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Abstract

We study a class of evolutionary game dynamics defined by balancing a gain determined by the game’s 
payoffs against a cost of motion that captures the difficulty with which the population moves between 
states. Costs of motion are represented by a Riemannian metric, i.e., a state-dependent inner product on the 
set of population states. The replicator dynamics and the (Euclidean) projection dynamics are the archety-
pal examples of the class we study. Like these representative dynamics, all Riemannian game dynamics 
satisfy certain basic desiderata, including positive correlation, local stability of interior ESSs, and global 
convergence in potential games. When the underlying Riemannian metric satisfies a Hessian integrability 
condition, the resulting dynamics preserve many further properties of the replicator and projection dy-
namics. We examine the close connections between Hessian game dynamics and reinforcement learning 
in normal form games, extending and elucidating a well-known link between the replicator dynamics and 
exponential reinforcement learning.
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1. Introduction

Viewed abstractly, evolutionary game dynamics assign to every population game a dynamical 
system on the game’s set of population states. Under most such dynamics, the vector of motion at 
a given population state depends only on payoffs and behavior at that state, implying that changes 
in aggregate behavior are determined by current strategic conditions. Such dynamics may thus 
be viewed as state-dependent rules for transforming current payoffs into feasible directions of 
motion.

In this paper, we introduce a family of evolutionary game dynamics under which the vector 
of motion z from any state x is obtained by balancing two forces. The first, the gain from mo-
tion, is obtained by adding the products of the strategies’ payoffs at x with their rates of change 
under z. This quantity is the measure of agreement between payoffs and motion used in the stan-
dard monotonicity condition for game dynamics.1 The second, the cost of motion, captures the 
difficulty with which the population moves from state x along vector z. Different specifications 
of these quadratic costs define different members of our family of dynamics. These costs are 
usefully represented by means of a Riemannian metric, a state-dependent inner product used to 
evaluate lengths of and angles between vectors of motion. Accordingly, the dynamics studied 
here, defined by maximizing differences between gains and costs, are called Riemannian game 
dynamics.

The two archetypal examples of Riemannian game dynamics are the replicator dynamics (Tay-
lor and Jonker, 1978) and the (Euclidean) projection dynamics (Nagurney and Zhang, 1997), 
both derived from fairly simple structures. First, the replicator dynamics are derived from the 
Shahshahani metric (Shahshahani, 1979), under which the cost of increasing a strategy’s relative 
frequency in the population is inversely proportional to said frequency. Second, the projection 
dynamics are obtained by measuring the cost of motion in the standard Euclidean fashion, inde-
pendently of the population’s current state. Other Riemannian metrics can be used in applications 
where different strategies have clear affinities, allowing the presence and performance of one 
strategy to influence the use of similar alternatives.

The metric’s boundary behavior is the source of a fundamental dichotomy that is best ex-
plained by looking at our two prototypical examples above. Under the replicator dynamics: (i) the 
law of motion for every game is continuous; (ii) the set of utilized strategies remains constant 
along every solution trajectory; and (iii) the dynamics’ rest points are the restricted equilibria of 
the game – the states at which all strategies in use earn the same payoff. In contrast, under the 
Euclidean projection dynamics: (i) the law of motion is typically discontinuous at the bound-
ary of the simplex; (ii) the set of utilized strategies may change infinitely often along the same 
solution trajectory; and (iii) the dynamics’ rest points are the Nash equilibria of the underlying 
game. Based on this behavior, we obtain a natural distinction between continuous and discon-
tinuous Riemannian dynamics, each category sharing the boundary behavior of its prototype. 
In Section 4, we introduce a variety of examples of Riemannian dynamics from both classes; 

1 See Friedman (1991), Swinkels (1993), Sandholm (2001), Demichelis and Ritzberger (2003), and condition (PC)
below.
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then, in Section 5, we show how these and other Riemannian dynamics can be provided with 
microfoundations using suitably constructed revision protocols.

A basic aim of our analysis is to demonstrate that many basic properties of the replicator and 
Euclidean projection dynamics extend to our substantially more general setting. In Section 6, 
we show that Riemannian dynamics satisfy the basic desiderata for evolutionary game dynam-
ics: they heed a payoff monotonicity condition known as positive correlation, they ensure local 
stability of regular interior ESSs, and they converge globally in the class of potential games. In 
the latter context, Riemannian game dynamics also provide a broad generalization of Kimura’s 
maximum principle (Kimura, 1958; Shahshahani, 1979). This principle states that when agents 
are matched to play a normal form common interest game, the replicator dynamics move in the 
direction of maximal increase in average payoffs, provided that lengths of displacement vectors 
are evaluated using the Shahshahani metric. Extending this principle, we observe that Rieman-
nian dynamics track the direction of steepest ascent of potential in any potential game, provided 
that displacements are evaluated using the Riemannian metric at hand.

Obtaining further results on stability, convergence, and global behavior requires additional 
structure on our dynamics – and hence on the underlying Riemannian metric. This structure is 
provided by an integrability condition. In prior work on game dynamics, such conditions have 
been imposed on the vector fields used to convert the strategies’ payoffs into vectors of choice 
probabilities.2 By contrast, the integrability condition employed here is imposed on the matrix 
field that defines a Riemannian metric, requiring that it be expressible as the Hessian of a convex 
function. We call this function the potential of the metric, and we refer to the resulting dynamics 
as Hessian game dynamics.3 Both the replicator dynamics and the Euclidean projection dynamics 
are members of this class. As we explain in Section 7, Hessian dynamics are continuous when 
their potential function becomes infinitely steep at the boundary of the simplex, leading to the 
distinction between continuous and discontinuous Hessian dynamics.

The key tool that we employ for the analysis of Hessian dynamics is the Bregman divergence
(Bregman, 1967), an asymmetric measure of the “remoteness” of a given population state from 
any fixed target state.4 By using the Bregman divergence as a Lyapunov function, we prove global 
convergence to Nash equilibrium in strictly contractive games and local stability of evolutionarily 
stable states under Hessian game dynamics. We also show that certain distinctive properties of 
the replicator dynamics in normal form games extend to all continuous Hessian dynamics – in 
particular, the convergence of time averages of interior solutions to the set of Nash equilibria, 
and the existence of simple sufficient conditions for permanence. Finally, we show that strictly 
dominated strategies are eliminated under continuous Hessian dynamics, a conclusion which 
does not extend to the discontinuous regime.5

Related work. There are very close connections between the dynamics considered here and dy-
namics studied by Hofbauer and Sigmund (1990), Hopkins (1999), and Harper (2011). In order 

2 See Hart and Mas-Colell (2001), Hofbauer and Sandholm (2007), and Sandholm (2010a).
3 In the context of convex programming, gradient flows generated by Hessian Riemannian (HR) metrics of this sort have 

been explored at depth by Bolte and Teboulle (2003), Alvarez et al. (2004), Mertikopoulos and Staudigl (2018), and many 
others. Laraki and Mertikopoulos (2015) also examine the long-term rationality properties of a class of second-order, 
inertial game dynamics derived from HR metrics.

4 In the Shahshahani case, this boils down to the Kullback–Leibler divergence, which has seen wide use in the analysis 
of the replicator dynamics (Hofbauer and Sigmund, 1998; Weibull, 1995).

5 See Sandholm et al. (2008) and Section 7.4.
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to have the machinery in place to make these connections clear, we postpone this discussion until 
Section 2.3.

There is a more surprising connection between Hessian dynamics and models of reinforce-
ment learning in normal form games. Rustichini (1999), Hofbauer et al. (2009) and Mertikopou-
los and Moustakas (2010) show that if players track the cumulative payoffs (or scores) of their 
strategies and choose mixed strategies at each instant by applying the logit choice rule to these 
scores, the evolution of mixed strategies is described by the replicator dynamics.6 Combining 
our analysis here with that of Mertikopoulos and Sandholm (2016), we show that Hessian dy-
namics derived from a steep potential function also describe the evolution of mixed strategies 
under reinforcement learning. In addition to substantially generalizing existing results, our anal-
ysis provides an intuitive explanation for the tight links between the two processes. Section 8
describes these and other connections between Hessian dynamics and reinforcement learning in 
detail.

2. Population games and evolutionary dynamics

Notation. Let A = {α1, . . . , αn} be a finite set. The real space spanned by A will be denoted by 
RA and we will write δαβ for the Kronecker deltas on A. We will also write K ≡ RA+ for the 
nonnegative orthant of RA, K◦ ≡RA++ for its interior (the positive orthant), and RA

0 = {z ∈RA :∑
α zα = 0} for the subspace of vectors whose components sum to zero. Finally, in a slight abuse 

of notation, we will write Rsupp(x) = {z ∈RA : zα = 0 whenever xα = 0} for the set of vectors in 
RA whose support is contained in the support of x ∈RA.

2.1. Population games

Throughout this paper we focus on games played by a population of nonatomic agents. Our 
analysis extends to the multi-population setting without significant effort, but we focus on single-
population games for simplicity and notational clarity.

During play, each agent chooses an action (or pure strategy) from a finite set A, and their 
payoff is determined by their choice of action and by the proportions xα ∈ [0, 1] of the pop-
ulation playing each action α ∈ A. Collectively, these proportions define a population state
x = (xα)α∈A ∈ RA, and we write X = �(A) = {x ∈ RA+ : ∑α xα = 1} for the set of population 
states (or state space) of the game. The payoff to an agent playing α ∈ A when the population 
state is x ∈ X is given by an associated payoff function vα : X → R, which we assume to be 
Lipschitz continuous. Putting all this together, a population game may be identified with a set of 
actions and their associated payoff functions, and will be denoted by G ≡ G(A, v).

A population state x∗ ∈ X is a Nash equilibrium (NE) of a population game G if

vα(x∗) ≥ vβ(x∗) for all α ∈ supp(x∗) and for all β ∈A. (NE)

If x∗ satisfies (NE) and is pure (i.e. x∗ = eα for some α ∈ A), it is called a pure Nash equilibrium
of G; if, in addition, (NE) holds as a strict inequality for all β /∈ supp(x∗), x∗ is said to be a strict 
equilibrium of G.

A restriction of a game G is a population game G′ ≡ G′(A′, v′) that is defined by a subset 
A′ ⊆ A of the original game’s action set and by payoff functions vα obtained by restricting 

6 For related results, see also Börgers and Sarin (1997), Posch (1997), and Hopkins (2002).
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the original payoff functions to the reduced state space X ′ = �(A′) of G′. If x ∈ X is a Nash 
equilibrium of some restriction of G, it will be called a restricted equilibrium; as such, x ∈ X is 
a restricted equilibrium of G if all strategies in its support earn equal payoffs.

Example 2.1 (Matching in normal form games). The simplest example of a population game is 
obtained by uniformly matching a population of agents to play a two-player symmetric normal 
form game with payoff matrix A = (Aαβ)nα,β=1. Aggregating over all matches, the payoff to an 
α-strategist when the population is at state x ∈X is vα(x) = ∑

β∈A Aαβxβ .

Example 2.2 (Potential games). A population game G is called a potential game (Monderer and 
Shapley, 1996; Sandholm, 2001) if there exists a potential function f defined on a neighborhood 
of X such that

∂f

∂xα

= vα(x) for all α ∈A and all x ∈ X . (2.1)

Example 2.3 (Contractive games). A population game G is called (weakly) contractive (Hof-
bauer and Sandholm, 2009) if∑

α∈A
(vα(x′) − vα(x))(x′

α − xα) ≤ 0 for all x, x′ ∈X . (2.2)

If (2.2) binds only when x = x′, G is called strictly contractive, whereas if (2.2) binds for all 
x, x′ ∈X , G is called conservative.7

2.2. Evolutionary dynamics

The term evolutionary dynamics refers to rules that assign to each population game G a dy-
namical system on its state space X . This is usually done by mapping each game to a law of 
motion, i.e. a differential equation of the form

ẋ = V (x). (D)

In most cases, the motion field V (x) of (D) is defined by introducing a mapping (x, π) �→
Ṽ (x, π) from state/payoff pairs to vectors, and then specifying that V (x) ≡ Ṽ (x, v(x)). In what 
follows, we will focus exclusively on such dynamics.

To ensure that solutions to (D) remain in X for all t ≥ 0, V (x) should not point outward 
from X ; formally, V (x) should lie in the tangent cone of X at x, defined here as

TCX (x) = {z ∈ RA
0 : zα ≥ 0 whenever xα = 0}. (2.3)

Under many evolutionary dynamics (including the replicator dynamics and other imitative dy-
namics), the support of x(t) remains invariant under (D), implying in turn that the interior of each 
face of X remains invariant under (D). When this is the case, V (x) actually lies in the tangent 
space to X at x, defined as

TX (x) = {z ∈ RA
0 : zα = 0 whenever xα = 0} ⊆ TCX (x). (2.4)

Clearly, for every interior state x ∈X ◦, we have TX (x) = TCX (x) = RA
0 .

7 Hofbauer and Sandholm (2009) use the name stable games instead of contractive, but Sandholm (2015) proselytizes 
for the terms employed here. In convex analysis, condition (2.2) is called monotonicity.
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A basic monotonicity criterion linking (D) with the underlying game requires positive corre-
lation between the strategies’ payoffs and growth rates. Concretely, this means that∑

α∈A
vα(x)Vα(x) ≥ 0 for all x ∈ X , (PC)

with equality only if V (x) = 0.8 If (D) satisfies (PC), every Nash equilibrium of G is a rest point 
of (D). For a detailed discussion, see Sandholm (2010b).

We provide two prototypical examples of evolutionary dynamics below:

Example 2.4 (The replicator dynamics). The quintessential evolutionary game dynamics are the 
replicator dynamics of Taylor and Jonker (1978):

ẋα = xα

[
vα(x) −

∑
β∈A xβvβ(x)

]
. (RD)

Example 2.5 (The Euclidean projection dynamics). The other fundamental example we consider 
is the Euclidean projection dynamics of Nagurney and Zhang (1997) (see also Friedman, 1991, 
and Lahkar and Sandholm, 2008). These are defined by

ẋ = arg min
z∈TCX (x)

‖v(x) − z‖2
2, (PD)

where ‖z‖2 = (
∑

α z2
α)1/2 denotes the ordinary Euclidean norm on RA. Geometrically, the dy-

namics (PD) are defined by taking the Euclidean projection of the payoff field v(x) onto the 
tangent cone TCX (x). Since TCX (x) = RA

0 on the interior X ◦ of the simplex, we obtain the 
simple formula

ẋα = vα(x) − 1

|A|
∑
β∈A

vβ(x), (2.5)

valid for all interior x ∈X ◦. For an explicit formula on the boundary of X , see Example 4.2.

2.3. Antecedents

The class of dynamics studied here is a substantial generalization of both the replicator dy-
namics and the projection dynamics. We now describe works from an assortment of fields that 
are antecedents of our approach.

The replicator equation (RD) for common interest games is a basic model from population ge-
netics (Schuster and Sigmund, 1983). The fundamental theorem of natural selection, attributed 
to Fisher (1930), states that natural selection among genes increases overall population fitness. 
Kimura (1958) introduced a corresponding maximum principle, showing that population fitness 
increases at a maximum rate under (RD) provided that one imposes a certain nonlinear con-
straint on the set of feasible changes in population frequencies (see Remark 3.2 in Section 3.3). 
Later, Shahshahani (1979) and Akin (1979) put Kimura’s maximum principle on a firm math-
ematical footing using tools from differential geometry – specifically, by introducing a suitable 

8 This and closely related conditions are considered by Friedman (1991), Swinkels (1993), Sandholm (2001), and 
Demichelis and Ritzberger (2003).
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Riemannian metric (see Section 3.2). The derivation of the replicator dynamics in the latter pa-
pers provides a basic instance of the geometric construction of Riemannian dynamics developed 
in Section 3.6, while our construction based on balancing gains and costs can be viewed as an 
extension of Kimura’s analysis (cf. Remark 3.2).

