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Under the rubrics of path analysis (Duncan, 1966; Land, 1969;
Heise, 1969) or dependence analysis (Boudon, 1965; 1968), sociologists
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82 ROBERT M. HAUSER AND ARTHUR S. GOLDBERGER

have recently been introduced to the expression of theories or models
as systems of structural equations. In this chapter our purpose is to
draw attention to the recurrent problem of estimating the parameters
of overidentified path models which feature unobservable variables.
Such variables have not been, or perhaps cannot be, measured directly,
and the structural coefficients pertaining to their causes and effects
must be inferred from the available measurements and the postulated
causal structure. While models containing unobservables may be under-
identified (Siegel and Hodge, 1968; Duncan, 1969a; Land, 1970) or
just-identified (Heise, 1969; Wiley and Wiley, 1970; Land, 1969, pp.
29-33; 1970; Hauser, 1969b, pp. 549-550; and Brewer, Crano, and
Campbell, 1970), most frequently they are overidentified (Duncan,
Featherman, and Duncan, 1968; Duncan, Haller, and Portes, 1968;
Hodge and Treiman, 1968; Duncan, 1969b; Hauser, 1968; 1969a; 1969b;
1970). Overidentification means that alternative estimates of certain
parameters can be made (Costner, 1969; Blalock, 1969a; 1970).

Alternative estimates in an overidentified model will not coincide
in finite samples even where the model is correct, that is, even where
they would coincide in the population. Hence, some means of reconciling
the conflicting estimates is required. The theoretical and empirical
path-analysis literature tends to slur the sample-population distinction,
and it provides little guidance in estimation for overidentified models.!
Some ad hoc procedures for estimation of overidentified models con-
taining unobservables have been suggested. For example, Blalock (1970)
and Land (1970) have advocated that one or more equations be ignored
in the estimation process and be introduced only to test for goodness of
fit. At least one empirical example using this approach (Hodge and
Treiman, 1968; Hauser, 1969b) predates their work. The technique is
mentioned in the econometric literature (Christ, 1966, pp. 407-411)
but with little enthusiasm. Other analysts have used arbitrary averages
of alternative estimators without considering their statistical properties
(Duncan, Featherman, and Duncan, 1968; Duncan, Haller, and Portes,
1968; Hauser, 1968; 1969a; 1970).

Principles of estimation imply testing procedures, and the treat-
ment of goodness of fit in the path-analysis literature reflects its casual
methods of estimation. In numerous instances we are told only to “‘see’”
whether the correlations implied by estimators for an overidentified

! The sociological literature is occasionally vague on the reasons for discrep-
ancies among alternative estimates (compare Costner, 1969, pp. 252-253, 259, 262).
However, the explanation is no more complicated than that required to account
for the fact that, in a random sample from a normal population, the mean and the
median will be different, despite their coincidence in the population.
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model are “close’’ to the observed correlations. It is not clear how close
is close enough. For example, Costner (1969, pp. 252-262) states,

Failure of the data to satisfy this [overidentification] equa-
tion, at least approximately, indicates that, in some respect,
the indicators . . . are not appropriate . . . . [T]he several
estimates . . . should all be identical except for random
error . . . . It may be reasonably asked what is meant when
we say that the consistency criterion is satisfied. Do we mean
that the two sides of [the overidentification equation] are
exactly identical, that they are approximately identical, or
that they should not differ to a degree that is statistically
significant at the commonly utilized levels of significance?

The sociological literature on path analysis also conveys the
misleading impression that certain problems in estimation and testing
have not been analyzed or even that they are not amenable to rigorous
analysis. For example, Costner (1969, p. 262) states, ‘‘Satisfying the
additional consistency criteria in the three-indicator model presents
an additional statistical inference problem, the solution to which does
not appear to be found in the factor analysis literature.” Blalock (1970,
p. 103) states,

If there were absolutely no specification or sampling errors,
the data would fit the model exactly, and it would make no
difference which equations were treated as redundant. How-
ever, in practice, no data will fit the model exactly; therefore,
there is a certain arbitrariness in one’s selection of the particu-
lar equations that will be used for estimation purposes and
those that will be treated as excess equations used to test the
model. This difficulty . . . would seem to admit of no com-
pletely satisfactory solution . . . . Perhaps the issue will re-
duce to the question of whether one assumes specification
errors to be more serious than sampling errors . . . .2

In fact, the estimation of overidentified models is not an in-
tractable problem, and it is a central topic in the econometric and psy-
chometric literature. There, standard principles of statistical inference
are applied to determine efficient estimates, that is, estimates which
have minimum sampling variability. Since path models are linear models
of the type considered in econometrics and psychometrics, it should

1 These remarks call to mind Boudon’s (1968, p. 213) assertion, “Of course,
when we are dealing with fallible data, these different possible choices will lead to
different estimates, and there is obviously no reason to think that one estimate is
better than the other.”
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not be surprising that the efficient estimating procedures developed
there can be applied to problems of estimation in path analysis. Standard
principles of statistical inference also imply testing procedures, and these,
too, are worked out in the econometric and psychometric literature.?

We propose to illustrate the utility of econometric and psycho-
metric estimation techniques for path models containing unobservable
variables. Our examples are simple and will not do justice to the more
elaborate sociological applications. They can be thought of as com-
ponents of larger models, and they should suffice to document our basic
theme. We shall treat two classes of models, those where unobservables
appear only as causes of observable variables and those where unobserv-
ables appear as both causes and effects of observable variables. These
have been recognized as distinet cases in path analysis.

Following Costner (1969), Blalock (19694, pp. 264-270) discusses
multiple indicators of correlated unobservable variables. Then, under
the heading of “the instrumental variable approach” (pp. 270-272), he
considers the case where causes of the unobservable variables are also
observed. He correctly indicates that this gives an econometric flavor
to the model, but his emphasis on instrumental variables is somewhat
misleading. Land (1970, p. 507) distinguishes “two general cases for
which sociologists will be interested in utilizing unmeasured variables
in a causal model.” “The first of these,” he states, “arises in the study
of measurement error . . . . The common characteristic of all of these
applications of path analysis is that the hypothetical (unmeasured)
variables enter the path models only as causes of the observed variables.
A second case in which sociologists will utilize unmeasured variables
is as variables which intervene between measured variables in a causal
model.”

