11 Nearest Neighbor Methods

11.1 kth Nearest Neighbor

An alternative nonparametric method is called k-nearest neighbors or k-nn. It is simiar to
kernel methods with a random and variable bandwidth. The idea is to base estimation on a fixed
number of observations k& which are closest to the desired point.

Suppose X € R? and we have a sample { X7, ..., X,, }.

For any fixed point x € RY, we can calculate how close each observation X; is to z using the

Euclidean distance ||z|| = (2 x)l/ % This distance is
1/2
D; = |l — Xil| = (@~ XY (2 — X))

This is just a simple calculation on the data set.

The order statistics for the distances D; are 0 < D(l) < D(Q) << D(n).

The observations corresponding to these order statistics are the “nearest neighbors” of x. The
first nearest neighbor is the observation closest to x, the second nearest neighbor is the observation
second closest, etc.

This ranks the data by how close they are to . Imagine drawing a small ball about = and slowly
inflating it. As the ball hits the first observation X, this is the “first nearest neighbor” of x. As the
ball further inflates and hits a second observation, this observation is the second nearest neighbor.

The observations ranked by the distances, or “nearest neighbors”, are { X (1), X(2), X(3), .-, X(n) }-

The k’th nearest neighbor of z is X .

For a given k, let

Ry = || X — || = Dy

denote the Euclidean distance between x and X . R, is just the k’th order statistic on the distances
D;.

Side Comment: When X is multivariate the nearest neighbor ordering is not invariant to data
scaling. Before applying nearest neighbor methods, is therefore essential that the elements of X be

scaled so that they are similar and comparable across elements.

11.2 k-nn Density Estimate

Suppose X € R? has multivariate density f(z) and we are estimating f(x) at .

A multivariate uniform kernel is
w(llul]) = c; "1 (Jul < 1)

where
74/2
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is the volume of unit ball in RY. If ¢ = 1 then ¢; = 2.

Treating R, as a bandwidth and using this uniform kernel
1 n
f) = —7 > ' 1(le = Xi|| < Ry)
nity i=1

1 -
i=1
But as R, = D) is the k’th order statistic for Dj;, there are precisely k observations where
|z — Xi|]| < Rg. Thus the above equals

Fa) = —

nRicy
To compute f(z), all you need to know is R,.

The estimator is inversely proportional to R,. Intuitively, if R, is small this means that there
are many observations near x, so f(z) must be large, while if R, is large this means that there are
not many observations near z, so f(x) must be small.

A motivation for this estimator is that the effective number of observations to estimate f(x) is
k, which is constant regardless of . This is in contrast to the conventional kernel estimator, where
the effective number of observations varies with .

While the traditional k-nn estimator used a uniform kernel, smooth kernels can also be used.

~ 1 i —X;
i=1 r

where w is a kernel weight function such that

A smooth k-nn estimator is

/ w ([[ul) (dus) = 1.
Ra

In this case the estimator does not simplify to a function of R, only

The analysis of k-nn estimates are complicated by the fact that R, is random.

The solution is to calculate the bias and variance of f (x) conditional on R, which is similar to
treating R, as fixed. It turns out that the conditional bias and variance are identical to those of

the standard kernel estimator:
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We can then approximate the unconditional bias and variance by taking expectations:

Ko (W 2 X
£(f@) =~ s+ 2T g (ge)

var (f(x)) ~ R(w) (z) (w) f(m)E (qu)

n xT

We see that to evaluate these expressions we need the moments of R, = D, the k’th order
statistic for D;. The distribution function for order statistics is well known. Asymptotic moments

for the order statistics were found by Mack and Rosenblatt (Journal of Multivariate Analysis, 1979):

e(m)= ()

This depends on the ratio k/n and the density f(z) at z. Thus

k 2/q
E(Ri) - (ncqf($)>
b = w10

Substituting,

12

Bias (f(gc)) m(w)Z?f(;g) (ncqi (:E))z/q

k(W) V() (B
2(cqf(a:))2/q < )

n

ar (F) = B0 el )

12
S

For k-nn estimation, the integer k is similar to the bandwidth A for kernel density estimation,

except that we need k — oo and k/n — 0 as n — oo.
The MSE is of order o
x ENYY 1
MSE (f(x)) -0 ((n) + k)

k ~ nt/(4+a)

This is minimized by setting

The optimal rate for the MSE is

MSE (f(w)) =0 (n_4/(4+Q)>
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which is the same as for kernel density estimation with a second-order kernel.

Kernel estimates f and k-nn estimates f behave differently in the tails of f(z) (where f(z) is
small). The contrast is

~

Bias <f(a:)) ~ V2f(z)
- 2f(0
Bias (f(a:)) o~ 7(;)(2/2
var (f(x)) ~ f(x)
var (f(z)) = f(@)

In the tails, where f(z) is small, f(z) will have larger bias but smaller variance than f(x). This is
because the k-nn estimate uses more effective observations than the kernel estimator. It is difficult
to rank one estimator versus the other based on this comparison. Another way of viewing this is
that in the tails f(z) will tend to be smoother than f(z).

11.3 Regression

Nearest neighbor methods are more typically used for regression than for density estimation.
The regression model is

vyi = g(Xi)+e

Q

The classic k-nn estimate of g(x) is

n

This is the average value of y; among the observations which are the k nearest neighbors of x.

A smooth k-nn estimator is
|z — Xill
) Z?:1 w <Rx Yi

9(z) = Zﬁw(”%}f”) :

a weighted average of the k nearest neighbors.
The asymptotic analysis is the same as for density estimation. Conditional on R,, the bias and

variance are approximately as for NW regression. The conditional bias is proportional to R2 and
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the variance to 1/nR%. Taking unconditional expecations and using the formula for the moments
of R, give expressions for the bias and variance of §j(z). The optimal rate is k ~ n*(#+% and the
optimal convergence rate is the same as for NW estimation.

As for density estimation, in the tails of the density of X, the bias of the k-nn estimator is larger,
and the variance smaller, than the NW estimator g(z). Since the effective number of observations

k is held constant across z, §(z) is smoother than §(z) in the tails.

11.4 Local Linear k-nn Regression

As pointed out by Li and Racine, local linear esitmation can be combined with the nearest
neighbor method.

A simple estimator (corresonding to a uniform kernel) is to take the k observations “nearest”
to z, and fit a linear regression of y; on X; using these observations.

A smooth local linear k-nn estimator fits a weighted linear regression

11.5 Cross-Validation

To use nearest neighbor methods, the integer £ must be selected. This is similar to bandwidth
selection, although here k is discrete, not continuous.

K.C. Li (Annals of Statistics, 1987) showed that for the k—nn regression estimator under condi-
tional homoskedasticity, it is asymptotically optimal to pick k by Mallows, Generalized CV, or CV.
Andrews (Journal of Econometrics, 1991) generalized this result to the case of heteroskedasticity,

and showed that CV is asymptotically optimal. The CV criterion is

=1

and §_;(X;) is the leave-one-out k-nn estimator of g(X;). The method is to select £ by minimizing
CV (k). As k is discrete, this amounts to computing CV (k) for a set of values for k, and finding

the minimizing value.
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