Hofbauer and Sigmund (1990) model natural selection in populations of animals whose traits 
are represented by elements of a continuous set. They assume that all members of the population 
share the same trait x, except for an infinitesimal group of mutants whose traits differ infinitesi-
mally from x. The evolution of the preponderant trait x follows a gradient-like process, moving 
in the direction that agrees with the play of the most successful local mutants. To obtain varia-
tions on this process, Hofbauer and Sigmund (1990) use a Riemannian metric to define the size 
and shape of the neighborhood of local mutants. When the trait space is X and the fitness of 
mutant y takes the linear form 

∑
α yαvα(x), they showed that the evolution of x on the interior 

of X is given by

ẋα =
∑
β∈A

[
g−1

αβ (x) −
∑

γ g−1
αγ (x)

∑
γ g−1

γβ (x)∑
γ,κ g−1

γ κ (x)

]
vβ(x), (2.6)

where g(x) is a field of symmetric positive definite matrices that defines the Riemannian met-
ric in question (see Section 3.2). Hofbauer and Sigmund (1990) then observed that under the 
Shahshahani metric, the system (2.6) boils down to the replicator dynamics (RD). As we shall 
see, (2.6) describes the dynamics studied in this paper at all states x ∈ X in what we call the 
minimal-rank case (cf. Section 3.4).

In the course of analyzing perturbed best response dynamics (Fudenberg and Levine, 1998) 
and variants of fictitious play (Brown, 1951), Hopkins (1999) introduced a class of game dynam-
ics that are defined on the interior of X as

ẋα =
∑
β∈A

Mαβ(x)vβ(x). (2.7)

Here M(x) is a smoothly-varying field of symmetric matrices that are positive definite on RA
0

and map constant vectors to 0. Hopkins (1999) showed that the linearization of these dynamics 
agrees with that of perturbed best response dynamics up to a positive affine transformation. As a 
result, the local stability of rest points of (2.7) agrees with that of the corresponding rest points 
of perturbed best response dynamics with sufficiently small noise levels. As we show in Ap-
pendix A.1, the dynamics (2.6) satisfy Hopkins’ conditions; conversely, all dynamics satisfying 
Hopkins’ conditions can be expressed in the form (2.6). Thus, on the interior of X , the dynamics 
of Hopkins (1999) are equivalent to the dynamics studied here (Proposition A.3).

More recently, Harper (2011) used ideas from information geometry to define generalizations 
of the replicator dynamics, and employed concepts from Riemannian geometry to state and prove 
certain properties of the induced dynamics. Ignoring boundary issues, these dynamics are an 
important special case of ours – specifically, the class of separable dynamics that we introduce 
in Example 4.4.

Finally, we note here that there is a surprising and deep connection between the Hessian sub-
class of Riemannian game dynamics and a model of reinforcement learning recently examined 
by Mertikopoulos and Sandholm (2016). We explore this relation in detail in Section 8.
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3. Riemannian game dynamics

3.1. Gains, costs, and dynamics

We now define the dynamics we study as balancing a gain from motion, determined from the 
game’s payoffs, against a cost of motion, a new primitive that captures the difficulty of motion 
along a given direction from a given state. To streamline our presentation, we focus below on 
interior states x ∈X ◦ ≡ int(X ), postponing the treatment of boundary states until the machinery 
needed to handle them is in place.

Given a population game G(A, v), the gain from motion from state x ∈ X along z ∈ RA is 
defined as

Gv(z;x) =
∑
α∈A

vα(x)zα. (3.1)

In words, the gain of motion measures the agreement between payoffs and vectors of motion 
as in the standard monotonicity criterion (PC). For an alternative interpretation, recall that the 
defining property (2.1) of a potential game with potential function f can be expressed as∑

α∈A

∂f

∂xα

zα =
∑
α∈A

vα(x)zα for all z ∈RA and all x ∈X . (3.2)

The left-hand side of (3.2) is the rate of change in the value of potential as the state moves away 
from x along z. Viewed in this light, the gain Gv(z; x) extends the notion of “the rate of increase 
in potential” to games that do not admit a potential function.9 In particular, the gain captures 
the alignment between the direction of motion z and the payoffs at state x; it is also linearly 
homogeneous in z, so it grows linearly as one increases the speed of motion in a fixed direction.

By contrast, the cost of motion C(z; x) is a primitive that represents the intrinsic difficulty of 
moving from state x along a given displacement vector z. We assume that the costs of motion 
are positive, smoothly varying with the population state x, and quadratic in z. It is convenient to 
define costs C(z; x) for states x in the positive orthant K◦ ≡ RA++ and for displacement vectors 
z in RA.10 Then since costs are positive and quadratic in z, the cost function can be expressed as

C(x; z) = 1

2
z
g(x)z, for all z ∈RA and all x ∈K◦, (3.3)

where g is a smooth assignment of symmetric positive definite matrices g(x) to states x ∈ K◦.
To use the above to define the dynamics at interior population states, we posit that the vector 

of motion from state x ∈ X ◦ maximizes the difference between the gain of motion Gv(x; z) and 
the cost of motion C(x; z), subject to feasibility:

ẋ = arg max
z∈RA

0

[Gv(z;x) − C(z;x)]. (3.4)

9 The logic here is similar to the original motivation for the definition of contractive games, which extends the idea of 
a game with a concave potential function to games that do not admit a potential (Hofbauer and Sandholm, 2009). The 
gain (3.1) is referred to as the “aggregate gross gain” by Zusai (2018) in his general analysis of Lyapunov functions for 
contractive games and evolutionarily stable strategies.
10 We can interpret K◦ as the set of population states that could arise if the population size were allowed to vary. We 
could instead define costs only for states in X ◦ and displacement vectors in RA

0 , at the price of additional abstraction: 
see Remark 3.1 below.



P. Mertikopoulos, W.H. Sandholm / Journal of Economic Theory 177 (2018) 315–364 323
We refer to the dynamics (3.4) as Riemannian game dynamics, for reasons that we will soon 
make clear. Before doing so, we show how the leading examples of these dynamics are derived 
from the ansatz (3.4) through suitable choices of the cost function C(x; z):
Example 3.1. A straightforward, state-independent choice for the cost of motion is

C(x; z) = 1

2

∑
α∈A

z2
α. (3.5)

To solve the resulting maximization problem in (3.4), consider the Lagrangian


(z,μ;x) =
∑
α∈A

[
vα(x)zα − 1

2
z2
α − μzα

]
, (3.6)

where the last term is associated with the motion feasibility constraint 
∑

α∈A zα = 0. A direct 
differentiation gives the optimality condition zα = vα(x) −μ, and the feasibility constraint yields 
μ = |A|−1 ∑

α∈A vα(x). Substituting back into in (3.4) yields

ẋα = vα(x) − 1

|A|
∑
α∈A

vα(x). (3.7)

As we discussed in Section 2 (cf. Example 2.5), the system (3.7) describes the (Euclidean) pro-
jection dynamics of Nagurney and Zhang (1997) on X ◦.

Example 3.2. For a basic state-dependent choice for the cost of motion, let

C(x; z) = 1

2

∑
α∈A

z2
α

xα

(3.8)

The Lagrangian for the maximization problem in (3.4) is now


(z,μ;x) =
∑
α∈A

[
vα(x)zα − z2

α

2xα

− μzα

]
. (3.9)

Differentiating now yields the optimality condition zα = xαvα(x) − μxα , and feasibility implies 
that μ = ∑

β∈A xβvβ(x). Substituting in (3.4), we obtain

ẋα = xα

[
vα(x) −

∑
β∈A xβvβ(x)

]
. (3.10)

The system (3.10) defines the replicator dynamics of Taylor and Jonker (1978) (cf. Example 2.4). 
Although the derivation above assumed that x is interior, the expression (3.10) actually describes 
the replicator dynamics on all of X ; we explain why this is so in Section 3.4.

3.2. Costs of motion and Riemannian metrics

We now proceed with a reinterpretation of the costs of motion using notions from geometry. 
The fundamental notion here is that of a Riemannian metric, a position-dependent variant of the 
ordinary (Euclidean) scalar product between vectors.11

11 To be clear, a Riemannian metric is not a metric in the sense of measuring distances between points in a metric 
space, but it induces such a distance function in a canonical way. For a comprehensive introduction to this topic, see the 
masterful account of Lee (1997, 2003).
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To start, we recall that a scalar product on a subspace W of RA is a bilinear pairing 
〈·, ·〉 : W × W →R which satisfies the following for all w, w′ ∈ W :

(1) Symmetry: 〈w, w′〉 = 〈w′, w〉.
(2) Positive definiteness: 〈w, w〉 ≥ 0, with equality if and only if w = 0.

The norm of a vector w ∈ W is then defined as

‖w‖ = 〈w,w〉1/2. (3.11)

When W =RA, the definition above becomes most transparent by writing w = ∑
α wαeα and 

w′ = ∑
β w′

βeβ in the standard basis {eα}α∈A of RA. Since 〈·, ·〉 is positive definite and bilinear, 
there exists a positive-definite matrix g = (

gαβ

)
α,β∈A such that

〈w,w′〉 =
∑

α,β∈A
wαgαβw′

β = w
gw′ (3.12a)

and

‖w‖2 =
∑

α,β∈A
wαgαβwβ = w
gw. (3.12b)

The matrix g is known as the metric tensor of 〈·, ·〉 and its components are gαβ = 〈eα, eβ〉. 
Clearly, a scalar product is represented uniquely by its metric tensor and vice versa, so we will 
move freely between the two representations in what follows.

With all this in mind, a Riemannian metric on an open set U of RA is a C1-smooth assignment 
of scalar products 〈·, ·〉x to each x ∈ U – or, equivalently, as a smooth field g(x) of symmetric 
positive-definite matrices on U . In other words, a Riemannian metric prescribes a way of mea-
suring lengths of and angles between displacement vectors at each x ∈ U .

The similarity in notation between the above and the definition of costs of motion is not a 
coincidence. Looking back at (3.4), we see that costs of motion and Riemannian metrics are both 
defined by means of a C1-smooth field of symmetric positive-definite matrices, with costs and 
norms being related via

C(x; z) = 1

2
z
g(x)z = 1

2
‖z‖2

x. (3.13)

We summarize this connection as follows:

Observation 3.1. Specifying a cost function on K◦ is equivalent to endowing K◦ with a Rieman-
nian metric.

Remark 3.1. Defining costs of motion and Riemannian metrics on the positive orthant K◦ allows 
us to work in standard coordinates, and simplifies passing from one to the other. That being said, 
we could equally well have taken a more parsimonious approach by defining costs of motion 
C(x; z) only for states x ∈ X ◦ and feasible displacement vectors z ∈ RA

0 , and similarly working 
with Riemannian metrics that specify inner products 〈·, ·〉x on RA

0 for each x ∈ X ◦. In this ap-
proach, the equivalence between cost functions and Riemannian metrics can be derived from a 
standard bijection between quadratic forms and bilinear forms (see e.g., Friedberg et al., 2002, 
p. 433), but at the cost of an extra degree of abstraction.
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Before proceeding, it is instructive to recast our previous examples in terms of Riemannian 
metrics:

Example 3.3. The Euclidean metric is defined by choosing g(x) to be the identity matrix:

g(x) = I = diag(1, . . . ,1) for all x ∈ K◦. (3.14)

This metric corresponds to the cost function C(z; x) = 1
2

∑
α z2

α of Example 3.1, and yields the 

standard expressions 〈w, w′〉x = w
w′ and ‖w‖x = √
w
w, all independent of x.

Example 3.4. The Shahshahani metric is defined as

g(x) = diag(1/x1, . . . ,1/xn) for all x ∈ K◦. (3.15)

This metric corresponds to the cost function C(z; x) = 1
2

∑
α z2

α/xα of Example 3.2, and yields 
the Shahshahani inner product 〈w, w′〉x = ∑

α wαw′
α/xα . In contrast to its Euclidean counter-

part, the Shahshahani metric is state-dependent: For instance, since ‖eα‖x = x
−1/2
α , the set of 

vectors at x with Shahshahani norm 1 is squeezed toward the xα axis as xα becomes small (cf. 
Fig. 1(b)).

We now present two further classes of metrics to which we return in Section 4:

Example 3.5. For p ≥ 0, the p-Shahshahani metric is defined as

g(x) = diag(1/x
p

1 , . . . ,1/x
p
n ) for all x ∈K◦. (3.16)

This definition includes the Euclidean metric (p = 0) and the standard Shahshahani metric 
(p = 1) as special cases, and corresponds to the cost function

C(x; z) = 1

2

∑
α∈A

z2
α

x
p
α

. (3.17)

Since 1
x

p
α
/ 1

x
p
β

= (xβ/xα)p , specifying larger values of p means raising the relative cost of changes 

in the use of rare strategies. For instance, if strategy α is half as prevalent in the population as 
strategy β , then changes in the use of α cost 2p times as much as changes in the use of β .

Figs. 1(a)–1(c) illustrate the effects of increasing the value of p on costs of motion: when xα

is small, increasing p increases the cost of moving toward and away from the xα = 0 boundary 
relative to the cost of moving along this boundary.

Example 3.6. Let A1, . . . , Am be a partition of A into m groups of intrinsically similar strate-
gies, let [α] denote the group containing strategy α, let x[α] = ∑

β∈[α] xβ denote the population 
share of all strategies that are “similar” to α in the above partition, and let s > 0 be a parame-
ter representing the “strength” of the similarity relation. The nested Shahshahani metric is then 
defined as

gαβ(x) =
{

δαβ

xα
+ s 1

x[α] if β ∈ [α],
0 otherwise.

(3.18)
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Fig. 1. Unit balls on the 3-simplex under the metrics of Examples 3.3–3.6. For each base point x shown, the shaded 
regions comprise all tangent vectors z based at x that satisfy ‖z‖2

x ≤ 1.

While the full expression for the cost function corresponding to the metric (3.18) is cumbersome, 
the cost of motion along the basic directions eβ − eα takes a fairly simple form, namely

C(eβ − eα;x) =
⎧⎨⎩

1
2

(
1
xα

+ 1
xβ

)
if β ∈ [α],

1
2

(
1
xα

+ 1
xβ

)
+ 1

2 s
(

1
x[α] + 1

x[β]

)
otherwise.

(3.19)

Under (3.19), switches between strategies in the same group take the same form as under the 
Shahshahani cost function from Examples 3.2 and 3.4. On the other hand, switches between 
strategies in different groups are more costly, with the additional costs being inversely propor-
tional to population shares of the groups and proportional to the strength of the similarity relation.

Fig. 1(d) illustrates the costs of motion (3.19) from various states in X for partition A1 = {1}, 
A2 = {2, 3} and similarity strength s = 3. The unit balls near the x1 = 0 boundary are elongated 
along that boundary to a greater extent than the balls near the other boundaries. This reflects 
the fact that, mutatis mutandis, a unit of cost buys more motion between strategies 2 and 3 than 
between the other pairs of strategies.
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3.3. Derivation of the dynamics: the interior case

With the above machinery at hand, we can provide an explicit description of the game dy-
namics under study on the interior X ◦ of X . To do so, fix a population game G ≡ G(A, v) and a 
Riemannian metric g on K◦. Then, by (3.13), the associated Riemannian game dynamics are

ẋ = arg max
z∈RA

0

[Gv(z;x) − C(z;x)] = arg max
z∈RA

0

[ ∑
α∈A

vα(x)zα − 1
2‖z‖2

x

]
. (3.20)

As in Examples 3.1 and 3.2, to obtain an explicit expression for the vector of motion that 
solves the maximization problem (3.20), consider the Lagrangian


(z,μ;x) =
∑
α∈A

vα(x)zα − 1
2‖z‖2

x − μ
∑
α∈A

zα. (3.21)

Then, interpreting (vα(x))α∈A as a row vector (see Section 3.6) and writing 1 = (1, . . . , 1)

for the column vector of ones in the standard basis of RA, a simple differentiation yields the 
first-order optimality condition

v(x) = z
g(x) + μ1
. (3.22)

Thus, after rearranging, we get

z = g−1(x)[v(x)
− μ1], (3.23)

where g−1(x) denotes the inverse of the matrix g(x). Using the constraint 
∑

α zα = 0 to solve 
for μ and substituting in (3.20), some easy algebra leads to the explicit expression

ẋ = g−1(x)

[
v(x)
− v(x)g−1(x)1

1
g−1(x)1
1
]

. (3.24)

Thus, if we set

v�(x) = g−1(x)v(x)
 and n(x) = g−1(x)1, (3.25)

we obtain

ẋ = v�(x) − 〈v�(x), n(x)〉x
‖n(x)‖2

x

n(x) = v�(x) −
∑

α∈A v
�
α(x)∑

α∈A nα(x)
n(x) (3.26)

We now revisit our two archetypal examples in the light of the explicit expression (3.26):

Example 3.7. If g(x) = I is the Euclidean metric, we get v�(x) = v(x)
 and n(x) = 1, so (3.26)
immediately boils down to (3.7). Therefore, when the cost of motion is defined using Euclidean 
lengths, the components of the displacement vector ẋ equal those of v(x) up to a constant that 
ensures that ẋ ∈RA

0 .