We shall see that the first type of path model translates directly
into a confirmatory factor-analysis model which psychometricians have
studied and for which computer programs are available. The second type
of path model translates into a form studied by econometricians and for
which computer programs are also available. There are, we should add,
cases which require a blending of the factor-analysis and econometric
approaches.

As Blalock has implied, efficient estimation of overidentified path
models may not be a very important topic. Perhaps it is more important
to settle for some reasonable estimate and to concentrate on improving
the model than to search diligently for efficient estimators. Still, it is

3 The idea that path analysis involves a mixture of psychometric and econo-
metric themes is not a new one (see Duncan, 1966, p. 16; Blalock, 1961, pp. 167-169;
1969a; Werts and Linn, 1970; Wright, 1925; 1934, 1954).
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worth knowing that there are solutions to some of the puzzles we create,
and it is probably worthwhile to build up the stock of tools in advance
of the time when rigorous inference becomes the order of the day.

GENERAL CONSIDERATIONS

In most, and perhaps in all, cases the efficient estimators for an
overidentified model may be interpreted as appropriately weighted
averages of the several conflicting estimators. The weights are chosen
to take acecount of the sampling variability and covariability of the
original estimates. Generally, the weights cannot be determined in
advance but must be estimated from a sample. For this reason, the
computation required to obtain efficient estimates is often more exten-
sive than that for ordinary regression or ad hoc averaging of estimates.
For example, the maximum-likelihood prineiple offers a standard method
for efficient estimation of overidentified models (with or without un-
observable variables), and the method implieitly involves the construe-
tion of weights with which to reconcile the conflicting estimates. Often, as
in factor analysis, iterative computation is required.*

To avoid elaborate computations, other estimation procedures
have been developed for certain classes of models. Generalized least-
squares and two- and three-stage least-squares are econometric exam-
ples, and the minres criterion for fitting factor-analysis models is an
example from psychometrics. Under some conditions estimates produced
by sueh procedures have the same efficiency as maximum-likelihood
estimates.

A simple example may clarify the logic of efficient estimation.
Suppose we have two independent, unbiased estimates, m; and m., of a
parameter g, which have variances ¢1; and o2, respectively. We wish to
construet m, the minimum-variance unbiased estimator of u. That is, we
want to find weights, a; and a,, such that E(m) = u, wherem = aym, +
asm; and Var(m) is minimized. Clearly, we will choose a; + a2 = 1,
since
E(m) = E(aym; + a.my) = E(aim,) + E(azms) = a,.E(m;) + a:E(m.)
ap + ap = (a1 + a2)u (1)

I

4 The fully recursive model with uncorrelated errors provides an important
exception to this pattern. For that model Boudon (1965; 1968) developed an averag-
ing scheme, with weights determined by the sample. However, his estimates are
less efficient than those produced by ordinary least-squares regression, which gives
all the weight to the regression estimate and ignores the conflicting instrumental-
variable estimates (Goldberger, 1970Db).
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Subject to this, we wish to choose the a;, and a; which will minimize the
sampling variance of m, namely,

Var(m) = Var(aym; + ayms) = dioy; + aioss (2)
Multiplying equation (2) by (m: — m()? we obtain
aloy(me — my)? + alow(m; — my)?

= gp(mear — amy)? + oga(mias — azmy)?  (3)

Noting that a; = 1 — a; and a; = 1 — a;, we rewrite this as
cii(me(1 — az) — aymi)? + o2a(mi(1 — a;) — aym.)?

= Ull(mz — amy — GaMe)? + Uzz(ml — am; — azmz)z
= g11(M2 — M)? 4 goa(m; — m)? 4)

Finally, dividing equation (4) by ¢11022 and cancelling like terms in the
numerator and denominator, we have

oll(my — m)* 4+ o®(my — m)? )]

where o' = 1/0;; and o2 = 1/04,, which we can proceed directly to
minimize with respect to m. Setting the derivative of expression (5)
with respect to m equal to zero, we find that

ol o2
m = ol & o2 m + ol - o2 U (6)
whenee
1 29
o o?
a = ol | g2 and @ = ol + o )

are the desired weights.

While we could have minimized equation (2) directly, we chose
the more tortuous path in order to point out that expression (5) gives
the function minimized by the principle of generalized least-squares,
namely, the weighted sum of squared deviations of the conflicting
estimates from the desired estimate, where each weight is inverse to
the variance of the corresponding estimate.

If the estimates were not independent but had covariance 015 # 0,
then the GLS principle says that the estimate m should be chosen to
minimize

ol(m; — m)? + o2(ms — m)? + 20%(m; — m)(ms — m) (8)

where the ¢’s with superseripts are elements in the inverse matrix
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o,ll 0,12 _ o1 012 -1
(012 022) - (012 022) (9)
The resulting estimate, which has the property of minimum-variance

unbiasedness, is

o,ll + ol2

ol + o2 + 20,12

22 + ol2

m m
1+ ol F o2 F 2012 2

m = (10)
which is again a weighted average of m; and m., with the weights now
taking account of sampling covariability as well as variability.

In practice, the o’s are unknown and must be replaced by esti-
mates of them. When this is done, we refer to the procedure as modified
generalized least-squares (MGLS). Under quite general conditions the
MGLS procedure produces estimates which are as efficient as those
produced by the maximum-likelihood principle.

MULTIPLE INDICATORS OF CAUSALLY RELATED
UNOBSERVABLE VARIABLES

Specification of the Model

Consider a model in which we observe multiple indicators of two
causally related unobservable variables, as shown in Figure 1. In alge-
braic form the system consists of:

¥ =az"+ e (11)

a linear equation expressing the determination of the unobservable
variable y¥* by the unobservable variable z° and an unobservable dis-
turbance e;

21 = 512. + 0

5 = Bt + e (12)
ZK - ﬁK’Z' + vk

a set of K linear equations expressing each observable indicator z; of z*
in terms of z* and an unobservable disturbance v.(k = 1,. . . , K); and

Y= ’711/‘ + wy
Ym = 'me' + Wm (13)

yu = yuy' + wu
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a set of M linear equations expressing each observable indicator y. of y*
in terms of ¥* and an unobservable disturbance w.(m = 1,. . . , M). It
is assumed that the disturbances are independent of z* and y* and are
mutually independent as well.

The «, 8’s, and +’s are path coeflicients to be estimated along
with the disturbance variances, o2 a2, . . . , 02x, Goy - + - , Tioy- We
are following the econometric and psychometric convention which
leaves the disturbances unstandardized; our variances are just the
squares of the residual paths which would appear if the path-analysis
convention (in which the disturbances are standardized) had been
followed. The unobservables, z* and y*, are standardized as are the
observables (although the latter is not at all essential).

