteria" such as all/nzl = . . . = nlrlnzi, = . . = 

T ~ K / H ~ K  (each of these ratios being equal to Pl/Pz), but it will not be 
true that pll/pzl = . . . = P I ~ / P Z ~  = . ' ' = PIKIPZK. 

Goldberger (19TOa) shows that in the present context maximum- 
likelihood estimation is identical to modified generalized least-squares 
estimation. The problem can therefore be posed as folloivs: Each p,, is 
an  estimate of @,ak; how can we combine them to come up with efficient 
estimates of the pl, . . . , OM, (YI, . . . , (YK? In  multivariate linear 
regression models i t  is well-known that the variances and covarir~nces 
of the pmk are given by 

where T is the sample size, w,, are the elements of Q, and the r L 3  are 
the elements of the matrix inverse to the correlation matrix of the x's. 
I t  is also well-known that the w,,,, are estimable as the residual variances 
and covariances s,, from the least-squ:tres regressions. (On these mat- 
ters, compare Anderson (1958, pp. 178-183) or Goldberger (1964, pp. 
207-209).) I n  view of this, the PVIGI,S procedure calls for estimates of 
the a's and 0's to be obtained as follows: choose the values al, . . . , a ~ ,  

pl, . . . , which minimize 

where the smn are the elements of the matrix inverse to the matrix of the 
s,,. I n  expression (43) the weight attached to the tern1 involving p , ~  
and p,j is inverse to the estimated covariance of p,, and p,, as called 
for by the MGLS procedure. 

I n  carrying out the minimization, n-e find a matrix formulation 
convenient. Let X'X denote the K X K l-natrix of the r l k ,  X ' Y  the 
K X M matrix of the r,,, and Y'Y the JI X M matrix of the rm,. Fur- 
ther, let 
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. . .  
p = ("i' . , . p y l )  

p  1~ p  A ~ K  

be the K X J l  matrix of the pmk The normal equations (44) are com- 
pactly expressed as 

X ' X P  = X'Y 

and their solution as 

P = (XIX)-'X'Y 

Further, let 

be the M X d l  matrix of the s,,; then 

s = (Y - XP)'(Y - XP)  = Y'Y - YfX(X'X)-'X'Y (47) 

The formidable expression (45) can now be compactly written as 

1 
- tr[S-'(P - cup')'XIX(P - cup')] 
T (48) 

A simple manipulation shows that the trace of the M X M matrix in 
brackets is, apart from an irrelevant constant, equal to the scalar 

(cu'X'Xcu) (P'S-'0) - 2cu'X' YS-'0 (49) 

The MGLS principle thus chooses a and 0 to minimize expression (49), 
or rather, if we recall the standardization of y* as in equation (36), to 
minimize expression (49) subject to 

To  minimize expression (49) subject to equation (50), one first 
forms the expression 

where X is a Lagrangean multiplier and then differentiates with respect 
t o  p and (Y to  find 
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Setting equation (52) a t  zero, using equation (SO), and introducing 

a' = (al, . . . , a ~ )  b' = (b1, . . . , b , ~ )  

as the symbols for the estimates of a and 0, we find 

b = Y'Xa (54) 

Setting equation (53) a t  zero and using equations (50) and (54), we 
find t'hat X = 0 and, thus, that 

Then, inserting equation (5.5) into equation (54)) we find 

where 

Q = Y'XP = Y1X(X'X)-'X'Y = P 'X 'XP = Y'Y - S 

is the matrix of regression moments. What equation (56) says is that 

where p = 21'8-lb. I n  other words, b is a characteristic vector of the 
matrix QS-'. It is not hard to show that b should be a vector correspond- 
ing t o  the largest characteristic root p (in order to minimize the trace) 
and that it should be normalized by b'S-lb = p (in order to ensure 
afX'Xa = 1).l0 With this value for b in hand, the value for a follows 
from (55). 

The efficient estimates for a and 0 can, in short, be obtained by 
solving a characteristic root-characteristic vector problem of a type 
which is prevalent throughout multivariate statistical analysis. Standard 
computer programs can be adapted for this purpose; a desk calculator 
will suffice if M is no larger than three or four, once the output of least- 
squares regressions is available. As shown in the Appendix, the com- 
putations are intimately related to those of canonical correlation. 

'0 When b satisfies equation (57), then premultiplication by b'S-1 shows that 
bfS-'QS-'b = pb'S-'b; so that when a is computed from equation (55)  as 

we will have a'XIYS-'b = (bfS-'b)-'b'S-'P'X'YS-'b = (b'S-'b)-'b'S-'QS-'b = p, 

and a ' X I X a  = a'XfX(b'S-'b)-IPS-'b = (b'S-1b)-Ia'X'YS-'b = (b'S-'b)-Ip. To make 
a'X 'Xa = 1, therefore, we must normalize b according to (b'S-'b) = p. With these 
values inserted, expression (49) becomes (a'X'Xa)(bfS- 'b) - 2afX'YS-'b = l p  - 
Zr = - p ;  since we're minimizing this expression, the desired root is the largest one. 
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Numerical Illustration 

To illustrate the efficient estimation procedure, we draw on Hodge 
and Treiman's (1968) study of social participation and social status. The 
sample consists of approximately 530 adult female residents of rt Wash- 
ington, D.C. suburban county. The observed variables are (original 
symbols follow in parentheses): XI = family income (I), = main 
earner's occupation (0), xs = respondent's education (E), yl = fre- 
quency of church attendance (C), yz = number of voluntary organiza- 
tion memberships (V) ,  and y3 = number of friends seen (F). The ob- 
served correlations given in Hodge and Treiman (1968, Table 2) are 
presented here in Table 4. 

