
11 Nearest Neighbor Methods

11.1 kth Nearest Neighbor

An alternative nonparametric method is called k-nearest neighbors or k-nn. It is simiar to

kernel methods with a random and variable bandwidth. The idea is to base estimation on a �xed

number of observations k which are closest to the desired point.

Suppose X 2 Rq and we have a sample fX1; :::; Xng:
For any �xed point x 2 Rq; we can calculate how close each observation Xi is to x using the

Euclidean distance kxk = (x0x)1=2 : This distance is

Di = kx�Xik =
�
(x�Xi)0 (x�Xi)

�1=2
This is just a simple calculation on the data set.

The order statistics for the distances Di are 0 � D(1) � D(2) � � � � � D(n):
The observations corresponding to these order statistics are the �nearest neighbors�of x: The

�rst nearest neighbor is the observation closest to x; the second nearest neighbor is the observation

second closest, etc.

This ranks the data by how close they are to x: Imagine drawing a small ball about x and slowly

in�ating it. As the ball hits the �rst observation Xi; this is the ��rst nearest neighbor�of x: As the

ball further in�ates and hits a second observation, this observation is the second nearest neighbor.

The observations ranked by the distances, or �nearest neighbors�, are fX(1); X(2); X(3); :::; X(n)g:
The k�th nearest neighbor of x is X(k).

For a given k; let

Rx =
X(k) � x = D(k)

denote the Euclidean distance between x andX(k): Rx is just the k�th order statistic on the distances

Di.

Side Comment: When X is multivariate the nearest neighbor ordering is not invariant to data

scaling. Before applying nearest neighbor methods, is therefore essential that the elements of X be

scaled so that they are similar and comparable across elements.

11.2 k-nn Density Estimate

Suppose X 2 Rq has multivariate density f(x) and we are estimating f(x) at x.
A multivariate uniform kernel is

w(kuk) = c�1q 1 (kuk � 1)

where

cq =
�q=2

�

�
q + 2

2

�
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is the volume of unit ball in Rq: If q = 1 then c1 = 2:
Treating Rx as a bandwidth and using this uniform kernel

~f(x) =
1

nRqx

nX
i=1

c�1q 1 (kx�Xik � Rx)

=
1

nRqx

nX
i=1

c�1q 1 (Di � Rx)

But as Rx = D(k) is the k�th order statistic for Di; there are precisely k observations where

kx�Xik � Rx: Thus the above equals

~f(x) =
k

nRqxcq

To compute ~f(x); all you need to know is Rx:

The estimator is inversely proportional to Rx: Intuitively, if Rx is small this means that there

are many observations near x; so f(x) must be large, while if Rx is large this means that there are

not many observations near x; so f(x) must be small.

A motivation for this estimator is that the e¤ective number of observations to estimate ~f(x) is

k; which is constant regardless of x: This is in contrast to the conventional kernel estimator, where

the e¤ective number of observations varies with x:

While the traditional k-nn estimator used a uniform kernel, smooth kernels can also be used.

A smooth k-nn estimator is

~f(x) =
1

nRqx

nX
i=1

w

�
kx�Xik
Rx

�
where w is a kernel weight function such thatZ

Rq
w (kuk) (du) = 1:

In this case the estimator does not simplify to a function of Rx only

The analysis of k-nn estimates are complicated by the fact that Rx is random.

The solution is to calculate the bias and variance of f̂(x) conditional on Rx; which is similar to

treating Rx as �xed. It turns out that the conditional bias and variance are identical to those of

the standard kernel estimator:

E
�
~f(x) j Rq

�
' f(x) +

�2(w)r2f(x)R2x
2

var
�
~f(x) j Rq

�
' R (w) f(x)

nRqx
:
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We can then approximate the unconditional bias and variance by taking expectations:

E
�
~f(x)

�
' f(x) +

�2(w)r2f(x)
2

E
�
R2x
�

var
�
~f(x)

�
' R (w) f(x)

n
E
�
R�qx

�
We see that to evaluate these expressions we need the moments of Rx = D(k) the k�th order

statistic for Di. The distribution function for order statistics is well known. Asymptotic moments

for the order statistics were found by Mack and Rosenblatt (Journal of Multivariate Analysis, 1979):