Costner (1969) and Blalock (1969a) considered at length systems
of this type without making it clear that such models have already been
thoroughly investigated in the psychometric literature. To clarify the
situation, a matrix formulation is convenient.

We introduce the vectors

CZI’ = (21,. ey BRy Y1y - - . ;yM)

=9

w o= (U, ...,0k W,...,Wsy

and the matrix
B: O
Bx 0
A= 14

0 (14)
0 vu

and write equations (12) and (13) compactly as
z=Af+u (15)

The population variance-covariance matrix of the observable indicators
is then
Q = E(zz’) = EAf + w)(Af + u)’ = AE(f)A" + E(uu)
= APA + = (16)

where we have introduced & = E(ff") as the variance-covariance matrix
of the two unobservable variables, £ = E(uu’) as the variance-covari-
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ance matrix of the disturbances, and used E(fu’) = 0. It follows from

equation (11) that
3 = (1 ") 17)
a 1

and from the assumptions on the independence of the disturbances that

2
28

3 = T 0w e (18)

2

0 T,
Twy

It should now be apparent that what we have is a factor-analysis
model (compare Harman, 1967, Chapter 2; Morrison, 1967, Chapter 8).
More specifically, the unobservables z* and y* represent oblique factors,
and the absence of direct paths from 2* to the y’s and from ¥* to the 2’s
represents certain zero factor loadings.

If we examine the population correlation matrix of the indicators
given in equation (16), we see that the model is typically overidentified.
The $(K + M)(K + M + 1) distinet elements of the symmetric matrix
Qare expressible in terms of only 1 4+ 2(K + M) parameters, «, 81, . . . ,
By Y1y - « « s YMy Gogy « « + 5 Togy Gony « -, Ty the variance o being
determined by the standardization of y*. For example, if M = 2 = K,
we have (K + MK+ M+ 1) =10 and 1 +2(K+ M) =9, so
that there is one overidentifying restriction.

The maximum-likelihood principle offers a straightforward ap-
proach to estimation of the parameters of the model. It must be em-
phasized that, having specified certain zero factor loadings in advance,
we are concerned with confirmatory factor analysis. In the more
traditional exploratory factor analysis, various rotations are used to
obtain approximate zero factor loadings in the desired places, but these
would not do justice to the present model. On the important distinction
between confirmatory and exploratory factor analysis, see Joreskog and
Lawley (1968). Computational procedures for confirmatory maximum-
likelihood estimation are spelled out in Lawley and Maxwell (1963,
Chapters 2, 6) and Joéreskog (1969a).

Path Analysis Approach to Estimation

Before describing the efficient estimation procedure, we pause
to review the path-analysis approach to fitting the model. For the sake
of concreteness, we take K = M = 2 as in Costner (1969, Figure 4). By
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inspection of the path diagram, or from equations (11) through (13),
the following “estimating equations” are produced:

T2122 = B1B2 Ta1 = Broy: Taye = Brays
Trgl = By Taayz = Boaye 19)
Tyly2 = Y172

(compare Blalock, 1969a, p. 251, equations (1) through (6)). In equation
(19) there are six equations from which to estimate the five parameters
a, B1, B2, 1, v2; the disturbance variances being estimable subsequently.
Clearly, the system is overdetermined, there being one excess equation.

In particular, we can estimate a as a®, the square root of
(r210172242) / (T212275152) ; and then, with this value in hand, we can go on to
solve for estimates of 81, 82, Y1, vz, say b, b, ¢V, ciV. Alternatively, we
can estimate « as a®, the square 100t of (Taoy1721y2)/ (Ta122751y2) ; and with
that value in hand, we can go on to solve for estimates of 81, 82, v1, Y2
say b§2)’ béz)’ 01(2)’ Céz)'

Even if the model is correct in the population, the distinct esti-
mates of the same parameters will fail to coincide in any sample. Some-
times, the advice given is to average them; thus, Blalock (1969a, p. 266)
in effect suggests taking 1(a(® 4 a{?) as the estimate of a and, with this
value in hand, going on to solve for estimates of the 81, 82, v1, v2- Such
averaging procedures are obviously arbitrary. In a sense, they put equal
weight on conflicting estimates in forming the average. However, the
several conflicting estimates are unlikely to have the same sampling
variability, and an efficient estimation procedure should take this into
account.

EFFICIENT ESTIMATION OF THE
MULTIPLE-INDICATOR MODEL

Derivation of Procedure

If we consult the factor-analysis literature, we find that the
maximume-likelihood prineiple calls for the estimates to be chosen as the
values of 4, &, Z, which minimize

log det(Q) + tr(Q—'W) (20)

where Q@ = A®A" 4+ Z, W is the sample variance-covariance matrix of
the indicators, log stands for natural logarithm, det stands for deter-
minant, and tr stands for trace. Specifically, with M =2 = K, we
have from equations (14), (17), and (18),
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g1 0
’ 62 O 1 a 61 62 O O)
APA =
0 7 (Ol 1)(0 0 71 7
0 7
SO
B+ o3, BiB: Brav: Biarye
_ B2+ ol Biovi  Baavs
Q= 2 2
Y1+ 0w, Yrve
v: + ok,
Also,
1 7ie Tagl Tatpe
W= 1 TzZyl Tz2y2
1 Tyige
1

(Here and throughout the paper we omit the subdiagonal elements of
symmetric matrices.)

The equations for minimizing expression (20) and an iterative
procedure for solving them can be found in Lawley and Maxwell (1963,
pp. 79-81).

The heuristic interpretation is that the maximum-likelihood
method seeks parameter values (elements of Q) which reproduce the
observed correlations (elements of W) as closely as possible. The over-
identifying restriction prevents perfect reproduction, of course.

The estimates produced by the maximum-likelihood method are
guaranteed to be efficient, that is, to have minimum sampling variability.

Numerical Illustration

To illustrate the efficient estimation procedure we draw on
Hauser’s (1969a) study of schools and the stratification process. The
sample consists of some 17,000 white public-school students enrolled
in grades 7 through 12. The observed variables (original symbols follow
in parentheses) are z; = arithmetic mark (4), zo = English mark (%),
y1 = educational aspiration (7), and y, = occupational aspiration (J).
The within-school correlations given above the diagonal in Hauser
(1969a, Table 3) are presented here in Table 1.

