Chapter 9

- Stylized facts in Business Cycles: co-movements (procyclical, countercyclical or acyclical) with cycles in GDP.
 - In particular, Capital Utilization (procyclical) and Employment (procyclical).
- Capital Utilization rate κ. (100%? think about it)
 - Capital K. Owners choose κ. Capital Service κK
 - $Y = A \cdot F(\kappa K, L), \delta(\kappa)$ (increasing and convex).
 - Rate of return on capital: $\frac{R}{P}\kappa - \delta(\kappa)$. Maximization yields $\delta'(\kappa) = \frac{R}{P}$. $\frac{R}{P} \uparrow \Rightarrow \kappa \uparrow$, why?
 - Procyclical: $technology(A) \uparrow \Rightarrow MPL \uparrow \Rightarrow Demand for K \uparrow \Rightarrow \frac{R}{P} \uparrow \Rightarrow \kappa \uparrow$ (read Figure 9.6 in Barro)
 - $i = \frac{R}{P}\kappa - \delta(\kappa)$
- Practice Question 1
 - a. In the above model, what is the relationship between i and business cycles, i.e. procyclical, countercyclical or acyclical?
 - b. Consider the hypothetical specification: $Y = (\kappa K)^{\frac{1}{4}} L^{\frac{3}{4}}, K^* = 1, L^* = 1, \delta(\kappa) = 0.5\kappa^2$. What is the equilibrium interest rate on bond in this model? What if $\delta(\kappa)$ is constant (assuming $\kappa \leq 1$)?
- Labor Force, Unemployment/Employment
 - Basic Solow Model \Rightarrow Full Employment? (think about what’s happening in Wall Street now.) How to characterize ‘Procyclical’?
 - Key idea: Search, either by Persons or by Firms, requires time.
 - Employment rate, Unemployment rate u, Vacancy rate, Help-wanted ads.
 - u is very important (why?). Basic solow model fails to capture the ‘correlation’ between u and GDP cycles.
- Job finding
 - Elements: Search, Unemployment insurance, Reservation real wage, Job-finding rate, Duration of unemployment.
 - Case: Unemployment rate (Western Europe versus U.S.)
 - Procyclical: $Technology(A) \uparrow \Rightarrow MPL \uparrow \Rightarrow Demand L \uparrow \Rightarrow$ wage offer distribution shifts (how?) \Rightarrow Job finding rate \uparrow
 * Caution! Job finding rate is different from unemployment rate!
- Job-separation rate, the rate at which job matches dissolve.
 - If there is no job separation, eventually, there will be no unemployment/vacancy.

10/21/2011. Handout in last week should, virtually, be Handout 4
• Natural Unemployment Rate: $u'' = \frac{\sigma}{\varphi + \sigma}$
 $\varphi U - \sigma L$, job findings minus job separations

• 'Procyclical' Employment
 $Technology(A) \uparrow \Rightarrow \varphi \uparrow \Rightarrow u'' \downarrow$

• Tips: try to clearly understand those concepts and various 'rates' in this chapter.

> Chapter 10

• A brief review: Fiat Money, Commodity Money. Hand-to-hand currency. High-powered money/Monetary Base. M1 and M2...

• In our model, focus on hand-to-hand currency, bearing zero interest rate.

• Demand analysis of Money
 $\varphi U - \sigma L$, job findings minus job separations
 - Definition: Average money holding. Real demand for money.
 - No interest rate, why money? $i (B + PK)$. TRANSACTION COST!
 - Trade-off: low money holding (high interest income) versus high transaction costs.
 - $M^d = P \cdot L (Y, i)$
 - Total (real) cost: Interest cost + Transaction cost. $T \uparrow \Rightarrow Interest cost \uparrow$, $Transaction cost \downarrow$.
 Thus, choose T^*

• Supply of Money: weakly procyclical.
 - Equilibrium: $M^s = M^d = P \cdot L (Y, i) \iff \frac{M^s}{P} = L (Y, i)$

• Price: Countercyclical. (Read Figure 10.4 in Barro)
 $Technology(A) \uparrow \Rightarrow Y \uparrow \Rightarrow M^d \uparrow (i \uparrow) \Rightarrow P \downarrow$.

• Practice Question 2: Taste the general equilibrium
 - Consider the following hypothetical economy of apple. Assume there is only one good, say, apple, in the world which is evolving like a basic solow model with $s = 0$, $\delta = 0$, $n = 0$, $\alpha = 0.5$, $A = 1$, $L^s = 1$, $K^s = 1$. 'Apple king' prints fiat money $M^s = 2$. Assume that you will be charged a transaction fee 2 every time you go to the bank (and this will be the only cost associated with transaction). What is the price of the apple?
 * Hint: recall that the money (real) demand function is $\frac{M^d}{P} = \frac{1}{2} \sqrt{C} \sqrt{\frac{2\gamma}{T}}$.

• Reminder: Homework #2
 - Due: Oct 27 by 5 PM in my TA mailbox.
 - Ch.7: Problems 5, 6. Ch.8: Problems 4, 5. Ch.9: Problem 8. Ch.10: Problem 9, 11, 12. Ch.11: Problem 10, 14
 - Please write down the number of discussion section that you are currently attending, or the time of the section.

2Here we try to balance the materials covered in class with those mentioned in Barro