E
�
R�x

�
'
�

k=n

cqf (x)

��=q
This depends on the ratio k=n and the density f(x) at x: Thus

E
�
R2x
�
'

�
k

ncqf (x)

�2=q
E
�
R�qx

�
' cqf (x)n

k

Substituting,

Bias
�
~f(x)

�
' �2(w)r2f(x)

2

�
k

ncqf (x)

�2=q
=

�2(w)r2f(x)
2 (cqf (x))

2=q

�
k

n

�2=q

var
�
~f(x)

�
' R (w) f(x)

n

cqf (x)

k
n

=
R (w) cqf (x)

2

k

For k-nn estimation, the integer k is similar to the bandwidth h for kernel density estimation,

except that we need k !1 and k=n! 0 as n!1:
The MSE is of order

MSE
�
~f(x)

�
= O

 �
k

n

�4=q
+
1

k

!
This is minimized by setting

k � n4=(4+q):

The optimal rate for the MSE is

MSE
�
~f(x)

�
= O

�
n�4=(4+q)

�
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which is the same as for kernel density estimation with a second-order kernel.

Kernel estimates f̂ and k-nn estimates ~f behave di¤erently in the tails of f(x) (where f(x) is

small). The contrast is

Bias
�
f̂(x)

�
' r2f(x)

Bias
�
~f(x)

�
' r2f(x)

f (x)2=q

var
�
f̂(x)

�
' f (x)

var
�
~f(x)

�
' f (x)2

In the tails, where f(x) is small, ~f(x) will have larger bias but smaller variance than f̂(x): This is

because the k-nn estimate uses more e¤ective observations than the kernel estimator. It is di¢ cult

to rank one estimator versus the other based on this comparison. Another way of viewing this is

that in the tails ~f(x) will tend to be smoother than f̂(x):

11.3 Regression

Nearest neighbor methods are more typically used for regression than for density estimation.

The regression model is

yi = g (Xi) + ei

E (ei j Xi) = 0

The classic k-nn estimate of g(x) is

~g(x) =
1

k

nX
i=1

1 (kx�Xik � Rx) yi

This is the average value of yi among the observations which are the k nearest neighbors of x:

A smooth k-nn estimator is

~g(x) =

Pn
i=1w

�
kx�Xik
Rx

�
yiPn

i=1w

�
kx�Xik
Rx

� ;

a weighted average of the k nearest neighbors.

The asymptotic analysis is the same as for density estimation. Conditional on Rx; the bias and

variance are approximately as for NW regression. The conditional bias is proportional to R2x and
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the variance to 1=nRqx: Taking unconditional expecations and using the formula for the moments

of Rx give expressions for the bias and variance of ~g(x): The optimal rate is k � n4=(4+q) and the
optimal convergence rate is the same as for NW estimation.

As for density estimation, in the tails of the density of X; the bias of the k-nn estimator is larger,

and the variance smaller, than the NW estimator ĝ(x). Since the e¤ective number of observations

k is held constant across x; ~g(x) is smoother than ĝ(x) in the tails.

11.4 Local Linear k-nn Regression

As pointed out by Li and Racine, local linear esitmation can be combined with the nearest

neighbor method.

A simple estimator (corresonding to a uniform kernel) is to take the k observations �nearest�

to x, and �t a linear regression of yi on Xi using these observations.

A smooth local linear k-nn estimator �ts a weighted linear regression

11.5 Cross-Validation

To use nearest neighbor methods, the integer k must be selected. This is similar to bandwidth

selection, although here k is discrete, not continuous.

K.C. Li (Annals of Statistics, 1987) showed that for the k�nn regression estimator under condi-
tional homoskedasticity, it is asymptotically optimal to pick k by Mallows, Generalized CV, or CV.

Andrews (Journal of Econometrics, 1991) generalized this result to the case of heteroskedasticity,

and showed that CV is asymptotically optimal. The CV criterion is

CV (k) =
nX
i=1

(yi � ~g�i(Xi))2

and ~g�i(Xi) is the leave-one-out k-nn estimator of g(Xi): The method is to select k by minimizing

CV (k): As k is discrete, this amounts to computing CV (k) for a set of values for k; and �nding

the minimizing value.
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