In our model, shown in Figure 2, the marks z; and 2, are assumed
to be indieators of an unobservable variable z* = academic performance,
which determines an unobservable variable y* = ambition, for which
y1 and y, serve as indicators. The maximum-likelihood estimates are
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Table 1
Correlations of Academic Performance and Ambition Indicators

W = Observed Correlations

z1 23 N Y2
2 1.000 0.630 0.202 0.238
23 1.000 0.272 0.292
%N 1.000 0.456
Ya 1.000

reported in Table 2. Our estimates of «, 81, B2, 1, v2 appear as elements
of & and A; the residual paths to the indicators are the square roots of
the elements in £; and the standardization of 4* gives the residual path
of ¥ as the square root of 1 — a? where @ is the estimate of a. Also
reported in Table 2 is our implied correlation matrix { =A®A * + £.5

Our implied correlations in & naturally differ from the observed
correlations in W; after all, the latter did not satisfy the overidentifying
restriction. The differences are rather small, but the sample size is very
large. To translate such remarks into a formal test of the causal model,
one can simply draw on the likelihood-ratio test of factor analysis
(Lawley and Maxwell, 1963, pp. 84-86). The relevant statistic is T log
[det(Q)/det(W)], where T is the sample size. On the null hypothesis
that the overidentifying restrictions are correct, this statistic is distrib-
uted as x? with degrees of freedom equal to the number of overidenti-
fying restrictions. In our illustration we have one restriction, a sample
size of 17,000, and the determinants are det(®) = 0.434 and det(W) =
0.423. This gives a test statistic of 442, which is significant even at the 1

Table 2
Efficient Estimates for Causal Model of Figure 2
A = Factor Loadings $ = Unique Variances
2 y* 21 28 Y1 Y2
zy 0.77 0.64 0 0 0
22 0.82 0 0.58 0
" 0  0.66 0.75 0
Ya 0 0.69 0.72
& = Factor Correlations & = Implied Correlations
z* 1.00 0.47 21 1.00 0.63 0.24 0.25
y* 1.00 2 1.00 0.26 0.27
n 1.00  0.46
Ys 1.00

¢ Starting with Hauser’s correlation matrix, we found the efficient estimation
required about three hours on a desk calculator. Computer programs are in fact
available (see Joreskog, 1967).
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per cent level. Routine procedures of statistical inference, therefore,
would lead us to reject the causal model.

Comments

In Table 3 we present the two conflicting sets of parameter esti-
mates obtained by the path-analysis approach sketched above in the
section ‘Path-Analysis Approach to Estimation” along with our
efficient estimates. In this case, the efficient estimates of the individual
parameters do not all lie within the range of the two conflicting estimates.

Table 3
Conflicting and Efficient Estimates of e, 81, 82, v1, v2
i ald b{j) béj) c{:i) Céj)
1 0.45 0.72 0.88 0.65 0.70

2 0.48 0.68 0.92 0.62 0.73
Efficient a = 0.47 by =077 b;=082 ¢ =066 ©¢;=0.69

We have argued that models with multiple indicators of causally
related unobservable variables fall directly under the scope of factor
analysis, but our illustration was confined to the case of two unobserva-
ble variables. Our argument, in fact, requires qualification when there
are more than two unobservables bound together in a recursive model.
If all direct paths are present in the recursive model, no difficulty arises,
there being a one-to-one correspondence between the factor correlations
and the paths connecting the unobservables. Estimates of ® can be con-
verted directly into estimates of the path coefficients in the main model.
But, if some direct paths are ruled out of the recursive system, as in
Costner (1969, Figure 6), the one-to-one correspondence breaks down.
The structuring of the & matrix will also have to be taken into account
in efficient, estimation. This can be done by formulating a ‘‘second-order
factor analytic model” as in Joreskog’s (1970) general method for anal-
ysis of covariance structures. The specific device is spelled out in Joreskog
(1969b, pp. 13-18).5

MULTIPLE CAUSES AND MULTIPLE INDICATORS
OF AN UNOBSERVABLE VARIABLE

Specification of the Model

We now turn to a model in which we observe multiple causes and

¢ His approach also allows for one to specify that certain direct paths be
equal as in Blalock (1970, pp. 106-110).
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multiple indicators of a single unobservable variable as shown in Figure 3.
In algebraic form the model consists of

y=an+- - Fant- -+ agrgte (21)
a linear equation expressing the unobservable variable y* in terms of its
observable causes z, . . ., Xk, . . . , Tx and an unobservable dis-

turbance ¢, and

n =By +wm
Ymn = Bmy‘ + Unm (22)

yn = Buy® + un
a set of M linear equations expressing each observable indicator y, in
terms of 3* and an unobservable disturbance u,(m =1, . . ., M). It
is assumed that the disturbances are independent of the z’s and are
mutually independent as well.

The o’s and §’s are path coeflicients to be estimated along with the
variances of the disturbances o.., o1, . . . , oaar; We are again following
the unstandardized-disturbance convention. The unobservable 3* is
standardized, as are the observables (although the latter is not at all
essential).

We can solve the model into its reduced form by inserting (21)
into (22), thus expressing each indicator in terms of the causes and
disturbances. The reduced-form equations are

Ym = Bmalxl + ot + BmaKxK + Bmf + Um

= i+ + ToxTx + O (23)
say. Here the reduced-form coefficients are
Tk = Pmoti m=1,...,M;k=1,...,K) (24)
and the reduced-form disturbances are
Um = Bn€ + Unm m=1,...,M) (25)
The variances and covariances of the v, are
wmm = E@Y) = Bh0ec+ 0mn  (m=1,..., M) (26)
and
wmn = E@nv,) = BnfBroee (myn=1,. .., M;m>n) (27)

Note that the v’s are not independent of each other since they all have
the disturbance e in common.
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A matrix formulation is convenient. We introduce the vectors

=(Ily---ny) ylz(yh"'7yM)
=(a17~-~;aK) ﬁ,=(.31}"')ﬁM)

’u'=(u1,.. .,uM)

’

xr
’

24

and write equations (21) and (22) compactly as
Yy =dzx+e
y=8y +u

a1
T=Eu) =
0

The reduced form is now

y=8r+e +u=pazr+ B+ u
=Mz +v

a8, c o aufiy

= aIB'

agbr - -+ agfBu

V= (v,...,0n)