Example 3.8. If g(x) = diag(1/x1, . . . , 1/xn) is the Shahshahani metric of Example 3.4, we 
readily get v�

α(x) = xαvα(x) and nα(x) = xα , so (3.26) boils down to the replicator dynamics 
(3.10). Thus, when costs are defined using the Shahshahani norm of the population displacement 
vector, changes in the use of rare strategies are more costly than changes in the use of common 
ones. As a consequence, the initial term of ẋα is proportional to both the payoff vα(x) of strategy 
α and to the mass xα of agents playing strategy α. The second term ensures that ẋ ∈ RA

0 , but 
here the normalization for strategy α is itself proportional to xα .
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Remark 3.2. The derivation above is closely related to Kimura’s (1958) derivation of the replica-
tor dynamics in common interest games, i.e., games in which v(x) = (Ax)
 for some symmetric 
matrix A. Such games admit the potential function f (x) = 1

2x
Ax (cf. Eq. (2.1)), which reports 
one-half of the population’s average payoff. Using somewhat different language, Kimura (1958)
proposed the population dynamics

ẋ = arg max

{∑
α

∂f

∂xα

zα : z ∈ TCX (x) and ‖z‖2
x = σ 2

v (x)

}
. (3.27)

Here 
∑

α
∂f
∂xα

zα is the rate of change of potential along z, ‖·‖2
x is the Shahshahani norm and 

σ 2
v (x) = ∑

α xα[vα(x) − ∑
β xβvβ(x)]2 denotes the variance in the population’s payoffs at 

state x. It is easy to verify that (3.27) boils down to the replicator dynamics for the potential 
game v(x) = (Ax)
.

3.4. The boundary case

We now turn to an important dichotomy that arises when extending the definition of the dy-
namics (3.20) to the boundary of X . To begin, recall from (2.4) that the tangent space TK(x) to 
the nonnegative orthant K at x is the linear subspace

TK(x) = {z ∈ RA : zα = 0 whenever xα = 0} =Rsupp(x). (3.28)

We then say that a Riemannian metric g on K◦ is extendable to K if the map x �→ g−1(x)

on K◦ admits a (necessarily unique) C1-smooth extension to K which we denote by g� (so 
g�(x) ≡ g−1(x) for all x ∈ K◦), and which satisfies

TK(x) ⊆ img�(x) for all x ∈K. (3.29)

In the above, img�(x) is the image (column space) of g�(x); we henceforth call this set the 
domain of g at x and denote it by domg(x). Proposition B.1 in Appendix B shows that if g is 
extendable in the sense of (3.29), then the field of scalar products associated with g also admits 
a unique continuous extension from K◦ to K, with 〈·, ·〉x defined on domg(x).

In what follows, we focus on two basic forms of extendability. First, if domg(x) = RA for all 
x ∈ K, we say that g is full-rank extendable; instead, if domg(x) = TK(x) for all x ∈ K, we say 
that g is minimal-rank extendable. We henceforth use the term “extendable” to refer to these two 
cases exclusively.

Example 3.9. The Euclidean metric has g�(x) = g−1(x) = I for all x ∈ K, so it is full-rank 
extendable by default.

Example 3.10. The Shahshahani metric has g�(x) = g−1(x) = diag(x1, . . . , xn), so domg(x) =
TK(x) = Rsupp(x) for all x ∈ K. Thus, the Shahshahani metric is minimal-rank extendable, and 
the induced scalar product on domg(x) = Rsupp(x) is

〈w,w′〉x =
∑

α∈supp(x)
wαw′

α/xα for all w,w′ ∈ TK(x). (3.30)

Remark 3.3. Intuitively, minimal-rank extendable metrics partition K into the relative interiors 
of each of its faces (including K◦ itself). We will see that under the dynamics generated by such 
metrics, the relative interior of each face of X is an invariant set.
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Fig. 2. Admissible cones under the Euclidean and Shahshahani metrics. For x ∈ X ◦, we have Admg(x) = TCX (x). For 
x ∈ bd(X ), we still have Admg(x) = TCX (x) in the Euclidean case, but the Shahshahani metric can only be extended 
to the tangent space Admg(x) = TX (x).

To extend the definition of the dynamics to the boundary bd(X ) of X , we introduce the cone 
of g-admissible vectors

Admg(x) = TCX (x) ∩ domg(x). (3.31)

This cone, which comprises all tangent vectors z ∈ TCX (x) that also lie in domg(x), specifies 
the possible directions of motion at a given state x ∈ X . In particular, when x ∈X ◦ is interior, we 
have TCX (x) = TX (x) = RA

0 and domg(x) = RA. Thus, the g-admissible set is the hyperplane

Admg(x) =RA
0 ∩RA =RA

0 , (3.32)

as anticipated in Eq. (3.20). Further instances of g-admissible cones are depicted in Fig. 2.
The restriction to domg(x) is needed because the norm ‖z‖2

x is only defined for z ∈ domg(x). 
When g is extendable, the only case in which domg(x) is not all of RA occurs when x ∈ bd(X )

and g is minimal-rank extendable, in which case domg(x) = TX (x) = Rsupp(x) (cf. Exam-
ple 3.10).

3.5. Riemannian game dynamics

With all this at hand, we are finally in a position to extend the definition of the dynamics to all 
of X . Concretely, building on (3.20), the Riemannian game dynamics induced by an extendable 
g are

ẋ = arg max
z∈Admg(x)

[Gv(z;x) − C(z;x)] = arg max
z∈Admg(x)

[ ∑
α∈A

vα(x)zα − 1
2‖z‖2

x

]
(RmD)

Equation (3.26) showed that (RmD) can be expressed at interior states as

ẋ = v�(x) − 〈v�(x), n(x)〉x
‖n(x)‖2

x

n(x) = v�(x) −
∑

α∈A v
�
α(x)∑

α∈A nα(x)
n(x) (3.33a)

where v�(x) = g�(x)v(x)
 and n(x) = g�(x)1. After a slight rearrangement, we can also express 
the dynamics as a linear transformation of payoffs v(x):
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ẋα =
∑
β∈A

[
g

�
αβ(x) − nα(x)nβ(x)∑

γ nγ (x)

]
vβ(x). (3.33b)

Equation (A.2b) in Appendix A provides a concise third expression for the dynamics on X ◦ in 
terms of a pseudoinverse matrix.

If g is minimal-rank extendable, Proposition B.2 in Appendix B shows that (3.33) holds for all 
x ∈ X , provided that one uses g�(x) in the definition (3.25) of v�(x) and n(x). Proposition B.2
also shows that, in this case, one need only take the sums in the formulas (3.33) over the strategies 
in the support of x.

If instead g is full-rank extendable, extending (3.33) to boundary states requires solving a 
convex program whose inequality constraints may be active. For this reason, coordinate formulas 
for (RmD) may depend on the support of x – and, indeed, (RmD) may fail to be continuous at 
the boundary of X (see Example 4.2 below). With this in mind, it will be convenient to call the 
dynamics generated by minimal-rank extendable metrics continuous Riemannian dynamics, and 
those generated by full-rank extendable metrics discontinuous Riemannian dynamics.

3.6. Geometric derivation of the dynamics

In (RmD), the dynamics’ vector of motion from x is defined to maximize the difference be-
tween the gain Gv(z; x) = ∑

α∈A vα(x)zα and the cost of motion C(z; x) = 1
2‖z‖2

x over the set 
of admissible vectors z ∈ Admg(x). We now show how these dynamics can be derived using a 
purely geometric approach, generalizing Shahshahani’s (1979) derivation of the replicator dy-
namics in common interest games, and Nagurney and Zhang’s (1997) definition of the Euclidean 
projection dynamics. In what follows, we rely on some basic ideas from Riemannian geometry; 
for a comprehensive treatment, we refer again to Lee (1997).

To start, we introduce ideas about duality that explain our convention of writing payoffs using 
row vectors and the notations v�(x) and n(x) from Section 3.3. As in Section 3.2, let W be a 
subspace of RA. A linear functional ω : W → R acting on vectors w ∈ W is called a covector, 
and the space W ∗ of such functionals is called the dual space of W . We write 〈ω|w〉 for the action 
of a covector ω ∈ W ∗ on a vector w ∈ W ; to emphasize this pairing, the elements of W and W ∗
are also referred to as primal and dual vectors respectively. When W =RA, we use the standard 
basis of RA to write everything in matrix notation, and distinguish vectors and covectors by 
writing primal vectors w ∈ RA as column vectors and dual vectors ω ∈ (RA)∗ as row vectors. 
The action 〈ω|w〉 of ω on w is then given by the matrix product ωw = ∑

α ωαwα .
After mild manipulations, the definitions of Nash equilibrium (NE), positive correlation (PC), 

potential games (2.1) and contractive games (2.2) can be expressed in terms of expressions of the 
form 

∑
α vα(x)zα , where z is a tangent vector. Put differently, the payoff “vector” (vα(x))α∈A

acts as a linear functional on displacement vectors, and so should be regarded as a covector. This 
is why we represent payoffs v(x) in matrix notation as row vectors.

Example 3.11. The defining property (2.1) of potential games can be expressed as

〈Df (x)|z〉 = 〈v(x)|z〉 for all z ∈RA and all x ∈X . (3.34)

On the left-hand side, Df (x) denotes the derivative of f at x, a linear functional that acts on 
tangent vectors z ∈RA to yield the directional derivative f ′(x; z). Thus, (3.34) can be expressed 
as an equality between covectors, viz. v(x) = Df (x).
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Returning to our derivation of game dynamics, our aim in what follows is to find a vector 
field x �→ V (x) ∈ TC(x) that agrees to the greatest possible extent with the payoff covector field 
x �→ v(x), where this “agreement” is defined in terms of the Riemannian metric g. The derivation 
requires two steps: i) using a canonical transformation to convert the covector field into a vector 
field; and ii) projecting this field onto the cone of admissible vectors of motion.

For the first step, fix a Riemannian metric g on K◦ that is extendable to K as defined in 
Section 3.4. The primal equivalent of a covector ω ∈ (RA)∗ at x ∈ K is the (necessarily unique) 
vector ω� ∈ domg(x) such that

〈ω|w〉 = 〈ω�,w〉x for all w ∈ domg(x). (3.35)

In matrix notation, it is easy to verify that

ω� = g�(x)ω
, (3.36)

in agreement with the definition v�(x) = g�(x)v(x)
 from (3.25).
For the second step, we transform each vector v�(x) into a g-admissible vector by projecting 

it onto Admg(x). Specifically, for all x ∈ X and w ∈ domg(x), the projection of w at x is defined 
as

�x(w) = arg min
z∈Admg(x)

‖w − z‖x. (3.37)

The induced Riemannian dynamics are then defined as

ẋ = �x(v
�(x)). (3.38)

When x ∈X ◦ is interior, we have Admg(x) = RA
0 by default, so �x(w) is simply the orthog-

onal projection of w ∈ domg(x) = RA onto RA
0 with respect to g. Accordingly, �x(w) can be 

computed by finding a normal vector to RA
0 and subtracting this vector’s contribution to w (as in 

the first step of the Gram–Schmidt orthonormalization process). To carry this out, observe that ∑
α zα = 0 for all z ∈ RA

0 , so the vector n(x) = g�(x)1 defined in (3.25) satisfies

〈n(x), z〉x = n(x)
g(x)z = 1
g�(x)g(x)z = 0 for all z ∈ RA
0 . (3.39)

This shows that n(x) is a normal vector to TX (x) with respect to g(x). Thus, for all x ∈X ◦, we 
can express the right-hand side of (3.38) as

�x(v
�(x)) = v�(x) − projn(x) v

�(x) = v�(x) − 〈n(x), v�(x)〉x
‖n(x)‖2

x

n(x), (3.40)

in agreement with (3.26).
More generally, for any state x ∈ X we have

�x(v
�(x)) = arg min

z∈Admg(x)

‖v�(x) − z‖x

= arg min
z∈Admg(x)

[
‖v�(x)‖2

x + ‖z‖2
x − 2〈v�(x), z〉x

]
= arg max

z∈Admg(x)

[
〈v�(x), z〉x − 1

2‖z‖2
x − 1

2‖v�(x)‖2
x

]
= arg max

z∈Admg(x)

[
〈v(x)|z〉 − 1

2‖z‖2
x

]
. (3.41)
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The dynamics (3.38) and (RmD) are therefore identical. We will take advantage of this geometric 
representation of (RmD) freely in what follows.

Remark 3.4. In addition to building on Kimura’s and Shahshahani’s derivations of the replicator 
dynamics, the dual representations of Riemannian game dynamics have a close analogue in a 
class of game dynamics called target projection dynamics (Friesz et al., 1994; Sandholm, 2005). 
These dynamics are defined on X as

ẋ = arg min
x′∈X

‖v(x) − x′‖2
2 − x. (3.42)

Using a version of (3.41), Tsakas and Voorneveld (2009) showed that (3.42) can also be expressed 
as

ẋ = arg max
x′∈X

[
〈v(x)|x′〉 − 1

2‖x′ − x‖2
2

]
− x. (3.43)

4. Examples

We now present a variety of examples of Riemannian game dynamics. We start by extending 
the interior expressions (3.7) and (3.10) for our two prototypical dynamics to allow for boundary 
states:

Example 4.1 (Replicator dynamics revisited). Let g be the Shahshahani metric, so g�
αβ(x) =

δαβxβ , nα(x) = xα , and v�
α(x) = xαvα(x). Since g is minimal-rank extendable, (3.33) yields the 

(continuous) Riemannian dynamics

ẋα = xα

[
vα(x) −

∑
β

xβvβ(x)
]
, (RD)

which are the replicator dynamics of Taylor and Jonker (1978). The dynamics’ continuity is 
reflected in the fact that the formula (RD) is valid throughout X .

Example 4.2 (Projection dynamics revisited). Let g be the Euclidean metric. Starting from 
formulation (3.38), Lahkar and Sandholm (2008) derived the following representation of the 
associated (discontinuous) Riemannian dynamics:

ẋα =
{

vα(x) − |A(x)|−1 ∑
β∈A(x) vβ(x) if α ∈ A(x),

0 otherwise,
(4.1)

where A(x) is a subset of A that maximizes the average |A′|−1 ∑
β∈A′ vβ(x) over all subsets 

A′ ⊂ A that contain supp(x). These are the projection dynamics (PD) of Nagurney and Zhang 
(1997). The discontinuity of (PD) is reflected in the appearance of supp(x) in (4.1) via the defi-
nition of A(x).

Remark 4.1. The dynamics (RD) and (PD) highlight an important qualitative difference between 
Shahshahani and Euclidean projections, which is representative of continuous and discontinuous 
Riemannian dynamics respectively. The replicator dynamics (RD) comprise a Lipschitz contin-
uous dynamical system on X which preserves the face structure of X , in that the relative interior 
of each face of X remains invariant. By contrast, the projection dynamics (PD) may fail to be 
continuous at the boundary of X . Thus, the relevant notion of a solution to (PD) is that of a 
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Carathéodory solution, which allows for kinks at a measure zero set of times. As a result, solu-
tions of (PD) may leave and re-enter the relative interior of any face of X in perpetuity.