Table 4 
Correlations of St'atus and Participation Variables 

The results of unconstrained multiple regression are presented in 
Table 5. This, in effect, is the estimated model displayed in Hodge and 
Treiman (1968, Figure lb) ; the elements in our P will be found there as 
paths from causes to indicators, while the elements in our S, converted 

Table 5 
Results of Unconstrained Multiple Regressions 

P = Regression Coefficients 

Y l  I t  I r  
z l  0.0335 0.1932 0.1094 
zz 0.1078 0.0484 0.0411 
xr 0.1107 0.2479 0.1780 

Q = P'X'XP = Regression Moments S = Y'Y - Q = Residual Momenta 
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into standard deviations and correlations, will be found there as residual 
paths and correlations. 

I n  our model, shown in Figure 5, the influence of status on par- 
ticipation is assumed to be transmitted through a single unobservable 
variable, y* = socioeconomic status. The XGLS estinlates a and b are 
reported in Table 6, along with fi = ab', which is our implied estimate of 
the compound paths from causes to indicntors, and 

the matrix of residual moments from the constrained regressions. Con- 
verting the elements of i? into standard deviations and correlations gives 
the residual paths and correlations displayed in Figure 5." 

Our implied estimates in d naturally differ from the unconstrained 
estimates in P ;  the latter, after all, did not satisfy the overidentifying 
restrictions. The differences, however, are generally small, which suggests 
that  the unobservable-variable model may be appropriate. (Equiva- 
lently, one could compare X ' X n  with X'Y to see how closely our model 
reproduces the correlations between the x's and the y's.) RIore to  the 
point is the fact that the diagonal elements of fi are only slightly larger 
than the corresponding diagonal elements of S ,  which suggests that the 
fit does not deteriorate much when the overidentifying restrictions are 
imposed. 

Table 6 
Estimates for Causal Model of Figure 5 

fi = ab' = Constrained Regression Coefficient 
Matrix 

b a ?/ 1 Y 4 Y 3 

XI 0.1761 0.4815 X I  0.0848 0.1827 0.1226 
xe 0.3795 0.1476 x? 0.0260 0.0560 0.0376 
z: 0.2546 0.6638 xs 0.1169 0.2519 0.1690 

ii = (I' - ~ f i ) ' ( ~  - Xfi) = Implied 
Residual Moments 

11 Starting with the information in Hodge and Treiman (1968), our efficient 
estimation required about two hours on a desk calculator. The largest root of QS-1, 
along with the suitably normalized characteristic vector b, was extracted by a stand- 
ard iterative procedure (compare Morrison, 1967, pp. 234-248). The largest root 
is p = 0.205, so that the first canonical correlation between the y's and the x's is 
0.41 = 40.205/1.30,5 (compare the -4ppe:dix). When tquations (c4) through (57) 
are taken into account, it turns out that $2 = (Y - XII)'(Y - X n )  = Y'Y - bb', 
which facilitates calculations. 
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To translate such remarks into a formal test of the causal model, 
we simply draw on the likelihood-ratio test of multivariate analysis (com- 
pare Anderson, 1958, Chapter 8). The relevant statistic is T log [det(fi)/ 
det(S)]. On the null hypothesis that the overidentifying restrictions are 
correct, this statistic is distributed as x2 with degrees of freedom equal to 
the number of overidentifying restrictions. In our illustration we have 
four restrictions [4 = (K X M )  - ( K  + If - I)], a sample size of 530, 
and the determinants are det(6) = 0.6549 and det(S) = 0.6607. This 
gives a test statistic of 4.5, which is not significant at the 10 per cent 
level (nor even at  the 30 per cent level). Routine procedures of statistical 
inference, therefore, would not lead us to reject the causal model. 

Comments 

We can sketch an interpretation of the efficient parameter esti- 
mates in t e ~ m s  of averages of conflicting estimates. Taking for example 
our efficient estimate of pl, we find from equation (54) that 

where the a's are our efficient estimates of the a's. Defining 

as our efficient estimates of the correlations between z, and y' [compare 
equation (35)] we can rewrite bl as 

Recalling equation (39), we write 

which are K conflicting est'imates of PI. Mult'iplying each rj* in equation 
(58) by aj and summing gives 

in view of alX'Xa = 1 [compare equation (36)]. It follows that 
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where w(j3 = and Zj:lw(fi = 1. Thus, bl is indeed a weighted 
average of the conflicting estimates b?'. 