= E(vv') = E(ﬁé'*‘u)(ﬂf'*'u)’ = ottBB'-*_z
wiy e . WM Biaee + a1 « e BlBMau
: )= : : 31)

: : \
WML . - . OMM MB1T e « oo Byoet oum

Examination of the reduced form reveals that the model incor-
porates two sorts of overidentification: (1) The K X M regression-
coefficient matrix IT is expressible as the product of a K X 1 vector «
and a 1 X M vector 8. In other words, the K X M parameters mm:
are expressible in terms of only K + 3 parameters ay, . . . , ax, B,

. M-
, lzZ) The 1M (M + 1) distinct elements of the symmetric vari-
ance-covariance matrix Q are expressible in terms of the 1 X 1 scalar
oe, the M X 1 vector 8, and the M nonzero elements of the diagonal
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matrix . In other words, the $M (M + 1) distinct parameters wn, are
expressible in terms of only 1 + 2M parameters o, 81, - . - 5 By, o114
., ouy. Furthermore, the 8’s here are the same as under (1).

Taking the two sorts together and allowing for the standardiza-
tion of y*, we find that the (K X M) 4+ iM(M + 1) distinet re-
duced-form parameters are expressible in terms of only 2M + K dis-
tinct structural parameters. This means that the model will typically
be overidentified. For example, with K = 3 = M we have (K X M) +
SM(M + 1) = 15 and 2M + K = 9 so that there are six overidentify-
ing restrictions.

The efficient procedure for estimating the model will have to
take account of all these restrictions. Nevertheless, it is instructive
to consider the two sorts of overidentification separately.

The first sort of overidentification is of the type dealt with in
econometrics (where reduced-form coefficients are combinations of
structural coefficients), whereas the second sort of overidentification
is of the type dealt with in factor analysis (where covariance matrices
are built up from factor loadings, factor variance, and unique variances).
Note that e plays the role of a common factor, 8 the role of factor load-
ings, and u the role of a unique factor in the expression » = 8e + w.7

The maximum-likelihood principle offers a straightforward ap-
proach to efficient estimation of the model, since it takes into account
both sorts of overidentifying restrictions. The computation can be
performed by Joreskog’s (1970) general method for the analysis of
covariance structures.

For present purposes, however, we will be content to consider
only the first sort of overidentification. To do so, we simply drop the
assumption that the indicator disturbances are mutually independent.
In some contexts, no doubt, this is substantively justified and not merely
done for the sake of analytical convenience. For example, we might
expect to find positively correlated errors among multiple indicators of a
single underlying attitude when the indicators are ascertained consecu-

7 This mixture of econometric and psychometric themes is presumably what
Blalock (1969a, pp. 270-272) had in mind in asserting that “Once the basic ideas
of each approach [instrumental variables and multiple indicators] have become
generally familiar, however, it should become possible to apply them in various
combinations to a wide variety of causal models.”” But, as we have seen in the section
“Multiple Indicators of Causally Related Unobservable Variables,” the multiple-
indicator approach essentially is a factor analysis model. Further, the instrumental-
variable approach is simply a particular method for estimation of econometric models.
Blalock gives no advice for reconciling the alternative instrumental-variable esti-
mates, nor for reconciling the alternative multiple-indicator estimates, let alone for
reconciling both sets. The issues involved are sketched in Goldberger (1971).
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tively in a survey interview. If the u’s are freely correlated, then the
correlations of the »’s are no longer patterned as they were in equations
(26) and (27) or in equation (31), and the factor-analytic considerations
disappear.

In that event, we may as well rewrite the model to make the
unobservable variable an ezact function of its causes, absorbing the
disturbance e into the u’s and relabelling the latter directly as v's, as
in Figure 4. In algebraic form the structural model now reads

y* = ayxy + - - -+ agrg (32)
Ym = Bmly* + m m=1,...,M) (33)

with
E@)) = wun E@mts) = @mn (34)

the w’s being unrestricted. Forcing an unobservable variable to be an
exact function of its observable causes may seem strange. But, once
the disturbances in the indicator equations are allowed to be correlated
freely, nothing is gained by retaining a disturbance in the causal equa-
tion. Partial correlation among the indicators, controlling on the ob-
servable causes, is already present. To put it another way, it would be
impossible to distinguish empirically whether the partial correlation
was attributable to the common disturbance € or to inherent correlation
among the disturbances u. We may as well adopt the latter formulation.?

On the understanding that the disturbance variances and co-
variances are unrestricted, we see the reduced-form system (23) or
(30) is just a particularly simple example of the reduced forms which
arise in the simultaneous equation models of econometrics (Johnston,
1963, Chapter 7). Indeed, examples of this type have been explicitly

8 In the two-indicator situation (M = 2) our case may be made more strongly.
Even if one made the assumption that u; and u, were uncorrelated, nothing would
be lost by dropping ¢ and permitting the »’s to be freely correlated; for only two
indicators the factor-analysis model is empty. Then, if one insisted on presenting a
disturbance in the y* equation and uncorrelated indicator disturbances, the estimates
of the three variances, o., o11, 022, could be recovered from unrestricted estimates
of the three (co)variances, wii, wa2, and wiz.

Strictly speaking, even in the M = 2 case, we find an exception to our argu-
ment that a disturbed y* equation with uncorrelated indicator disturbances is opera-
tionally equivalent to an exact y* equation with correlated indicator disturbances. The
former precludes a correlation between v, and v, opposite in sign from the product
of 8., and 8., as can be seen from equation (27); the latter has no such restriction.
This exception is a version of the “Heywood case’’ of factor analysis; compare Har-
man (1967, pp. 117-118).
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analyzed by Zellner (1970) and Goldberger (1970a). In developing an
efficient estimation procedure, we can draw on that literature.

Path Analysis Approach to Estimation

We pause to sketch how a path-analysis approach to fitting the
model might proceed. For the sake of concreteness, we take M = 2. By
inspection of the path diagram, or from equations (32) and (33), the
following “estimating equations” are produced:

K
Tjx = QT i (.] =1,... yK) (35)
k=1
K K
Tee = z z Q0T = 1 (36)
=1 k=1
ij=BmTj‘ (.]= 1)' L ,K;TI'L: 1} 2) (37)
Tmn = .BmBnT" + @ma ('m’; n = 17 2) (38)

Here r;» denotes the correlation of z; and 3%, 7 the correlation of z;
and z, 7« the correlation of y* with itself, r;, the correlation of z; and
Yms and 7., the correlation of y. and y,.