The next example generalizes the previous two:

Example 4.3 (The p-replicator dynamics). For p ≥ 0, let gαβ(x) = δαβx
−p
β denote the 

p-Shahshahani metric introduced in Example 3.5. We then have g�
αβ(x) = δαβx

p
β , nα(x) = x

p
α , 

and v�
α(x) = x

p
α vα(x). Thus, (3.33) yields the p-replicator dynamics

ẋα = xp
α

(
vα(x) −

∑
β∈A x

p
β vβ(x)∑

β∈A x
p
β

)
, (4.2)

valid for all interior x ∈X ◦. These dynamics were first defined by Harper (2011).
Since g is minimal-rank extendable if and only if p > 0, the dynamics are defined through-

out X via Eq. (4.2) for precisely these values of p. However, the dynamics are only Lipschitz 
continuous for p ≥ 1; see Example 4.6 and Section 6.1 below. Three values of p are worth 
highlighting:

(1) For p = 0, we obtain the projection dynamics (PD).
(2) For p = 1, we obtain the replicator dynamics (RD).
(3) For p = 2, we obtain the log-barrier dynamics, a system first examined by Bayer and La-

garias (1989) in the context of convex programming.12

In the above dynamics, the value of p parametrizes the costs of changes in the use of less 
common strategies. This is illustrated in Fig. 3, which presents a collection of p-replicator phase 
portraits in standard Rock-Paper-Scissors:

A =
⎛⎝ 0 −1 1

1 0 −1
−1 1 0

⎞⎠ . (4.3)

When p = 0, displacement costs are independent of the current state; thus the circular form of 
the payoffs (4.3) generates circular closed orbits, subject to feasibility constraints (Fig. 3(a)). As 
p increases, the costs of motion for uncommon strategies become more important relative to the 
game’s payoffs (Figs. 3(b) and 3(c)). As a direct consequence, the closed orbits of the dynamics 
are “flattened” near each face of the simplex, and are ultimately reshaped into a nearly triangular 
form (Fig. 3(d)).13

Fig. 3 also illustrates a basic dichotomy between continuous and discontinuous Riemannian 
dynamics. In the discontinuous regime (p = 0), there is a unique forward solution from every 
initial condition in X . However, solutions may enter and leave the boundary of X , and solutions 
from different initial conditions can merge in finite time. In the smooth regime (p ≥ 1), solu-
tions exist and are unique in forward and backward time, and the support of the state remains 
fixed along each solution trajectory. Existence and uniqueness of solutions is treated formally in 
Section 6.1.

12 The reason for this name is explained in Example 4.6; see especially Eq. (4.14).
13 That all of these dynamics feature closed orbits is not coincidental – see Proposition 7.5.
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Fig. 3. Phase portraits of the p-replicator dynamics in standard Rock-Paper-Scissors. As p ∈ [0, ∞) increases, the shape 
of the closed orbits changes from circular to triangular. When p = 0, solutions enter and leave the boundary of the 
simplex, but forward solutions exist and are unique. For p ≥ 1, forward and backward solutions exist, are unique, and 
their support is constant.

Example 4.4 (Separable metrics and their dynamics). A Riemannian metric g on K◦ is called 
separable if its metric tensor is of the form

g(x) = diag(1/φ(x1), . . . ,1/φ(xn)), (4.4)

where φ : [0, ∞) → [0, ∞) is a continuous weighting function that is strictly positive on (0, ∞). 
For such metrics, we readily get

g�(x) = diag(φ(x1), . . . , φ(xn)), (4.5)

so g is minimal-rank extendable if limz→0+ φ(z) = 0 and full-rank extendable otherwise.
When (3.33) applies, the dynamics induced by g take the form

ẋα = φ(xα)

[
vα(x) −

∑
β φ(xβ)vβ(x)∑

φ(xβ)

]
. (4.6)
β
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Ignoring the dynamics’ behavior at the boundary, (4.6) was studied by Harper (2011) under 
the name escort replicator dynamics, and was further examined by Mertikopoulos and Sand-
holm (2016) and Bravo and Mertikopoulos (2017) in the context of game-theoretic learning (see 
Section 8). It is clear that the construction above generalizes immediately to allow different 
weighting functions for different strategies.

Moving beyond the separable case, Riemannian dynamics can also capture the effects of in-
trinsic relationships among the game’s strategies.

Example 4.5 (Nested replicator dynamics). In Example 3.6, we defined the nested Shahshani 
metric as

gαβ(x) =
{

δαβ

xα
+ s 1

x[α] if β ∈ [α],
0 otherwise,

(4.7)

where A1, . . . , Am is a partition of A into groups of intrinsically similar strategies, [α] denotes 
the group containing strategy α, x[α] = ∑

β∈[α] xβ , and s is a positive constant. A straightforward 
calculation shows that

g
�
αβ(x) =

{
xαδαβ − s

1+s

xαxβ

x[α] if β ∈ [α],
0 otherwise.

(4.8)

It is evident from (4.8) that the metric g is minimal-rank extendable. Applying (3.33), we find 
that g generates the nested replicator dynamics:

ẋα = xα

⎡⎣ s

1 + s

⎛⎝vα(x) − 1

x[α]

∑
β∈[α]

xβvβ(x)

⎞⎠ + 1

1 + s

⎛⎝vα(x) −
∑
β∈A

xβvβ(x)

⎞⎠⎤⎦
(NRD)

if xα > 0 and ẋα = 0 otherwise.
The imitative dynamics (NRD) were introduced by Mertikopoulos and Sandholm (2018) to 

model settings in which agents assess strategies using two distinct procedures: at rate s
1+s

, an 
agent only compares the payoff of his current strategy α to those of strategies in group [α]; at 
rate 1

1+s
, they compare the payoff of their current strategy to that of all other strategies.

Fig. 4 presents phase diagrams of the dynamics (NRD) with s = 3 in the standard Rock-Paper-
Scissors game. The two panels illustrate the consequences of two similarity groupings. In each 
case, the longest “side” of each closed orbit corresponds to the pair of similar strategies, which 
are switched between more easily than the remaining pairs of dissimilar strategies.

The following class of dynamics incorporates all of our previous examples. It is examined at 
depth in Sections 7 and 8:

Example 4.6 (Hessian Riemannian metrics and their dynamics). A generalization of the above 
class of examples can be obtained by considering Riemannian metrics that are defined as Hes-
sians of convex functions.14 To that end, let h : K → R be a continuous function on K such 
that

14 For the origins of the idea in geometry, see Duistermaat (2001) and references therein; for applications to convex 
programming, see Bolte and Teboulle (2003) and Alvarez et al. (2004).
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Fig. 4. Phase portraits of the nested replicator dynamics in standard Rock-Paper-Scissors with s = 3 for two similarity 
groupings.

(i) h is C3-smooth on every positive suborthant of K.
(ii) Hessh(x) is positive definite for all x ∈K◦.

Then, h induces a natural Riemannian metric on K◦ defined as

g = Hessh, (4.9)

or, in components:

gαβ(x) = ∂2h(x)

∂xα∂xβ

. (4.10)

When this is the case, we say that g is a Hessian Riemannian (HR) metric and we refer to h as 
the metric potential of g.

As an example, the metric (3.18) that generates the nested dynamics (NRD) is an HR metric 
with potential

h(x) =
∑
α∈A

xα

(
logxα + s logx[α]

)
. (4.11)

Moreover, every separable metric of the form (4.4) is an HR metric with potential

h(x) =
∑
α∈A

θ(xα) (4.12)

for some smooth function θ : [0, +∞) → R with 1/θ ′′(z) = φ(z). In particular, for p /∈ {1, 2}, 
the p-replicator dynamics are generated by the potential

hp(x) =
∑
α∈A

θp(xα) with θp(z) = 1
(p−1)(p−2)

z2−p, (4.13)

and for p = 1 and p = 2, the corresponding potential functions are

h1(x) =
∑

xα logxα and h2(x) = −
∑

logxα, (4.14)

α∈A α∈A
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Table 1
Regularity of the p-replicator dynamics and behavior of the metric potential function hp .

p Name Regularity Potential

0 projection discontinuous quadratic
(0,1) – not Lipschitz power law
1 replicator smooth Gibbs entropy
(1,2) – smooth Tsallis entropy
2 log-barrier smooth logarithmic
(2,∞) – smooth inverse power law

respectively.15 The values p = 0, p = 1, and p = 2 partition the class of p-replicator dynamics 
into six cases whose properties we summarize in Table 1.16

Definition (4.9) is an integrability condition on the matrix field g. As with vector fields on 
simply connected domains, integrability of the matrix field can be characterized by a symmetry 
condition on the derivatives of g,17 namely

∂gαγ

∂xβ

= ∂gβγ

∂xα

for all α,β, γ ∈ A. (4.15)

Conditions (4.9) and (4.15) differ fundamentally from integrability conditions appearing in pre-
vious work on game dynamics, which are imposed on the vector fields that define the dynamics.18

In Section 7, we show that this integrability property provides important theoretical tools for the 
analysis of the induced Riemannian dynamics, which we call Hessian game dynamics.

5. Microfoundations via revision protocols

To provide microfoundations for deterministic game dynamics (D), one typically specifies a 
stochastic revision process that induces (D) in the so-called “mean field” limit. To do so, suppose 
that agents in the population are recurrently chosen at random and given the opportunity to switch 
strategies. What agents do when facing such opportunities is described by a revision protocol ρ

whose components ραβ(x, π) describe the rates at which α-strategists who have received revision 
opportunities switch to strategy β , as a function of the current population state x and payoff 
vector π .19

Together, a population game G ≡ G(A, v) and a revision protocol ρ induce the mean dynam-
ics:

ẋα =
∑
β∈A

[
xβρβα(x, v(x)) − xαραβ(x, v(x))

]
, (MD)

15 It is possible to define the potential hp for all values of p using a single formula. Let θp(z) = (z2−p + p(p − 2)z −
(p −1)2)/((p −1)(p −2)) when p �= {1, 2}, and define θ1 and θ2 by analytic continuation. Linear and constant terms do 
not affect the resulting metric, and the explicit formulas for θ1 and θ2 follow from the fact that lima→0(za −1)/a = log z.
16 When p ≥ 2, the potential hp becomes infinite on the boundary of K, violating a standing assumption for h; we 
address this technicality in Remark 7.1. Also, the (negative) Tsallis entropy (Tsallis, 1988) mentioned in Table 1 is 
defined as Sq(x) = (q − 1)−1 ∑

α(x
q
α − xα) for q ∈ (0, 1).

17 This characterization follows from the integrability condition for ordinary vector fields (i.e., symmetry of the Jacobian 
matrix) and the symmetry of g(x).
18 See Hart and Mas-Colell (2001), Hofbauer and Sandholm (2009), and Sandholm (2010a, 2014).
19 Weibull (1995) and Björnerstedt and Weibull (1996) introduce revision protocols for imitative dynamics. Sandholm 
(2010b, 2015) and Izquierdo et al. (2018) extend this approach to more general classes of dynamics.
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which describe the rate of change in the use of each strategy α as the difference between inflows 
into α from other strategies and outflows from α to other strategies. For a fixed protocol ρ, 
(MD) can be viewed as a map from population games v to laws of motion on X , as described in 
Section 2.2.20

The prototype for this construction is, again, the replicator dynamics (RD). Three well-known 
protocols that generate (RD) are:

ραβ(x,π) = xβπβ, (5.1a)

ραβ(x,π) = −xβπα, (5.1b)

ραβ(x,π) = xβ

[
πβ − πα

]
+ , (5.1c)

with π assumed nonnegative in (5.1a) and nonpositive in (5.1b).21 The xβ appearing in the right-
hand sides allows us to interpret (5.1a)–(5.1c) as imitative protocols, with a revising agent picking 
a candidate strategy by observing the choice and the payoff of a randomly chosen opponent. The 
protocols differ in how payoffs determine the rates at which switches are consummated. Protocols 
(5.1a) and (5.1b), due to Weibull (1995) and Björnerstedt and Weibull (1996), are respectively 
called imitation of success and imitation driven by dissatisfaction. In the former, imitation rates 
increase linearly in the opponent’s payoff; in the latter, imitation rates decrease linearly in the 
revising agent’s own payoff. Protocol (5.1c) is due to Helbing (1992) and Schlag (1998), and 
is called pairwise proportional imitation. Under (5.1c), a revising agent only considers switch-
ing if the opponent’s payoff is higher than their own, and then does so at a rate proportional to 
the payoff difference. Substituting any of these protocols into (MD) and rearranging yields the 
replicator dynamics (RD).

We now show that the revision protocols from this example can be generalized to cover wider 
ranges of Riemannian game dynamics, focusing again on interior population states:22

Proposition 5.1. Let g be an extendable Riemannian metric such that g�(x) is nonnegative for 
all x ∈ X ◦. Then up to a change of speed, the following protocols generate (RmD) as their mean 
dynamics on X ◦:

ραβ(x,π) = (g�(x)1)α

xα

(πg�(x))β, (5.2a)

ραβ(x,π) = − (πg�(x))α

xα

(g�(x)1)β, (5.2b)

where π is assumed nonnegative in (5.2a) and nonpositive in (5.2b). If g(x) is separable, the 
dynamics (RmD) are also generated (up to a change of speed) by the protocol

ραβ(x,π) = g
�
αα(x)

xα

g
�
ββ(x)[πβ − πα]+. (5.2c)

20 Solutions to (MD) may further be viewed as approximations to the sample paths of stochastic evolutionary models 
generated by the game G and protocol ρ: for a comprehensive treatment, see Benaïm and Weibull (2003) and Roth and 
Sandholm (2013).
21 Since the replicator dynamics (and all Riemannian game dynamics) are invariant to equal shifts in all strategies’ 
payoffs, these assumptions about payoffs are innocuous.
22 Under minimal-rank extendible metrics, the result to follow also applies on the boundary. Handling boundary states 
under full-rank extendable metrics requires modifications of the sort described in Lahkar and Sandholm (2008), a direc-
tion we do not pursue here.
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Proof. Substitute (5.2a)–(5.2c) with π = v(x), v�(x) = (v(x)g�(x))
, and n(x) = (1g�(x))

into (MD) to obtain

ẋ = v�(x)
∑
β∈A

nβ(x) − n(x)
∑
β∈A

v
�
β(x). (5.3)

Changing the speed at state x by dividing the right-hand side of (5.3) by s(x) = ∑
β nβ(x) yields 

form (3.33a) of (RmD). �
After a change of speed, the Riemannian dynamics (RmD) take the symmetric form (5.3). 

This symmetry is a source of the appealing properties of the dynamics established below. By 
contrast, the random assignment of revision opportunities implies that, under the mean dynamics 
(MD), the outflow rate from each strategy α to other strategies is proportional to the popularity xα

of the original strategy, resulting in an expression that is not symmetric. The factor xα appearing 
in the denominators in (5.2) also lets us recover the symmetric expression (5.3) from (MD).

The asymmetric treatment of current and candidate strategies under (5.2) is illustrated by our 
running examples:

Example 5.1 (p-replicator dynamics). Since p-replicator dynamics are generated by the Rie-
mannian metric g(x) = diag(1/x

p

1 , . . . , 1/x
p
n ), (5.2c) implies that these dynamics are induced 

by the revision protocols

ραβ(x,π) = xp−1
α x

p
β [πβ − πα]+. (5.4)

When p = 1, we have xp−1
α = 1 and xp

β = xβ , so (5.4) boils down to the pairwise propor-
tional imitation protocol (5.2c) and induces the replicator dynamics (RD). When p = 0, we have 
x

p−1
α = x−1

α and xp
β = 1, so (5.4) gives

ραβ(x,π) = x−1
α [πβ − πα]+, (5.5)

and induces the projection dynamics (PD) on X ◦. Protocol (5.5) was introduced by Lahkar and 
Sandholm (2008), who interpret it as a model of “revision driven by insecurity”: agents playing 
rare strategies are particularly likely to consider revising, while candidate strategies are chosen 
without regard for their current levels of use.

While the revision protocols (5.2) are capable of generating many Riemannian dynamics 
(RmD), one can sometimes construct simpler protocols that take advantage of the structure 
of smaller classes of Riemannian dynamics. For the microfoundations of the nested replicator 
dynamics (NRD) and extensions thereof, we refer the reader to Mertikopoulos and Sandholm 
(2018).