More generally, 

where 

I t  is important to note that the weights w(j) are not determined in 
advance. Rather, like the rj., they involve the estimates of the a's 
and, hence, fall out as an incidental part of the efficient estimation 
computation. 

To illustrate the interpretation, Table 7 presents the r p  (elements 
of X ' X a ) ,  the bg', and the efficient est'imates b,. A similar weighted- 

Table 7 
Conflicting and Efficient Estimates of @ I , & ,  Bs 

i 
,. 
rj* by by) by 

1 0.7287 0.1372 0.3890 0.2418 
2 0.5226 0.2987 0.3683 0.2597 
3 0.8614 0.1834 0.3756 0.2618 

bl = 0.1761 bs = 0.3795 bs = 0.2546 

average interpretation can be made for the efficient estimates of the a's 
but will not be demonstrated here. 

The present model might be extended by introducing additional 
observable variables zll . . . , zr as direct causes of the observable 
indicators (compare Zellner, 1970, p. 442). That is, equation (33) might 
be replaced by 

The reduced-form equations would then express the indicators in terms 
of the x's, x's, and v's. I t  is not hard to see that only a portion of the 
reduced-form coefficient matrix would be restricted by the structural 
model. The restrictions would be precisely of the form that arises in the 
econometrician's LLlimited-informationl' analysis of a single structural 
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equation of a simultaneous equation model (compare Johnston, 1963, 
pp. 254-258 or Goldberger, 1964, pp. 338-345). As shown by Goldberger 
and Olkin (1971), the maximum-likelihood and modified generalized 
least-squares procedures again yield identical parameter estimates in 
such situations. 

CONCLUSIOS 

In this attempt to spell out procedures for efficient estimation of 
overidentified unobservable-variable models, we have considered only 
two simple models in detail. Clearly we have not provided a comprehen- 
sive guidebook for the treatment of path models containing unobservitble 
variables. But we think that we have gone far enough to indicate that 
such a guidebook is feasible. All the models of path analysis are, after all, 
subsumed under the general linear model of statistics, so the standard 
principles of statistical inference and the multivariate estimation and 
testing methods which they entail are relevant. There is no need for a 
special path-analytic theory of fitting models. 

APPENDIX 

The estimation procedure in our numerical illustration of the 
model with multiple causes and multiple indicators has an interpretation 
in terms of canonical correlation, suggested to us by 0. D. Duncan and 
by H. W. Watts. Blalock (196913, pp. 42-43) has also discussed the 
structure of the proportionally constrained regression model with multi- 
ple indicators of the dependent variable and recognized its similarity 
to canonical correlation. Given a set of variables yl, . . . , y.11 and 
a set of variables xl, . . . , XK, canonical correlation analysis yields 
the linear combination of the y's, say g = ZE=,d,y,, and the linear 
combination of the x's, say 2 = Zf=C=,~kxk, which are most highly cor- 
related with one another (compare Morrison, 1967, Chapter 6). Without 
loss of generality g and 2 are taken to be standardized. If 

it can be shown that d is chosen to maximize 

d' Y'X (X'X) -lX1 Y d - - d'Qd 
dlY'Yd dl(Q + S)d 

This leads to the characteristic equation 

with the largest root X being the required one and with the standardiza- 
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tion d'Y'Yd = 1 being imposed. Now, equation (59) is equivalent to 

and d'Y'Yd = 1 is equivalent to d'Sd = 1/(1 + A). Comparing equa- 
tion (60) with equation (57), recalling that b'S-'b = p, and recognizing 
that p = A, we conclude that 

b = sd (61) 

Furthermore, in canonical-correlation analysis it is shown that 

Comparing equation (62) with equation (55) and using equation (61), 
we conclude that 

a = c (63) 

Thus, our efficient estimates of a and /3 can be obtained from the c and 
d of canonical correlation. 

If we pursue the point, it follows from equation (63) that the 
canonical "independent" variable, 3 = Llkckxk, is identical with the 
constructed unobservable variable, Q* = Zkakxk, implied by our esti- 
mates of the a's. Further, it follows from equations (59) through (62) 
that 

Y'z = Y'Xc = d ( 1  + X)/X Y'XPd = d ( l  + X)/X Qd 
= d ( 1  + X)/X XSd = d m  Sd 

which means that the correlation of each indicator with the canonical 
"independent" variable (that is, with the constructed 9') gives our 
estimate of the path from y* to that indicator. Alternatively, it can be 
shown that 

b = d X / ( l  + A) Y'g 

Our estimated paths are proportional to the correlations of indicators 
with the canonical '(dependent" variable g = Yd. The factor of propor- 
tionality arises from the fact that and 3 are not identical; their correla- 
tion is just 

g'z = d'X'Yc = d'b = d X ( 1  + A) d'Sd = d ~ / ( 1  + A) 

which is the so-called first canonical correlation coefficient. 
In summary, a canonical-correlation computer program can be 

adapted to calculate the parameter estimates for the model in the section 
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"efficient estimation of multiple-cause and multiple-indicator model." 
I n  more elaborate unobservable-variable models, however, there is no 
presumption that the efficient estimates can be deduced from the output 
of canonical correlation. 
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