In equations (35) through (38) there are 3K + 4 equations from
which to estimate the 2K -+ 5 unknowns, 7+, . . ., 7gs, @1, . . . , GK,
B1, B2, w1, wae, wis. After solving out the 7 and w.. via equations (35)
and (38) respectively, we find there remain 1 + 2K equations from
which to estimate the K -+ 2 parameters, ay, . . . , ax, 81, 82 Clearly
the system is overidentified, there being K — 1 excess equations.

In particular, for given r;» there are K distinct estimates of 8;
provided by equation (37), namely

i

bij) _
Ty

G=1...,K) (39)
and similarly, there are K distincet estimates of 8, namely

b;j’=7:13 G=1,...,K) (40)

T ;*

Even if the model is correct in the population, the distinet estimates
will fail to coincide in any sample. One might arbitrarily discard excess
equations until a just-determined system obtains which is then solvable
for unique estimates. Or, an ad hoc averaging procedure could be adopted
(compare Hauser, 1968, pp. 280-287). Thus, equation (37) implies
B1/B2 = 7;1/7;2; s0 one might estimate 8,/8: by
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K K
. z i1 z b
b=l =1 (41)

j=1 j=1
Then, for given By, B2, there are two distinct estimates of each r; pro-
vided by equation (37), namely

=" (m=12) (42)

which can be averaged into

_TatTa (43)

With values of the r;» in hand, the normal equations (35) are then solved
for estimates of the o’s.?

Such averaging procedures are obviously arbitrary since they,
in a sense, put equal weight on conflicting estimates. An efficient estima-
tion procedure should take into account the differences in the sampling
variabilities of the conflicting estimates.

EFFICIENT ESTIMATION OF MULTIPLE-CAUSE
AND MULTIPLE-INDICATOR MODEL

Derivation of the Procedure

Adopting the econometric approach and proceeding to the general
M-indicator case, we consider first the estimates of the reduced-form
equations obtained by regressing each of the A indicators on all of the
observable causes. The normal equations for the typical reduced-form
regression equation are

9 In this deseription, we have skipped a step in going from £:/8: to 4; and B..
This step is a bit awkward in the present formulation in which the y* disturbance
has been absorbed into the v’s. Still, from equation (38) we have ri2 = $18: 4 wis
whence

Bif: = éria (i)

where ¢ = 1 — (wi2/r12) is temporarily unknown. Combining equations (41) and
(i), we have B, and §; up to a factor of proportionality; then equation (42) gives the
#,+ up to a factor of proportionality. The solution to the normal equations (35) will
then estimate the a’s up to a factor of proportionality. Finally, the factor of pro-
portionality is determined by equation (36). A more conventional treatment would
have w;: = 0, whence ¢ = 1, giving B: and B, separately, and estimating o, from
oee = 1 — Z,Zjairix. The distinction is computational rather than substantive.
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K
rjm = 2 7.,‘ikpmk (7 = 1) ) 7K) (44)
k=1

where the p.. denote the least-squares regression coefficients. These
p’s are estimates of the #’s but will not satisfy the overidentifying re-
strictions. According to the model, 7my = Bnax; but except by a remark-

able coincidence, there will be no set of numbers by, . . . , by, ay, . . .,
ax such that pme = bnar. Put somewhat differently, the model im-
plies “consistency criteria” such as wi1/7e1 = - - - = wp/wy = - - - =
mix/mex (each of these ratios being equal to 8:/82), but it will not be
true that py/pa1 = - - - = pu/Pw = - - - = Pix/Pexk.

Goldberger (1970a) shows that in the present context maximum-
likelihood estimation is identical to modified generalized least-squares
estimation. The problem can therefore be posed as follows: Each p,. is
an estimate of S,ax; how can we combine them to come up with efficient
estimates of the 81, . . ., Bu, ai, - . ., ag? In multivariate linear
regression models it is well-known that the variances and covariances
of the p. are given by

1 .
COV(pmk, pnj) = 'T wmnrkJ

where T is the sample size, wn, are the elements of Q, and the 7 are
the elements of the matrix inverse to the correlation matrix of the x’s.
It is also well-known that the w,,, are estimable as the residual variances
and covariances s,. from the least-squares regressions. (On these mat-
ters, compare Anderson (1958, pp. 178-183) or Goldberger (1964, pp.
207-209).) In view of this, the MGIS procedure calls for estimates of
the o’s and 8’s to be obtained as follows: choose the values oy, . . . , axk,
81, . . ., By which minimize

K K M M

r z z z z Sk Pok = o) (rj = Buy) - (4D)

j=lk=1ln=1m=1

where the s™* are the elements of the matrix inverse to the matrix of the
8mn. In expression (45) the weight attached to the term involving pmn:
and p,.;is inverse to the estimated covariance of p.. and p,; as called
for by the MGLS procedure.

In carrying out the minimization, we find a matrix formulation
convenient. Let X’'X denote the K X K matrix of the 73, X'Y the
K X M matrix of the 7, and Y'Y the M X M matrix of the r,,. Fur-
ther, let
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Pu - - Pm
P=|: :
Pk - PMK
be the K X M matrix of the p,.. The normal equations (44) are com-
pactly expressed as
XXP=XY
and their solution as

P=XXXY (46)

S+ ¢ Sy
s=1: s
Sxa1 - 0 SMum
be the M X M matrix of the s..; then

S={ —-XP)Y(Y - XP)=YY -YXXX) XY 47)

The formidable expression (45) can now be compactly written as

Further, let

%tr[S“(P — af'YX'X(P — af)] 48)

A simple manipulation shows that the trace of the M X M matrix in
brackets is, apart from an irrelevant constant, equal to the scalar

(@' X'Xa)(B'S™18) — 24 X'YS™18 (49)

The MGLS principle thus chooses « and 8 to minimize expression (49),
or rather, if we recall the standardization of y* as in equation (36), to
minimize expression (49) subject to

aX'Xa=1 (50)

To minimize expression (49) subject to equation (50), one first
forms the expression

f=(@XXa)(38'8) — 2’ X'YS B4+ N’ X' X — 1) (51)

where \ is a Lagrangean multiplier and then differentiates with respect
to 8 and « to find

.a‘% = (/X' Xe)28-18 — 25-1Y"Xa (52)
% = (8S8)2X'Xa — 2X'Y 8718 4+ X' Xa (53)
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Setting equation (52) at zero, using equation (50), and introducing

a = (ay,...,0) b = (by, ..., bw)
as the symbols for the estimates of « and 8, we find
b=YXa (54)

Setting equation (53) at zero and using equations (50) and (54), we
find that A\ = 0 and, thus, that

a= (b'S"b)"'PS~'b (55)
Then, inserting equation (55) into equation (54), we find
b= 8~ 'Y'XPS-b = (b'S-'h)—'QS-'b (56)

where
Q=YXP=YX(XX)'XY=PXXP=YY -8
is the matrix of regression moments. What equation (56) says is that
@S~ —uhib =0 (57)

where g = b’S—'b. In other words, b is a characteristic vector of the
matrix QS—1. It is not hard to show that b should be a vector correspond-
ing to the largest characteristic root u (in order to minimize the trace)
and that it should be normalized by b'S~'6 = u (in order to ensure
a’X'Xa = 1).1® With this value for b in hand, the value for a follows
from (55).