6. General properties

In this section, we derive some general results for (RmD). In Section 6.1 we state a basic but 
technically challenging result on the existence and uniqueness of solutions. In Section 6.2 we 
show that the dynamics exhibit positive correlation with the game’s payoffs, and we characterize 
the dynamics’ rest points as either restricted equilibria or Nash equilibria. In Section 6.3 we study 
the global behavior of the dynamics in potential games. Finally, in Section 6.4 we establish the 
asymptotic stability of regular interior ESSs under (RmD).
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6.1. Existence and uniqueness of solutions

To illustrate the possibilities for existence and uniqueness of solutions, it is useful to start 
with a simple example. Specifically, consider the p-replicator dynamics of Example 4.3 for a 
2-strategy game with action set A = {1, 2} and payoff functions v1(x) = 1, v2(x) = 0.

When p = 1, we obtain the toy replicator equation

ẋ1 = x1(1 − x1). (6.1)

Solutions to this equation exist and are unique for all t ∈ (−∞, ∞), and the support of x(t) is 
invariant. The pure states 0 and 1 are both rest points, and it is easy to check that the unique 
solution with initial condition x1(0) = a ∈ (0, 1) is x1(t) = a/[a + (1 − a)e−t ].

When p = 0, we obtain the Euclidean projection dynamics

ẋ1 =
{

1/2 if x1 < 1

0 if x1 = 1.
(6.2)

For every initial condition x1(0) ∈ [0, 1], this equation admits the unique forward solution 
x1(t) = x1(0) + t/2 for t ∈ [0, 2(1 − x1(0))) and x1(t) = 1 thereafter. Evidently, the support 
of x(t) is not invariant; also, backward solutions are not defined for all time, and solutions are 
not smooth in t when x1 = 1 is reached.

Finally, when p = 1/2, we obtain the differential equation

ẋ1 =
√

x1(1 − x1)√
x1 + √

1 − x1
. (6.3)

Although this equation admits forward (and backward) solutions from every initial condition, 
these are no longer unique. Starting at x1(0) = 0, we have the stationary solution x1(t) = 0 for 
t ∈ [0, ∞); furthermore, one can verify by a direct – albeit tedious – calculation that there is 
another solution, namely x1(t) = 1

2 + t−2
4

√
1 + t − t2/4 for t ∈ [0, 4) and x1(t) = 1 thereafter. 

Additional solutions may linger at x1 = 0 before emulating the previous solution trajectory.
The differences in behavior in the three cases above can be traced back to the properties of 

the underlying Riemannian metrics. First, the replicator dynamics are generated by the Shahsha-
hani metric, which is minimal-rank extendable to all of X . In this case the induced dynamics 
(RmD) are Lipschitz continuous, so existence and uniqueness of solutions is guaranteed by the 
Picard–Lindelöf theorem (along with an argument to account for X being closed). Moreover, the 
support of x(t) is constant, and solutions exist in both forward and backward time (Sandholm, 
2010b, Theorems 4.A.5 and 5.4.7).

On the other hand, the Euclidean projection dynamics (PD) are generated by a full-rank ex-
tendable metric. In such cases, the induced dynamics (RmD) are typically discontinuous, so the 
relevant solution notion is that of a Carathéodory solution, an absolutely continuous trajectory 
that satisfies (RmD) for almost all t ≥ 0. In the case of (PD), Lahkar and Sandholm (2008)
showed that every initial condition admits a unique Carathéodory forward solution, but that dif-
ferent solution orbits can merge in finite time, as illustrated in the previous example and in 
Fig. 3(a).

The following proposition shows that this behavior of (RD) and (PD) is representative of the 
minimal-rank and full-rank extendable cases respectively:
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Proposition 6.1. Let g be an extendable Riemannian metric.

(i) If g is minimal-rank extendable, (RmD) admits a unique global solution from every initial 
condition in X ; moreover, each solution has constant support.

(ii) If g is full-rank extendable, (RmD) admits a unique forward Carathéodory solution from 
every initial condition in X .

Proposition 6.1 justifies the terminology continuous and discontinuous that we introduced in 
Section 3.5 to refer to dynamics induced by minimal-rank and full-rank metrics. The nontriv-
ial part of Proposition 6.1 is the proof of part (ii): despite an apparent similarity, this result is 
considerably harder than the corresponding result of Lahkar and Sandholm (2008) for (PD), so 
we relegate its proof to Appendix D. The main reason for this difficulty is that known unique-
ness proofs for projected differential equations depend crucially on the Riemannian metric being 
constant throughout the dynamics’ state space, an assumption that obviously fails here.

Of course, as can be seen from the continuous – but not Lipschitz continuous – system (6.3), 
(RmD) may fail to admit unique solutions from initial conditions at the boundary of X if the 
underlying metric does not admit a Lipschitz continuous extension to the boundary of X . To avoid 
the resulting complications, we do not consider dynamics that are continuous but not Lipschitz 
continuous in the rest of the paper.

6.2. Basic properties

We now establish some basic relationships between (RmD) and the payoffs of the underlying 
game. We first show that (RmD) respects positive correlation:

Proposition 6.2. The dynamics (RmD) satisfy (PC).

Proof. Let V (x) = �x(v
�(x)). We then claim that

〈v(x)|V (x)〉 = 〈v�(x),V (x)〉x ≥ 〈�x(v
�(x)),V (x)〉x = ‖V (x)‖2

x ≥ 0, (6.4)

with equality if and only if V (x) = 0. The only step in (6.4) needing justification is the first 
inequality. For this step, we split the analysis into three cases. First, if x ∈ X ◦, the inequality 
binds because �x orthogonally projects RA onto RA

0 = Admg(x), which contains V (x). Second, 
if x ∈ bd(X ) and g is minimal-rank extendable, then v�(x) ∈ Rsupp(x), so the inequality binds 
because �x projects Rsupp(x) orthogonally onto RA

0 ∩Rsupp(x) = Admg(x), which contains V (x). 
Finally, if x ∈ bd(X ) and g is full-rank extendable, �x is the closest point projection of RA

onto the tangent cone TCX (x). Hence, by Moreau’s decomposition theorem (Hiriart-Urruty and 
Lemaréchal, 2001), we infer that v�(x) − �x(v

�(x)) lies in the normal cone

NCX (x) = {w ∈ RA : 〈w,z〉x ≤ 0 for all z ∈ TCX (x)}. (6.5)

Since V (x) ∈ Admg(x) = TCX (x), the first inequality in (6.4) is immediate. �
Proposition 6.2 is not particularly surprising: after all, the basic postulate behind (RmD) is that 

the dynamics’ vector of motion is the closest feasible approximation to the game’s payoff field, 
with the notion of closeness determined by the underlying Riemannian metric (or, equivalently, 
cost function). As we show below, this alignment can be exploited further to characterize the 
dynamics’ rest points.
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To that end, recall that one of the main attributes of the Euclidean projection dynamics (PD)
is Nash stationarity:

x∗ ∈X is a rest point if and only if it is a Nash equilibrium. (NS)

This property does not hold under the replicator dynamics: for instance, every pure state of X is 
stationary under (RD). In this case, (NS) is replaced by the notion of restricted stationarity:23

x∗ ∈X is a rest point if and only if it is a restricted equilibrium. (RS)

Our next result shows that this difference between the projection and the replicator dynamics 
is representative of the discontinuous and continuous cases, and highlights one advantage of the 
former over the latter:

Proposition 6.3.

(i) Continuous Riemannian dynamics satisfy (RS).
(ii) Discontinuous Riemannian dynamics satisfy (NS).

Proof. For (i), recall that the coordinate expression (3.33) for (RmD) always holds when g is 
minimal-rank extendable, and ẋα = 0 whenever xα = 0. Therefore, it suffices to check that x∗ ∈
X ◦ is a rest point if and only if all the components of v(x∗) are equal. To that end, note that x∗
is a rest point of (3.33) if and only if

v�(x∗) =
∑

γ v
�
γ (x∗)∑

γ nγ (x∗)
n(x∗) ∝ n(x∗). (6.6)

In turn, this means that x∗ is a rest point of (RmD) if and only if v�(x∗) ∝ n(x∗); our claim then 
follows from the fact that g�(x∗) is invertible.

For (ii), assume that g if full-rank extendable and fix some x∗ ∈ X . It is easy to show that x∗
is a Nash equilibrium if and only if it satisfies the variational characterization

0 ≤ 〈v(x∗)|x − x∗〉 = 〈v�(x∗), x − x∗〉x∗ for all x ∈X , (6.7)

which says that v�(x∗) lies in the normal cone NCX (x∗) of X at x∗ (cf. Eq. (6.5) above). More-
au’s decomposition theorem then yields v�(x∗) ∈ NCX (x∗) if and only if �x∗(v�(x∗)) = 0, so 
our assertion follows. �
Remark 6.1. We note without proof that shifting all strategies’ payoffs by the same amount has 
no effect on (RmD), and rescaling all strategies’ payoffs by the same factor only changes the 
speed at which solution paths are traversed. In addition, on the face of X spanned by a subset A′
of A, continuous dynamics are invariant to changes in the payoffs of strategies outside of A′.

6.3. Global convergence in potential games

Recall that G ≡ G(A, v) is a potential game if vα(x) = ∂αf (x) for some potential function 
f : X → R (cf. Example 2.2). It then follows from Proposition 6.2 that f is a strict global Lya-

23 Recall here that x∗ is a restricted equilibrium if all strategies in its support earn equal payoffs.
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punov function for (RmD), meaning that its value increases along (RmD) whenever the dynamics 
are not at rest.24

For continuous Riemannian dynamics, a standard Lyapunov argument implies that all ω-limit 
points of (RmD) are rest points – and hence, by Proposition 6.3, restricted equilibria of G. How-
ever, this argument does not extend to discontinuous dynamics and Nash equilibria because it 
requires continuity of solutions with respect to initial conditions, a requirement which is difficult 
to prove in our case. To circumvent this obstacle, we establish a lower semi-continuous (l.s.c.) 
bound on the rate of change of the game’s potential function. This bound then allows us to apply 
Proposition C.1 in Appendix C, which shows that, for dynamics on a compact set, such a bound 
on the rate of change of a Lyapunov function guarantees global convergence.

Proposition 6.4. Let G be a potential game with potential function f . Then, f is a strict Lya-
punov function for (RmD) and every ω-limit point of (RmD) is a rest point of (RmD). These are 
restricted equilibria if (RmD) is continuous, and Nash equilibria if (RmD) is discontinuous.

Proof. Let V (x) = �x(v
�(x)) and let x(t) be a solution of (RmD). Then, Proposition 6.2 yields

d

dt
f (x(t)) = 〈Df (x(t))|ẋ(t)〉 = 〈v(x(t))|V (x(t))〉 ≥ 0, (6.8)

with equality if and only if V (x(t)) = 0. Hence, f is a strict global Lyapunov function for (RmD).
When (RmD) is (Lipschitz) continuous, a standard argument shows that every ω-limit point 

of (RmD) is a rest point thereof (see e.g., Sandholm, 2010b, Theorem 7.B.3). The discontinuous 
case however requires a different treatment. To start, note that

d

dt
f (x(t)) = 〈v(x(t))|V (x(t))〉 = 〈v�(x),�x(v

�(x))〉x ≥ ‖V (x(t))‖2
x ≥ 0, (6.9)

where the first inequality follows from Moreau’s decomposition theorem. Both inequalities bind 
if and only if V (x(t)) = 0; since the speed function x �→ ‖V (x)‖x is lower semi-continuous (cf. 
Lemma C.2), Proposition C.1 shows that every ω-limit point of (RmD) is a rest point. �

The classic analyses of Kimura (1958) and Shahshahani (1979) showed that in common in-
terest games, average payoffs are increased at a maximal rate under the replicator dynamics, 
provided that “maximal” is defined with respect to the Shahshahani metric. We conclude this 
section by deriving an analogous principle for all Riemannian game dynamics. To state it, define 
the gradient of a smooth function f : K◦ → R with respect to g by

gradf (x) = (Df (x)g−1(x))
, (6.10)

that is, as the (necessarily unique) vector satisfying

〈Df (x)|z〉 = 〈gradf (x), z〉x for all z ∈RA, x ∈K◦. (6.11)

Geometrically, the vector gradf (x) represents the direction of maximal increase of the function 
f at x with respect to the metric g.25 We then have:

24 Definitions concerning stability and convergence are collected in Appendix C.
25 Specifically, this means that gradf (x) = arg max{Dzf (x) : ‖z‖x = 1}; that this is so follows from the definition of 
gradf (x) and the Cauchy–Schwarz inequality.
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Proposition 6.5. Let G be a potential game with potential function f and let g be an extendable 
Riemannian metric. Then, for all x ∈ X ◦, the vector field that defines (RmD) is the projection of 
gradf onto TX (x) with respect to g.

Proof. Since v(x) = Df (x), we have �x(v
�(x)) = �x(gradf (x)), as claimed. �

Hence, at interior states, the dynamics (RmD) increase the value of potential at a maximal rate 
under the geometry defined by g, subject to feasibility. For discontinuous dynamics, this conclu-
sion remains true even at boundary states. For continuous dynamics, the interior of each face of 
X is invariant under (RmD), so this conclusion holds provided that feasibility is understood to 
incorporate this additional constraint.

6.4. Local stability of regular interior ESSs

To state the final general property of (RmD), we recall that an interior population state x∗ ∈X ◦
is a regular evolutionarily stable state (or regular ESS) of game G ≡ G(A, v) (Maynard Smith 
and Price, 1973; Taylor and Jonker, 1978) if x∗ is a Nash equilibrium of G and if the derivative 
of v at x∗ exists and is negative definite with respect to RA

0 .26 The following proposition on the 
stability of such states is essentially due to Hopkins (1999), who builds on a result of Taylor and 
Jonker (1978) for the replicator dynamics.

Proposition 6.6. Let x∗ be a regular interior ESS of G. Then x∗ is asymptotically stable under 
(RmD).

Proof. Using (3.33b) (or see Proposition A.3), we can write (RmD) in the form

V (x) = M(x)v(x)
 (6.12)

for x ∈ X ◦, where M(x) is symmetric, positive definite with respect to RA
0 , and maps 1 to 0. In 

fact, (3.33b) implies that these properties of M(x) are satisfied whenever x ∈K◦.
To streamline the computation to follow, extend the C1 function v from a neighborhood of x∗

in X ◦ to a neighborhood of x∗ in K◦ (for instance, by setting v(x + c1) = v(x)). Then using the 
chain rule, we obtain

∂Vα

∂xβ

(x∗) =
∑
γ

∂Mαγ

∂xβ

(x∗)vγ (x∗) +
∑
γ

Mαγ (x∗)
∂vγ

∂xβ

(x∗). (6.13)

Since x∗ is an interior Nash equilibrium, v(x∗) is a constant covector, and the fact that M(x)

maps 1 to 0 implies that 
∑

γ Mαγ (x) ≡ 0, and hence that 
∑

γ
∂Mαγ

∂xβ
(x∗) = 0. Thus the initial 

sum in (6.13) is 0, and we may rewrite what remains of (6.13) in matrix form as

DV (x∗) = M(x∗)Dv(x∗)
, (6.14)

where Dv(x∗)
≡ ( ∂vα

∂xβ
(x∗))α,β∈A.

By the definition of regular interior ESS, the matrix Dv(x∗)
 is negative definite with respect 
to RA

0 . Combining this fact and the previously mentioned properties of M(x∗) with Hines’s 

26 The last condition requires that 
∑

α zαv′
α(x∗; z) < 0 for all z ∈ RA

0 \ {0}, where v′
α(x∗; z) denotes the directional 

derivative of vα . An equivalent condition is used in the proof below.
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lemma (Hines, 1980; see also Sandholm, 2010b, Lemma 8.5.1), we conclude from (6.14) that 
the eigenvalues of DV (x∗) corresponding to eigenvectors in RA

0 have negative real part. Thus 
x∗ is asymptotically stable under (6.12). �
Remark 6.2. When the Riemannian metric g(x) is separable (Example 4.4), the asymptotic sta-
bility of regular boundary ESSs can be established using a more elaborate linearization argument; 
for the case of the replicator dynamics, see Taylor and Jonker (1978) or Sandholm (2010b, The-
orem 8.5.5). But separable metrics are instances of Hessian–Riemannian metrics (Example 4.6), 
and we will prove a general asymptotic stability result for (not necessarily regular) ESSs under 
Hessian game dynamics in the next section.

7. Hessian game dynamics

By virtue of the integrability property that defines them, potential games have desirable con-
vergence properties under a wide range of evolutionary dynamics. By contrast, convergence 
results for other classes of games – for instance, contractive games – require additional struc-
ture, often taking the form of integrability properties built into the dynamics themselves.27

In this section, we show that the integrability of Hessian Riemannian metrics allows us to 
generalize several properties of the replicator dynamics and the Euclidean projection dynam-
ics to a substantially broader class of dynamics. These Hessian game dynamics, introduced in 
Example 4.6, take the form

ẋ = arg max
z∈Admg(x)

[
〈v(x)|z〉 − 1

2‖z‖2
x

]
, g = Hessh, (HD)

where the continuous function h : K → R is C3-smooth on every positive suborthant of K, and 
where Hessh(x) is positive definite for all x ∈ K◦. As we demonstrate below, the integrability 
built into the dynamics (HD) is the source of a variety of stability and convergence results.

A key element of our analysis is the so-called Bregman divergence, which we introduce in 
Section 7.1. In Section 7.2, we establish global convergence to equilibrium in contractive games 
and local stability of evolutionarily stable states (ESSs), while Section 7.3 demonstrates the con-
vergence of time-averages of interior trajectories to Nash equilibrium and provides sufficient 
conditions for permanence. Finally, Section 7.4 establishes the elimination of strictly dominated 
strategies under continuous Hessian dynamics.

7.1. Bregman divergences

When used as a tool for establishing convergence, Lyapunov functions typically measure some 
sort of “distance” between the current state and a target state x∗. For Hessian dynamics, a natural 
point of departure is the potential function h of the metric g = Hessh that defines them. However, 
since the (game-specific) target state x∗ is independent of g, there is no reason that h itself should 
serve as a Lyapunov function. Instead, taking advantage of the convexity of h, we consider the 
difference between h(x∗) and the best linear approximation of h(x∗) from x.

Formally, the Bregman divergence of h (Bregman, 1967) is defined as

Dh(x
∗, x) = h(x∗) − h(x) − h′(x;x∗ − x), x∗, x ∈X , (7.1)

27 See Hofbauer and Sandholm (2007), Sandholm (2010a), and Zusai (2018).
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where h′(x; x∗ − x) is the one-sided derivative of h at x along x∗ − x, i.e.,

h′(x;x∗ − x) = lim
t→0+ t−1 [

h(x + t (x∗ − x)) − h(x)
]
. (7.2)

Since h is convex, we have

Dh(x
∗, x) ≥ 0, with equality if and only if x∗ = x. (7.3)

On the other hand, Dh is not symmetric in x∗ and x, so it is not a bona fide distance function 
on X ; rather, Dh(x

∗, x) describes the remoteness of x from the base point x∗, hence the name 
“divergence”.

Revisiting our two archetypal examples, the Euclidean metric is generated by the quadratic 
potential h(x) = 1

2

∑
α x2

α . Definition (7.1) then yields the Euclidean divergence

DEucl(x
∗, x) = 1

2

∑
α
(xα − x∗

α)2, (7.4a)

which is (uncharacteristically) symmetric in x∗ and x. Analogously, the Shahshahani metric is 
generated by the (negative) entropy h(x) = ∑

α xα logxα . A short calculation shows that the 
corresponding divergence function is the Kullback–Leibler (KL) divergence

DKL(x∗, x) =
∑

α: x∗
α>0

x∗
α log(x∗

α/xα), (7.4b)

which has been used extensively in the analysis of the replicator dynamics (Hofbauer and Sig-
mund, 1998; Weibull, 1995).

The key qualitative difference between the Euclidean divergence (7.4a) and the KL di-
vergence (7.4b) is that the former is finite for all x, x∗ ∈ X , whereas the latter blows up 
to +∞ when supp(x∗) � supp(x). The reason for this blow-up is that the entropy function 
h(x) = ∑

α xα logxα becomes infinitely steep as any boundary point x of X is approached from 
the interior of X , i.e.,

supα∈A|∂αh(xn)| → ∞ for every interior sequence xn converging to x. (7.5)

When this is the case for all x ∈ bd(X ), we say that h is steep (Alvarez et al., 2004; Hofbauer 
and Sandholm, 2002). At the opposite end of the spectrum, if Dh(x) exists for all x ∈ X , we say 
that h is nonsteep.

The link between the steepness of h and the finiteness of the associated Bregman divergence 
is provided by the following lemma:

Lemma 7.1. Fix x∗ ∈ X and let D(x∗) denote the union of the relative interiors of the faces of 
X that contain x∗, i.e.,

D(x∗) ≡ {x ∈ X : supp(x∗) ⊆ supp(x)}. (7.6)

If h is steep, we have Dh(x
∗, x) < ∞ for all x ∈ D(x∗); by contrast, if h is nonsteep, we have 

Dh(x
∗, x) < ∞ for all x ∈X .

Proof. If h is steep and x ∈D(x∗), the smoothness of h on the face of X spanned by supp(x) ⊇
supp(x∗) implies that the directional derivative h′(x; x∗ − x) exists and is finite, so Dh(x

∗, x)



P. Mertikopoulos, W.H. Sandholm / Journal of Economic Theory 177 (2018) 315–364 347
is itself finite. If instead h is nonsteep, h′(x; x∗ − x) exists and is finite for all x ∈ X , so again 
Dh(x

∗, x) < ∞. �
Beyond the positive definiteness property (7.3), the attribute of the Bregman divergence that 

recommends it as a Lyapunov function for (HD) is that the level sets of Dh(x
∗, ·) are perpendic-

ular to all rays emanating from x∗ under g = Hessh. Formally, we have:

Lemma 7.2. Let g = Hessh be an extendable HR metric and let x∗ ∈ X . Then, for every smooth 
curve x(t) with constant support containing that of x∗, we have:

d

dt
Dh(x

∗, x(t)) = 〈ẋ(t), x(t) − x∗〉x(t). (7.7)

In particular, if Dh(x
∗, x(t)) is constant, ẋ(t) is perpendicular to x(t) − x∗. Finally, if h is 

nonsteep, the above conclusions hold for every smooth curve x(t) on X .

Proof. The proof is a direct application of the chain rule:

d

dt
Dh(x

∗, x) = −
∑

α

[
∂h

∂xα

ẋα + ∂h

∂xα

d

dt
(x∗

α − xα) +
∑

β

∂2h

∂xα∂xβ

(x∗
α − xα)ẋβ

]
=

∑
α,β

(x∗
α − xα)gαβ(x)ẋβ = 〈ẋ, x − x∗〉x, (7.8)

where all summations are taken over the (constant) support A′ ≡ supp(x(t)) of x(t) and we used 
the fact that ẋα = 0 for α /∈ A′. Finally, in the nonsteep case, h is smooth throughout X , so the 
above holds for every smooth curve x(t). �

Within the class of Hessian Riemannian metrics, steepness of h roughly corresponds to 
minimal-rank extendability of the metric g = Hessh, and nonsteepness to full-rank extendabil-
ity. These analogies fail when the steepness of h does not adequately control the regularity of 
g near the boundary of X , or when g is minimal-rank extendable but generates non-Lipschitz 
dynamics. Bearing this in mind, we use the term continuous Hessian dynamics for Riemannian 
dynamics generated by a minimal-rank extendable metric g = Hessh with steep h, and the term 
discontinuous Hessian dynamics for Riemannian dynamics generated by a full-rank extendable 
metric g = Hessh with nonsteep h. In what follows, we will tacitly assume that the dynamics 
(HD) are either continuous or discontinuous.

7.2. Contractive games and evolutionarily stable states

Recall that a population game G ≡ G(A, v) is called contractive if 〈v(x′) − v(x)|x′ − x〉 ≤ 0
for all x, x′ ∈ X , strictly contractive if the inequality is strict whenever x �= x′, and conservative
if the inequality always binds (cf. Example 2.3). As is well known, the set of Nash equilibria 
of any contractive game is convex, and every strictly contractive game admits a unique Nash 
equilibrium (Hofbauer and Sandholm, 2009).

Combining the defining inequality of strictly contractive games with the variational charac-
terization of Nash equilibria (6.7), it follows that the (necessarily unique) Nash equilibrium of a 
strictly contractive game satisfies the inequality

〈v(x)|x − x∗〉 ≤ 0 with equality only if x = x∗. (7.9)
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Hofbauer and Sandholm (2009) call a state satisfying (7.9) a globally evolutionarily stable state
(GESS). This is the global version of the seminal local solution concept of Maynard Smith and 
Price (1973): if (7.9) holds for all x �= x∗ in a neighborhood of x∗, then x∗ is called an evolution-
arily stable state (ESS).28

It is well known that the GESS x∗ of a strictly contractive game attracts all solutions of 
the replicator dynamics whose initial support contains that of x∗; by comparison, x∗ attracts 
all orbits of the Euclidean projection dynamics (PD). Theorem 7.3 extends these results to all 
Hessian dynamics (HD).

Theorem 7.3. Let x∗ be the (necessarily unique) Nash equilibrium of a strictly contractive 
game G. Then:

(i) For all continuous Hessian dynamics, Dh(x
∗, ·) is a strict decreasing Lyapunov function on 

D(x∗), and x∗ is asymptotically stable with basin D(x∗).
(ii) For all discontinuous Hessian dynamics, Dh(x

∗, ·) is a strict decreasing global Lyapunov 
function, and x∗ is globally asymptotically stable.

Proof. We begin with the continuous case. By Proposition 6.1(i), every solution x(t) of (HD)
has constant support. Hence, if x(0) ∈D(x∗), Lemma 7.2 yields:

d

dt
Dh(x

∗, x) = 〈ẋ, x − x∗〉x = 〈�x(v
�(x)), x − x∗〉x

= 〈v�(x), x − x∗〉x = 〈v(x)|x − x∗〉, (7.10a)

≤ 0, (7.10b)

where we used the definition of �x for minimal-rank extendable metrics (cf. Section 3.6) to 
obtain (7.10a) and the definition (7.9) of a GESS for (7.10b). Since equality in (7.10) holds if 
and only if x = x∗, we conclude that Dh(x

∗, x) is a strict Lyapunov function on D(x∗). If we 
can show in addition that x(t) has no ω-limit points in X \D(x∗), then asymptotic stability with 
basin D(x∗) follows from standard arguments (see e.g., Sandholm, 2010b, Theorem 7.B.3).

Assume therefore that x(t) admits an ω-limit point xω �= x∗, so x(tn) → xω for some se-
quence of times tn ↑ ∞. Since |ẋα(t)| is bounded from above by Vmax ≡ supx∈X maxβ |Vβ(x)| <
∞, there exists an open neighborhood U of xω and positive a, δ, n0 > 0 such that x(t) ∈ U and 
〈v(x(t))|x(t) − x∗〉 ≤ −a < 0 for all t ∈ [tn, tn + δ] and all n ≥ n0. Hence, by (7.10), we get

Dh(x
∗, x(tn + δ)) − Dh(x

∗, x(0)) ≤
tn+δ∫
0

〈v(x(s))|x(s) − x∗〉 ds ≤ −a(n − n0)δ. (7.11)

We thus get lim inft→∞ Dh(x
∗, x(t)) = −∞, a contradiction.

For the discontinuous case, note first that since x∗ − x ∈ TCX (x), Moreau’s decomposition 
theorem implies that 〈�x(v

�(x)), x − x∗〉x ≤ 〈v�(x), x − x∗〉x . Thus, replacing the first equality 
in (7.10a) by an inequality, (7.10) shows that Dh(x

∗, ·) is a strict global Lyapunov function for 
(HD). Global asymptotic stability then follows from Proposition C.1. �
28 This concise characterization of evolutionary stability is due to Hofbauer et al. (1979).
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The only implication of G being strictly contractive used in the previous proof is that its 
Nash equilibrium is a GESS. More generally, if a game admits an ESS x∗, applying the above 
arguments in a neighborhood of x∗ defined by a level set of Dh(x

∗, ·) yields the following result:

Theorem 7.4. Evolutionarily stable states are asymptotically stable under (HD).

Hofbauer and Sigmund (1990), Hopkins (1999), and Harper (2011) all offer results on the 
local stability of interior evolutionarily stable states under Riemannian game dynamics. Hof-
bauer and Sigmund (1990) show that under all Riemannian (not necessarily Hessian) dynamics 
(RmD), the function L(x) = 〈x − x∗, x − x∗〉x∗ is a strict local Lyapunov function for interior 
ESSs x∗, implying that x∗ is asymptotically stable. As noted in Section 6.4, Hopkins (1999) uses 
linearization to establish local stability of regular interior ESSs under (RmD). Finally, Harper 
(2011) employs a version of the argument above to prove asymptotic stability of ESSs for sepa-
rable Hessian dynamics of the form (4.4).

An important case of contractive games that do not admit an ESS is the class of conservative 
games, which include population games generated by matching in symmetric zero-sum games. 
Under the replicator dynamics, the KL divergence does not provide a strict Lyapunov function for 
conservative games, but rather a constant of motion. The following result extends this conclusion 
to all Hessian dynamics:

Proposition 7.5. Let x∗ be a Nash equilibrium of a conservative game G. Then, Dh(x
∗, ·) is a 

constant of motion along any interior solution segment of (HD).

Proof. Simply note that (7.10) binds if G is conservative and x ∈X ◦. �
Remark 7.1. In the definition of (HD), we required that h be finite throughout X . This re-
quirement is unnecessary for the preceding results when x∗ is interior; however, if x∗ lies on 
the boundary of X , the proofs of Theorems 7.3 and 7.4 do not go through because Dh(x

∗, ·)
is no longer well-defined throughout D(x∗). Nevertheless, the results themselves remain true 
if g = Hessh is separable, allowing us to handle the p-replicator dynamics for p ≥ 2 (Ex-
ample 4.3). To prove this, it suffices to replace the implicit summation over all strategies in 
h′(x; x∗ − x) with a sum extending over only the strategies that lie in the support of x∗.

7.3. Convergence of time-averaged trajectories and permanence

We now extend two classic results for the replicator dynamics in random matching games 
(Example 2.1) to Hessian dynamics. The results for these games take advantage of the linearity 
of payoffs vα(x) = ∑

β∈A Aαβxβ in the population state.
The first such result states that if a solution x(t) of the replicator dynamics stays a positive dis-

tance away from the boundary of the simplex, then the time-averaged orbit x̄(t) = t−1
∫ t

0 x(s) ds

converges to the set of Nash equilibria of the underlying game (Schuster et al., 1981). The class 
of games to which this result applies includes zero-sum games (cf. Proposition 7.5) and games 
satisfying sufficient conditions for permanence (cf. Proposition 7.7 below). The following propo-
sition shows that this convergence property extends to all Hessian dynamics:

Proposition 7.6. Let G be a random matching game and let x(t) be a solution orbit of (HD). 
If x(t) is contained in a compact subset of X ◦, the time-averaged orbit x̄(t) = t−1

∫ t

0 x(s) ds

converges to the set of Nash equilibria of G.
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In the case of the replicator dynamics, this is proved by introducing the auxiliary variables 
yα = logxα and using the fact that ẏ = ẋ/x. To extend this proof to (HD), we instead define y
via the Bregman divergence of h:

Proof of Proposition 7.6. Let yα = Dh(eα, x), so ẏα = 〈v(x)|x − eα〉 = 〈v(x)|x〉 − vα(x) by 
Lemma 7.2. Then, for all α, β ∈A, we get

yα(t) − yβ(t) = cαβ +
t∫

0

[
vβ(x(s)) − vα(x(s))

]
ds, (7.12)

where cαβ = yα(0) − yβ(0). Since x(t) is contained in a compact subset of X ◦, Lemma 7.1
implies that supt yα(t) < ∞ for all α ∈A. Thus, dividing both sides of (7.12) by t and taking the 
limit t → ∞, we obtain

lim
t→∞

[
vα(x̄(t)) − vβ(x̄(t))

] = 0, (7.13)

where we have used the linearity of vα(x) = ∑
β Aαβxβ in x to bring the integral into the argu-

ments of vα and vβ .
Equation (7.13) implies that if x̄∗ is an ω-limit point of x̄(t), then vα(x̄∗) = vβ(x̄∗) for all 

α, β ∈A, so x̄∗ is a Nash equilibrium of G. Since X is compact, every solution of (HD) converges 
to its ω-limit set, and our assertion follows. �

Proposition 7.6 applies when the population share of each strategy remains bounded away 
from zero along all interior solution trajectories, a property known as permanence. Formally, 
a dynamical system on X is called permanent if there exists a threshold δ > 0 such that every 
interior solution satisfies lim inft→∞ xα(t) ≥ δ for all α ∈A.