The efficient estimates for « and g can, in short, be obtained by
solving a characteristic root-characteristic vector problem of a type
which is prevalent throughout multivariate statistical analysis. Standard
computer programs can be adapted for this purpose; a desk calculator
will suffice if M is no larger than three or four, once the output of least-
squares regressions is available. As shown in the Appendix, the com-
putations are intimately related to those of canonical correlation.

10 When b satisfies equation (57), then premultiplication by b'S-! shows that

b’S-1Q8-1b = ub’S~1b; so that when a is computed from equation (55) as
a = (b’'S™1b)"1PS1b,

we will have a/X'YS™b = ('S~ WS P X'YSh = (WS ' S71QS™1h = p,
and a’X'Xa = ¢/ X’ X(H'S-1)1PS71b = ('S~b)y 1/ X'YS™b = (b'S7'b) u. To make
a’X’Xa = 1, therefore, we must normalize b according to (b’S~1b) = u. With these
values inserted, expression (49) becomes (¢'X’'Xa)(b’'S7') — 2¢'X'YS8™ = 1u —
2u = —y; since we're minimizing this expression, the desired root is the largest one.
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Numerical Illustration

To illustrate the efficient estimation procedure, we draw on Hodge
and Treiman’s (1968) study of social participation and social status. The
sample consists of approximately 530 adult female residents of a Wash-
ington, D.C. suburban county. The observed variables are (original
symbols follow in parentheses): z, = family income (I), z; = main
earner’s occupation (0), z; = respondent’s education (E), iy = fre-
quency of church attendance (C), y» = number of voluntary organiza-
tion memberships (V), and y; = number of friends seen (F). The ob-
served correlations given in Hodge and Treiman (1968, Table 2) are
presented here in Table 4.

Table 4
Correlations of Status and Participation Variables

(X’X X'y
Y'Yy

31 Z2 T3 U Ye Ys
T 1.0000 0.3040 0.3049 0.1000 0.2835 0.1762
T2 1.0000 0.3444 0.1561 0.1925 0.1357
T3 1.0000 0.1580 0.3235 0.2255
v 1.0000 0.3601 0.2099
Y2 1.0000 0.2654
Ys 1.0000

The results of unconstrained multiple regression are presented in
Table 5. This, in effect, is the estimated model displayed in Hodge and
Treiman (1968, Figure 1b); the elements in our P will be found there as
paths from causes to indicators, while the elements in our S, converted

Table 5
Results of Unconstrained Multiple Regressions

P = Regression Coefficients

2 Ya Ys

1 0.0335 0.1932 0.1094
z: 0.1078 0.0484 0.0411
s  0.1107 0.2479 0.1780

@ = P’X'XP = Regression Moments S = Y'Y — @ = Residual Moments

U Y2 Ys
%N 0.0377 0.0660 0.0455 0.9623 0.2941 0.1644
Y2 0.1443 0.0965 0.8557 0.1689

s 0.0650 0.9350
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into standard deviations and correlations, will be found there as residual
paths and correlations.

In our model, shown in Figure 5, the influence of status on par-
ticipation is assumed to be transmitted through a single unobservable
variable, y* = socioeconomic status. The MGLS estimates a and b are
reported in Table 6, along with II = ab’, which is our implied estimate of
the compound paths from causes to indicators, and

Q= (Y — X0)(Y — X0),

the matrix of residual moments from the constrained regressions. Con-
verting the elements of {2 into standard deviations and correlations gives
the residual paths and correlations displayed in Figure 5.1

Our implied estimates in I naturally differ from the unconstrained
estimates in P; the latter, after all, did not satisfy the overidentifying
restrictions. The differences, however, are generally small, which suggests
that the unobservable-variable model may be appropriate. (Equiva-
lently, one could compare X'XTI with X'Y to see how closely our model
reproduces the correlations between the z’s and the y’s.) More to the
point is the fact that the diagonal elements of { are only slightly larger
than the corresponding diagonal elements of S, which suggests that the
fit does not deteriorate much when the overidentifying restrictions are
imposed.

Table 6
Estimates for Causal Model of Figure 5

1T = ab’ = Constrained Regression Coefficient

Matrix
b a Y1 Y2 Ys
T 0.1761 0.4815 I 0.0848 0.1827 0.1226
T2 0.3795 0.1476 23 0.0260 0.0560 0.0376
2 0.2546 0.6638 T3 0.1169 0.2519 0.1690

Q= (Y — X)y(Y — Xfi) = Implied
Residual Moments

% 0.9690 0.2933 0.1651
Y 0.8560 0.1688
Y3 0.9352

1 Starting with the information in Hodge and Treiman (1968), our efficient
estimation required about two hours on a desk calculator. The largest root of @QS1,
along with the suitably normalized characteristic vector b, was extracted by a stand-
ard iterative procedure (compare Morrison, 1967, pp. 234-248). The largest root
is u = 0.205, so that the first canonical correlation between the 3’s and the z’s is
0.41 = 4/0.205/1.205 (compare the Appendix). When equations (54) through (57)
are taken into account, it turns out that O = (Y — XYY — Xfi) = Y'Y - bd’,
which facilitates calculations.
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To translate such remarks into a formal test of the causal model,
we simply draw on the likelihood-ratio test of multivariate analysis (com-
pare Anderson, 1958, Chapter 8). The relevant statistic is T log [det(£2)/
det(S)]. On the null hypothesis that the overidentifying restrictions are
correct, this statistic is distributed as x2 with degrees of freedom equal to
the number of overidentifying restrictions. In our illustration we have
four restrictions [4 = (K X M) — (K 4+ M — 1)}, a sample size of 530,
and the determinants are det($) = 0.6549 and det(S) = 0.6607. This
gives a test statistic of 4.5, which is not significant at the 10 per cent
level (nor even at the 30 per cent level). Routine procedures of statistical
inference, therefore, would not lead us to reject the causal model.