Hofbauer and Sigmund (1998) establish a sufficient condition for permanence under the repli-
cator dynamics. Proposition 7.7 extends this result to all continuous Hessian dynamics, providing 
a sufficient condition for Proposition 7.6 to apply:

Proposition 7.7. Let G be a random matching game. Assume that the dynamics (HD) are contin-
uous and there exists some p ∈ X ◦ such that

〈v(x∗)|p − x∗〉 > 0 for all boundary rest points x∗ of (HD). (7.14)

Then, the dynamics (HD) are permanent.

The proof of Proposition 7.7 follows the proof technique of Theorem 13.6.1 of Hofbauer and 
Sigmund (1998), and is presented in Appendix D.

7.4. Dominated strategies

We conclude by considering the elimination and survival of dominated strategies under (HD). 
To that end, recall that α ∈ A is strictly dominated by β ∈ A if vα(x) < vβ(x) for all x ∈ X . 
More generally, p ∈ X is strictly dominated by q ∈ X if 〈v(x)|p〉 < 〈v(x)|q〉 for all x ∈ X , 
meaning that the average payoff of a small influx of mutants is always higher when the mutants 
are distributed according to q rather than p. We then say that p ∈ X becomes extinct along x(t)

if min{xα(t) : α ∈ supp(x∗)} → 0 as t → ∞ – or equivalently, if there are no ω-limit points of 
x(t) in D(p).
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Under the replicator dynamics, it is well known that dominated strategies become extinct 
along every interior solution trajectory (Akin, 1980). As we show below, this elimination result 
extends to all continuous Hessian dynamics (HD):

Proposition 7.8. Under all continuous Hessian dynamics (HD), strictly dominated strategies 
become extinct along every interior solution orbit.

Proof. The proof follows a standard argument for the replicator dynamics, replacing the KL 
divergence (7.4b) with the Bregman divergence (7.1). Specifically, Lemma 7.2 implies that along 
any interior solution x(t),

d

dt
(Dh(p,x) − Dh(q, x)) = 〈ẋ, x − p〉x − 〈ẋ, x − q〉x

= 〈�x(v
�(x)), q − p〉x = 〈v�(x), q − p〉x = 〈v(x)|q − p〉, (7.15)

where the penultimate equality uses the fact that x ∈ X ◦. Since q strictly dominates p and 
v is continuous, we have 〈v(x)|q − p〉 ≥ a for some positive constant a > 0, implying that 
Dh(p, x(t)) → ∞. Hence, by Lemma 7.1, we conclude that x(t) has no ω-limit points in 
D(p). �

In general, the conclusion of Proposition 7.8 is false for discontinuous Hessian dynamics: 
Sandholm et al. (2008) construct a four-strategy game with a strictly dominated strategy that is 
played recurrently by a nonnegligible fraction of the population under the Euclidean projection 
dynamics (PD). The argument above shows that this strategy must become less common when the 
state is in the interior of X ; however, solutions to (PD) are able to enter and leave the boundary 
of X , and while there, dominated strategies may become more common. We conjecture that 
this construction can be suitably extended to all discontinuous Hessian dynamics, but we do not 
tackle this issue here.

8. Links with reinforcement learning

Under a variety of reinforcement learning processes for normal form games, mixed strate-
gies evolve according to the replicator dynamics – see e.g., Börgers and Sarin (1997), Posch 
(1997), Rustichini (1999), Hopkins (2002) and Hofbauer et al. (2009). We conclude the paper 
by describing a broader connection between reinforcement learning and Hessian game dynam-
ics.

8.1. Reinforcement learning

Our starting point is a class of reinforcement learning dynamics for N -player normal form 
games introduced by Coucheney et al. (2015) and Mertikopoulos and Sandholm (2016). Over 
the course of play, each player maintains a score vector representing the cumulative payoffs 
of each of his strategies; then, at each moment in time, the player selects a mixed strategy by 
applying a choice map to this score vector, similar in function to the perturbed best response 
maps used in stochastic fictitious play and perturbed best response dynamics (Fudenberg and 
Levine, 1998; Hofbauer and Sandholm, 2002, 2007).
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Formally, let vkα(x) denote the expected payoff of the α-th strategy of player k at mixed 
strategy profile x = (x1, . . . , xN) in an N -player normal form game. The choice map Qk of 
player k is then defined as

Qk(yk) = arg max
xk∈Xk

{〈yk|xk〉 − hk(xk)}, (8.1)

where Xk ≡ �(Ak) denotes the mixed strategy space of player k (Ak being the corresponding 
strategy set), and hk : Xk → R is a smooth, strongly convex penalty function. The reinforcement 
learning process described above can then be written as

ẏk = vk(x)

xk = Qk(yk).
(RL)

Now, let gk = Hesshk and write nkα(x) = ∑
β∈Ak

g−1
k,αβ(x). Mertikopoulos and Sandholm 

(2016) showed that when the mixed strategy profile x(t) is interior, its evolution under (RL) is 
given by

ẋkα =
∑

β∈Ak

[
g−1

k,αβ(x) − nkα(x)nkβ(x)∑
γ nkγ (x)

]
vkβ(x). (RLD)

A comparison with (3.33b) shows that the dynamics of mixed strategies under (RL) agree with 
the Hessian dynamics (HD) at interior states.29

8.2. A common derivation of (HD) and (RLD)

The derivation of (HD) here and of (RLD) in Mertikopoulos and Sandholm (2016) have very 
different starting points, leaving the reasons behind their equivalence somewhat mysterious. We 
now make these reasons clearer by deriving both dynamics using a common set of tools. Here 
we present the basic idea behind the argument, using the theory of convex duality to establish the 
equivalence of versions of (HD) of (RLD) defined on the entire positive orthant K◦.30 Establish-
ing the equivalence of the original processes on X ◦ using this approach requires further ideas, 
which we present in Appendix A.2.

The starting point for both (HD) and (RLD) is the potential function h, assumed here to 
be smooth, strongly convex, and steep at the boundary of K in the sense of (7.5). The convex 
conjugate of h is then defined as31

h∗(y) = sup
x∈K◦

{〈y|x〉 − h(x)}, y ∈ (RA)∗. (8.2)

29 While we have defined Riemannian game dynamics for single population games and reinforcement learning for 
N -person normal form games, this difference is of no consequence. One can similarly define Riemannian game dynamics 
for multipopulation games, or a symmetrized reinforcement learning process for symmetric two-player normal form 
games (cf. Appendix A.2).
30 The usefulness of convex conjugates in analyzing maps of the form (8.1) is well known in learning and optimization 
– see e.g., Nemirovski and Yudin (1983), Hofbauer and Sandholm (2002), Shalev-Shwartz (2011), and Mertikopoulos 
and Zhou (2018).
31 For a comprehensive treatment, see Rockafellar (1970) or Hiriart-Urruty and Lemaréchal (2001).
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Since h is steep and strongly convex, the supremum above is attained at a unique point 
QK(y) ∈ K◦ (Rockafellar, 1970, Theorem 26.5).32 By the first-order optimality conditions for 
(8.2), we then get

QK(y) ≡ arg max
x∈K◦

{〈y|x〉 − h(x)} = (Dh)−1(y), (8.3)

where (Dh)−1 is the inverse function of Dh. Applying the envelope theorem to (8.2), we then 
obtain

Dh∗(y) = QK(y). (8.4)

It follows from (8.3) and (8.4) that Dh(Dh∗(y)) ≡ y, so differentiating and rearranging yields

Hessh∗(y) = (Hessh(x))−1 (8.5)

with the inverse of the Hessian matrix of h being evaluated at x = QK(y).
We now introduce and compare full-dimensional analogues of continuous Hessian dynamics 

and (symmetric) reinforcement learning, taking the orthant K◦ as the state space (and so defining 
payoffs v on K◦). In the case of (HD), the full-dimensional domain makes projections redundant, 
so the induced dynamics take the form

ẋ = v�(x) = g−1(x) v(x)
= (Hessh(x))−1 v(x)
. (HDK)

For its part, the full-dimensional analogue of (RL) is

ẏ = v(x),

x = QK(y),
(RLK)

with QK defined as in (8.3) above. Differentiating (RLK) and applying (8.4) and (8.5) then yields

ẋ = DQK(y) v(x)
= Hessh∗(y) v(x)
= (Hessh(x))−1 v(x)
. (RLDK)

We can express this argument in words. By definition, (full-dimensional) Riemannian dy-
namics are obtained by transforming payoffs at an interior population state x using the ma-
trix g−1(x). In the Hessian case, the metric g admits a potential function h, so we have 
g−1(x) = (Hessh(x))−1 by definition. As for reinforcement learning, differentiation shows that 
the dynamics of the mixed strategy x are obtained by transforming payoffs at x by the derivative 
matrix DQK(y) of the choice map (8.3). Basic facts about convex conjugacy imply that this 
derivative is equal to (Hessh(x))−1, where h is the penalty function that generates QK. This 
argument establishes the equivalence of (HDK) and (RLDK). For a corresponding argument for 
the original processes (HD) and (RLD), see Appendix A.2.

8.3. Boundary behavior in the nonsteep regime

Since continuous Hessian dynamics coincide with the reinforcement scheme (RL) when the 
penalty functions hk are steep, certain results for interior trajectories – Propositions 7.6 and 7.8 in 
particular – can be obtained directly from the analysis of Mertikopoulos and Sandholm (2016). 

32 Since h is strongly convex, it is bounded below by a strictly convex quadratic function (Hiriart-Urruty and 
Lemaréchal, 2001, Theorem B.4.1.1), which in turn implies that the domain of h∗ is (Rn)∗ (Rockafellar, 1970, Corol-
lary 13.1).
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On the other hand, in the nonsteep regime, (RLD) and (HD) agree at interior states, but their 
behaviors at the boundary differ in a fundamental way. Specifically, while the boundary behavior 
of discontinuous Hessian dynamics is defined using closest point projections, the reinforcement 
learning process (RL) for nonsteep h can no longer be reduced to mixed strategy dynamics at all. 
Instead one must work explicitly with the score variables yk, which continue to aggregate payoff 
data of all strategies, even those that are not used. Among other things, this means that a strong 
cumulative performance of an unused strategy will return it to use.

This difference between how the processes are defined on the boundary has important conse-
quences. For instance, while Sandholm et al. (2008) show that strictly dominated strategies may 
survive under the Euclidean projection dynamics, Mertikopoulos and Sandholm (2016) prove 
that the reinforcement learning process (RL) always eliminates dominated strategies, whether 
the penalty functions are steep or not. Under both processes, dominated strategies are initially 
eliminated along interior solution trajectories. But while they may resurface under (HD), the 
score variables of (RL) continue to register the poor performance of these strategies, ensuring 
that they remain extinct for all time.

Appendix A. Connections with other game dynamics

Throughout this appendix, we write 1 ∈Rn for the n-dimensional column vector of ones and 
� = I − 1

n
11
 for the Euclidean orthogonal projection of Rn onto Rn

0 = {z ∈ Rn : 1
z = 0} =
span(1)⊥.33 Recall also that the (Moore–Penrose) pseudoinverse of a matrix M ∈ Rn×n is the 
unique matrix M+ ∈ Rn×n such that (i) M+y = 0 whenever y ∈ range(M)⊥; and (ii) M+y = x

whenever x ∈ ker(M)⊥, y ∈ range(M), and Mx = y (Friedberg et al., 2002, Sec. 6.7). Since a 
symmetric matrix M ∈ Rn×n satisfies range(M) = ker(M)⊥, we have the following well-known 
algebraic characterization of pseudoinverses:

Lemma A.1. Let M ∈Rn×n be a symmetric matrix. Then, M+ is the unique matrix that (i) inverts 
M on ker(M)⊥ = range(M); and (ii) satisfies ker(M+) = ker(M).

A.1. Interior equivalence of Riemannian dynamics and Hopkins’ dynamics

We now derive the equivalence between (RmD) and Hopkins’ dynamics (2.7) on X ◦, as noted 
in Section 2.3. To begin with, we say that M ∈ Rn×n is a Hopkins matrix if it is symmetric, 
positive definite with respect to Rn

0, and maps 1 to 0. The following lemma establishes a basic 
characterization of Hopkins matrices:

Lemma A.2.

(i) If S ∈Rn×n is symmetric positive-definite, then (�S�)+ is a Hopkins matrix and

(�S�)+ = S−1 − S−111
S−1

1
S−11
. (A.1)

33 In the above and what follows, W⊥ denotes the orthogonal complement of a subspace W of Rn , defined with respect 
to the ordinary Euclidean metric. Even though this might seem to suggest that the Euclidean metric plays a special role 
in what follows, it is just an artifact of writing everything in coordinates instead of abstractly; for a detailed discussion, 
see Lee (1997).
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(ii) Conversely, if M is a Hopkins matrix, then S = (M + c11
)−1 with c > 0 is symmetric 
positive definite, and (�S�)+ = M .

Proof. To prove part (i), let S be symmetric positive-definite. Then the symmetric matrix �S�

is positive definite with respect to Rn
0 and maps 1 to 0, so range(�S�) = ker(�S�)⊥ = Rn

0. If 
we denote the right-hand side of (A.1) by S̄, a straightforward calculation shows that S̄�S�z = z

for all z ∈ Rn
0 and S̄1 = 0. Thus Lemma A.1 implies that S̄ = (�S�)+. That this is a Hopkins 

matrix is immediate from the fact that range(�S�) = ker(�S�)⊥ =Rn
0 and Lemma A.1.

To prove part (ii), let M be a Hopkins matrix. Clearly, the matrix M + c11
 with c > 0 is 
symmetric positive-definite, so its inverse S is as well. Writing out (�S�)+ using the right-hand 
side of (A.1) and simplifying the result yields (�S�)+ = M . �

Proposition A.3 below establishes the equivalence between (2.7) and (RmD) on X ◦, and pro-
vides a concise third representation for both dynamics. Observe that (A.2c) is expression (3.33b)
for (RmD) on X ◦, but written in matrix form.

Proposition A.3. Let ẋ = V (x) be a dynamical system on X ◦. Then, the following are equiva-
lent:

(i) There is a smooth field of Hopkins matrices M : X ◦ → RA×A such that

V (x) = M(x)v(x)
 for all x ∈X ◦. (A.2a)

(ii) There is a smooth field of symmetric positive-definite matrices H : X ◦ → RA×A such that

V (x) = (�H(x)�)+v(x)
 for all x ∈X ◦. (A.2b)

(iii) There is a smooth Riemannian metric g on K◦ such that

V (x) =
(

g−1(x) − g−1(x)11
g−1(x)

1
g−1(x)1

)
v(x)
 for all x ∈X ◦. (A.2c)

Proof. The equivalence of (i) and (ii) follows from Lemma A.2, and the equivalence of (ii) and 
(iii) follows from Lemma A.2(i) with S = H(x) = g(x).34 �
A.2. Continuous Hessian dynamics and reinforcement learning

We now complete the common derivation of (HD) and (RLD) on X ◦ initiated in Section 8.2. 
Proposition A.3 above shows that the continuous Hessian dynamics (HD) can be expressed as

ẋ = (�H(x)�)+v(x)
. (A.3)

We now extend the argument from Section 8.2 to show that the reinforcement learning dynamics 
(RLD) also take this form.