Comments

We can sketch an interpretation of the efficient parameter esti-
mates in terms of averages of conflicting estimates. Taking for example
our efficient estimate of 8;, we find from equation (54) that

K

b1 = z rna;

=1

where the a’s are our efficient estimates of the o’s. Defining
K
;'j. == z (12907 (58)
k=1

as our efficient estimates of the correlations between z; and y* [compare
equation (35)] we can rewrite b; as

K

75 ,
by = z (;’"ﬁ) a;r s
j=1 7
Recalling equation (39), we write
=22 (=1 ...,k
7

which are K conflicting estimates of 8;. Multiplying each r; in equation
(58) by a; and summing gives

K K K K K
z a;rye = z a; z ailjx = z z QAT = 1
j=1 i=1 k=1 i=1 k=1

in view of ¢'X'Xa = 1 [compare equation (36)]. It follows that
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K
b = b
121
where w® = a7 and ZKw® = 1. Thus, b, is indeed a weighted
average of the conflicting estimates b{”.
More generally,

where

It is important to note that the weights w(® are not determined in
advance. Rather, like the r;, they involve the estimates of the a’s
and, hence, fall out as an incidental part of the efficient estimation
computation.

To illustrate the interpretation, Table 7 presents the r;» (elements
of X'Xa), the b¥, and the efficient estimates b,. A similar weighted-

Table 7
Conflicting and Efficient Estimates of 81, 82, 8s
j Px b b b
1 0.7287 0.1372 0.3890 0.2418
2 0.5226 0.2987 0.3683 0.2597
3 0.8614 0.1834 0.3756 0.2618
b = 0.1761 bs = 0.3795 by = 0.2546

average interpretation can be made for the efficient estimates of the s
but will not be demonstrated here.

The present model might be extended by introducing additional
observable variables z;, . . ., zr as direct causes of the observable
indicators (compare Zellner, 1970, p. 442). That is, equation (33) might
be replaced by

?/m=ﬁmy'+'ym121+---+'ym121+v,,. (m=1,...,M)

The reduced-form equations would then express the indicators in terms
of the z’s, 2’s, and ¢v’s. It is not hard to see that only a portion of the
reduced-form coefficient matrix would be restricted by the structural
model. The restrictions would be precisely of the form that arises in the
econometrician’s ‘‘limited-information” analysis of a single structural
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equation of a simultaneous equation model (compare Johnston, 1963,
pp. 254-258 or Goldberger, 1964, pp. 338-345). As shown by Goldberger
and Olkin (1971), the maximum-likelihood and modified generalized
least-squares procedures again yield identical parameter estimates in
such situations.

CONCLUSION

In this attempt to spell out procedures for efficient estimation of
overidentified unobservable-variable models, we have considered only
two simple models in detail. Clearly we have not provided a comprehen-
sive guidebook for the treatment of path models containing unobservable
variables. But we think that we have gone far enough to indicate that
such a guidebook is feasible. All the models of path analysis are, after all,
subsumed under the general linear model of statisties, so the standard
principles of statistical inference and the multivariate estimation and
testing methods which they entail are relevant. There is no need for a
special path-analytic theory of fitting models.

APPENDIX

The estimation procedure in our numerical illustration of the
model with multiple causes and multiple indicators has an interpretation
in terms of canonical correlation, suggested to us by O. D. Dunecan and
by H. W. Watts. Blalock (1969b, pp. 42—43) has also discussed the
structure of the proportionally constrained regression model with multi-
ple indicators of the dependent variable and recognized its similarity
to canonical correlation. Given a set of variables y;, . . ., yu» and
a set of variables z;, . . . , zx, canonical correlation analysis yields
the linear combination of the ’s, say § = Z¥ d,.y», and the linear
combination of the z’s, say £ = 2% ¢, which are most highly cor-
related with one another (compare Morrison, 1967, Chapter 6). Without
loss of generality § and £ are taken to be standardized. If

d = (dy,...,du ¢ =(,...,cr)
it can be shown that d is chosen to maximize
dY'X(X'X)X'Yd _ d'Qd
dY'Yd d'(@ + S)d
This leads to the characteristic equation
@—ANS)d=0 (59)

with the largest root A being the required one and with the standardiza-
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tion d'Y’Yd = 1 being imposed. Now, equation (59) is equivalent to
@S —ADNSd =10 (60)

and d'Y'Yd = 1 is equivalent to d'Sd = 1/(1 4+ \). Comparing equa-
tion (60) with equation (57), recalling that b’S—% = u, and recognizing
that g = A, we conclude that

b= VA1 +N) Sd (61)
Furthermore, in canonical-correlation analysis it is shown that
¢c=vV{A+ N/APd (62)

Comparing equation (62) with equation (55) and using equation (61),
we conclude that

a=-c (63)

Thus, our efficient estimates of a and 8 can be obtained from the ¢ and
d of canonical correlation.

If we pursue the point, it follows from equation (63) that the
canonical “independent” variable, £ = Zicxx:, is identical with the
constructed unobservable variable, §* = Zyawri, implied by our esti-
mates of the o's. Further, it follows from equations (59) through (62)
that

Ye=YXe=+vVAFNAYXPd =T+ N/Qd
VI FN/ANSd = VAT F N Sd
=b

which means that the correlation of each indicator with the canonical
“independent’” variable (that is, with the constructed §*) gives our
estimate of the path from y* to that indicator. Alternatively, it can be
shown that

b= VAIA+NYy

Our estimated paths are proportional to the correlations of indicators
with the canonical “dependent” variable § = Yd. The factor of propor-
tionality arises from the fact that  and & are not identical; their correla-~
tion is just

FE=dX'Ye=db=VNXL+NdSd=VNTAF+N

which is the so-called first canonical correlation coefficient.
In summary, a canonical-correlation computer program can be
adapted to calculate the parameter estimates for the model in the section
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“efficient estimation of multiple-cause and multiple-indicator model.”
In more elaborate unobservable-variable models, however, there is no
presumption that the efficient estimates can be deduced from the output
of canonical correlation.
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