To that end, let Z = {x − 1
n

1 : x ∈X ◦} ⊂Rn
0, and define hZ : Z → R as

hZ (z) = h(z + 1
n

1). (A.4)

34 To formally complete the argument that (ii) implies (iii), we observe without proof that the field S on X ◦ can be 
smoothly extended to K◦ .
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Since Z◦ is open relative to Rn
0, the derivative DhZ of hZ at z ∈ Z◦ can be represented by 

a covector DhZ(z) in (Rn
0)∗. Imposing the Euclidean metric on Rn

0 for convenience, we can 
identify (Rn

0)
∗ with the set of covectors whose components sum to zero, and write the derivative 

and Hessian of hZ at z ∈Z◦ as

DhZ (z) = Dh(z + 1
n

1)�, (A.5)

HesshZ (z) = �H(z + 1
n

1)�. (A.6)

The convex conjugate h∗
Z of hZ is then defined as

h∗
Z (y0) = max

x∈Z
{〈y|z〉 − hZ (z)}, y0 ∈ (Rn

0)∗, (A.7)

where the fact that the domain of h∗
Z is all of (Rn

0)
∗ follows from the compactness of Z . By the 

basics of convex conjugation (Rockafellar, 1970, Chapter 26), the maps Dh∗
Z : (Rn

0)∗ → Z and 
DhZ : Z → (Rn

0)∗ are inverse to one another, so we have

Hessh∗
Z (y0) = (HesshZ (dh∗

Z (y0)))
−1, (A.8)

with both sides of the equality in (A.8) understood as linear maps from Rn
0 to itself.

Now recall that the (symmetric) reinforcement learning process is defined by

ẏ = v(x)

x = Q(y).
(RL)

The choice map Q, defined in (8.1) in terms of h, satisfies Q(y) = Q(y�) for all y ∈ Rn. Thus, 
applying definition (A.4), we can express Q in terms of hZ as

Q(y) = arg max
x∈X

{y�x − h(x)} = arg max
z∈Z

{y�z − hZ (z)} + 1
n

1 = Dh∗
Z (y�) + 1

n
1. (A.9)

Hence, substituting (A.9) into (RL), differentiating, and using Eqs. (RL), (A.6), (A.8) and (A.9)
yields

ẋ = Hessh∗
Z (v(x)�)�v(x)
= (HesshZ (Dh∗

Z (v(x)�)))−1 �v(x)


= (HesshZ (x − 1
n

1))−1 �v(x)
= (�H(x)�)+v(x)
, (A.10)

as specified in (A.3).

Appendix B. Extensions of Riemannian metrics

Here we present some technical results concerning the extension of Riemannian metrics from 
K◦ to K. Proposition B.1 shows that an extendable metric g on K induces a well-defined scalar 
product at all points of K:

Proposition B.1. Let g be an extendable Riemannian metric on K. Then, for all x ∈ K, there 
exists a unique scalar product 〈·, ·〉x on domg(x) such that 〈w, w′〉xk

→ 〈w, w′〉x for all w, w′ ∈
domg(x) and for every interior sequence xk → x. Moreover, if g is minimal-rank extendable, we 
have g�

αβ(x) = 0 whenever α, β /∈ supp(x).
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Proof. Fix some x ∈ K and write g�(x) = Q

Q where the diagonal matrix 
 consists of 
the eigenvalues of g�(x) and Q is an orthogonal matrix (Q
 = Q−1) whose columns are the 
eigenvectors of g�(x). Since g�(x) is positive-semidefinite, its eigenvalues are nonnegative. Fur-
thermore, since domg(x) = img�(x), every eigenvector of a nonzero eigenvalue of g�(x) must 
lie in domg(x): indeed, if g�(x)z = λz for some λ > 0, we will also have z = g�(x)zλ−1, i.e., 
z ∈ img�(x) = domg(x). As a result, we may write g�(x) = ∑

λ>0 λ uλu


λ where the summation 

is taken over all positive eigenvalues λ > 0 of g�(x) (assumed for convenience to be distinct) and 
uλ is the corresponding column of Q. The metric tensor of the induced scalar product 〈·, ·〉x at x
is then defined as the pseudoinverse (g�(x))+ of g(x) (see Appendix A), given here by

(g�(x))+ =
∑

λ>0
λ−1uλu



λ . (B.1)

Our continuity and uniqueness claims are then immediate.
Finally, to show that g�

αβ(x) = 0 if α /∈ supp(x) and g is minimal-rank extendable, simply note 

that g�
αβ(x) = e


α g�(x)eβ = ∑
λ λ e


α uλu


λ eβ = 0 because all eigenvectors of g�(x) with positive 

eigenvalues lie in Rsupp(x) = domg(x). �
Remark B.1. In the minimal-rank case, the scalar product 〈·, ·〉x on domg(x) can be represented 
by the matrix g(x) = (g�(x))+. This means that the submatrix (gαβ(x))α,β∈supp(x) is the inverse 
of the submatrix (g�

αβ(x))α,β∈supp(x) while the remaining components (which have no geometric 
significance) are set to 0.

Next we establish the correctness of the formulas (3.33) for dynamics generated by a minimal-
rank extendable metrics.

Proposition B.2. The formulas (3.33) describe (RmD) generated by a minimal-rank extendable 
metric g at all states x ∈X ; moreover, the sums in (3.33) need only be taken over β ∈ supp(x).

Proof. The case x ∈ X ◦ is covered in the text. Otherwise, if x ∈ bd(X ), the corresponding 
g-admissible set is

Admg(x) = TCX (x) ∩ TK(x) =RA
0 ∩Rsupp(x) = TX (x). (B.2)

By definition, v�(x) and n(x) lie in img�(x) = Rsupp(x). Moreover, n(x) is normal to TX (x) =
RA

0 ∩Rsupp(x) because

〈n(x), z〉x = 1
g�(x)g(x)z = 1
z = 0 for all z ∈ RA
0 , (B.3)

where the second equality follows from Remark B.1.
Eq. (3.41) shows that the right-hand side of (RmD) is equal to �x(v

�(x)). In light of the facts 
above, (3.40) shows that �x(v

�(x)) is equal to the right-hand side of (3.33a), the novelty being 
that v�

α(x) and nα(x) vanish whenever α /∈ supp(x). These claims prove the first statement in 
the proposition. To establish the second statement, simply observe that g�

αβ(x) = 0 whenever α
or β is not in supp(x) by Proposition B.1, so including β /∈ supp(x) in the sums in (3.33) is 
irrelevant. �
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Appendix C. Convergence and stability in dynamical systems

C.1. Definitions

Throughout this appendix, we focus on the dynamics

ẋ = V (x), x ∈ X , (D)

and we assume that they admit unique solutions from every initial condition. With this in mind, 
we say that x∗ is an ω-limit point of the solution orbit x(t) if there is an increasing sequence 
of times tn ↑ ∞ such that x(tn) → x∗. We further say that x∗ is Lyapunov stable if, for every 
neighborhood U of x∗, there exists a neighborhood U ′ of x∗ such that every solution orbit x(t)

that starts in U ′ is contained in U for all t ≥ 0. Finally, we say that x∗ is attracting if there is a 
neighborhood U of x∗ such that every solution that starts in U converges to x∗, and x∗ is called 
asymptotically stable if it is Lyapunov stable and attracting. In this case, the maximal (relatively) 
open set of states from which solutions converge to x∗ is called the basin of x∗; if the basin of 
x∗ is all of X , we say that x∗ is globally asymptotically stable.

C.2. A global convergence result

A standard result from dynamical systems states that if a smooth dynamical system on a 
compact set admits a strict global Lyapunov function, all ω-limit points are rest points (see e.g., 
Sandholm, 2010b, Theorem 7.B.3). The proof of this result relies on the continuity of solutions 
on initial conditions, a property which is not easily established for discontinuous dynamics. In 
Proposition C.1 below, we present a global convergence result that does not require continuity of 
solutions in initial conditions, but instead relies on a l.s.c. lower bound on the derivative of the 
Lyapunov function. To state it, let

RP = {x ∈X : V (x) = 0} (C.1)

denote the set of rest points of the dynamics (D). We then have:

Proposition C.1. Let x(t) be an absolutely continuous solution orbit of (D) and let �+ = x(R+)

denote the set of points visited by x(t). Assume further that RP is closed and there exist functions 
L : X →R and φ : X → R+ such that

(i) L is differentiable in a neighborhood of �+.
(ii) φ is lower semi-continuous and φ(x) = 0 if and only if x ∈ RP.

(iii) 〈DL(x)|V (x)〉 ≥ φ(x) for all x ∈ �+.

Then, x(t) converges to RP.

Proof. By absolute continuity and Conditions (i) and (iii) above, we get

L(x(t)) − L(x(0)) =
t∫

0

〈DL(x(s))|V (x(s))〉 ds ≥
t∫

0

φ(x(s)) ds ≥ 0, (C.2)

i.e., L is nondecreasing along x(t). Furthermore, since X is compact, x(t) admits at least one 
ω-limit point x∗ ∈ cl(�+) ⊆ X . Assume now that x(t) admits an ω-limit point xω such that 
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V (xω) �= 0. Since RP is closed, Condition (ii) implies that there is a compact neighborhood K
of xω and some a > 0 such that φ(x) ≥ a > 0 for all x ∈ K . With this in mind, we consider two 
complementary cases below:

Case 1. Suppose there exists some T ≥ 0 such that x(t) ∈ K for all t ≥ T . Then φ(x(t)) ≥ a for 
all t ≥ T , so (C.2) yields limt→∞ L(x(t)) = ∞, a contradiction.

Case 2. Assume instead that, for all T ≥ 0, we have x(t) /∈ K for some t ≥ T . In this case, 
there exist open neighborhoods U and U ′ of xω with cl(U) ⊆ U ′ ⊂ K , and interlaced se-
quences tn, t ′n ↑ ∞ such that, for all n: (i) tn < t ′n < tn+1; (ii) x(tn) ∈ U , x(t ′n) ∈ K \ U ′; and 
(iii) x(t) ∈ K whenever t ∈ [tn, t ′n]. Then, since |ẋα(t)| is bounded from above by Vmax ≡
supx∈X maxβ |Vβ(x)| < ∞, the time intervals δn ≡ t ′n − tn will be bounded from below by 
δmin ≡ dist(cl(U), K \ U ′)/Vmax > 0. We thus get

L(x(t ′n)) − L(x(0)) ≥
t ′n∫

0

φ(x(s)) ds ≥
n∑

j=1

t ′j∫
tj

φ(x(s)) ds ≥ anδmin, (C.3)

i.e., L(x(t ′n)) → ∞, a contradiction. �
To apply Proposition C.1 to discontinuous Riemannian dynamics in potential games, we need 

the following result:

Lemma C.2. The speed of motion ‖V (x)‖x of the dynamics (RmD) is l.s.c. on X .

Proof. If the dynamics (RmD) are continuous, our claim follows immediately from the continu-
ity of the underlying metric – in fact, ‖V (x)‖x is continuous in this case. Otherwise, if (RmD)
is discontinuous, recall that V (x) ≡ �x(v

�(x)) is simply the projection of v�(x) on the tan-
gent cone TCX (x) to X at x (because Admg(x) = TCX (x) in that case). Therefore, if we write 
V ⊥(x) = v�(x) −V (x) for the projection of v�(x) on the normal cone NCX (x) to X at x, More-
au’s decomposition theorem and the Cauchy–Schwarz inequality yield

〈v�(x), z〉x = 〈V (x) + V ⊥(x), z〉x = 〈V (x), z〉x ≤ ‖V (x)‖x‖z‖x, (C.4)

for all z ∈ TCX (x), with the inequality binding if and only if z ∝ V (x). We thus obtain the 
characterization

‖V (x)‖x = max
z∈TCX (x)∩B(x)

〈v�(x), z〉x, (C.5)

where B(x) = {z ∈RA : ‖z‖x ≤ 1}.
Note now that the correspondence x �→ TCX (x) is l.s.c. because it is constant on the in-

terior of each face of X and TCX (x) ⊆ TCX (y) whenever supp(x) ⊆ supp(y). This shows 
that the constraint correspondence x �→ TCX (x) ∩ B(x) of (C.5) is l.s.c.; since the objective 
function 〈v�(x), z〉x of (C.5) is jointly continuous in x and z, a precursor to the maximum the-
orem (Aliprantis and Border, 1999, Lemma 16.30) implies that x �→ ‖V (x)‖x is itself l.s.c., as 
claimed. �
Appendix D. Additional proofs

In this appendix, we collect some proofs that are too technical for the main text. We begin 
with the proof of Proposition 6.1 regarding the existence and uniqueness of solutions to (RmD). 
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As noted in Section 6, we only need to prove part (ii), which concerns the case of full-rank 
extendable metrics. Existence of forward solutions of (RmD) on X follows from general results 
of Aubin and Cellina (1984) on solutions to discontinuous differential equations; see Lahkar 
and Sandholm (2008) for a summary of their argument. Thus, it remains to show that forward 
solutions to (RmD) from each initial condition in X are unique. This conclusion follows from 
the following lemma:

Lemma D.1. Let x(t) and x′(t) be solutions to (RmD), and let

P(t) = ‖x′(t) − x(t)‖2
x(t) e

−λt . (D.1)

If λ > 0 is large enough, then P(t) is nonincreasing.

Given this lemma, we immediately obtain:

Proof of Proposition 6.1. Let x(t) and x′(t) be solutions of (RmD) with x(0) = x′(0). We then 
get P(t) = P(0) = 0 for all t ≥ 0, so x(t) = x ′(t) for all t ≥ 0. �

To prove Lemma D.1, we need one final auxiliary result. Let V (x) = �x(v
�(x)) denote the 

right-hand side of (RmD). Then, as we show below, V satisfies a one-sided Lipschitz condition 
with respect to the underlying metric:

Lemma D.2. There exists some KV > 0 such that

〈V (x′) − V (x), x′ − x〉x ≤ KV ‖x′ − x‖2
x for all x, x′ ∈ X . (D.2)

Proof of Lemma D.2. Write w(x) = v�(x) and w⊥(x) = w(x) −�x(w(x)). Since g is full-rank 
extendable, �x is the orthogonal projection onto TCX (x) with respect to 〈·, ·〉x . We thus obtain

〈V (x′) − V (x), x′ − x〉x = 〈w(x′) − w(x), x′ − x〉x − 〈w⊥(x′) − w⊥(x), x′ − x〉x
= 〈w(x′) − w(x), x′ − x〉x + 〈w⊥(x), x′ − x〉x
+ 〈w⊥(x′), x − x′〉x′ + (w⊥(x′))
(g(x′) − g(x))(x′ − x)

≤ Kw‖x′ − x‖2
x + (w⊥(x′))
(g(x′) − g(x))(x′ − x), (D.3)

where the bound for the first term in the last line follows from the Cauchy–Schwarz inequality 
and the Lipschitz continuity of w, while the rest follows from Moreau’s decomposition theorem. 
To bound the last term, write gα(x) for the α-th row of g(x), let W⊥

max = maxα∈A maxx∈X w⊥
α (x), 

and let ‖·‖2 denote the standard Euclidean norm. Then, if C > 0 is chosen sufficiently large, we 
get

(w⊥(x′))
(g(x′) − g(x))(x′ − x)

≤
∑

α∈A w⊥
α (x′)‖gα(x′) − gα(x)‖2‖x′ − x‖2

≤ W⊥
max‖x′ − x‖2

∑
α∈A‖gα(x′) − gα(x)‖2 ≤ W⊥

maxC‖x′ − x‖2
x. (D.4)

In the above, the first inequality is an immediate corollary of the Cauchy–Schwarz inequality; 
the last one follows from the equivalence of norms on RA and the fact that g is C1 on X ; finally, 
C can be chosen independently of x and x′ because X is compact. Combining (D.3) and (D.4)
completes our proof. �
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With Lemma D.2 at hand, we finally obtain:

Proof of Lemma D.1. Define ġ(x) = (ġαβ(x))α,β∈A by ġαβ(x) = 〈Dgαβ(x)|V (x)〉 =∑
κ∈A Vκ(x) ∂κgαβ(x), and let Kg = maxα,β∈A maxx∈X ġαβ(x) < ∞ (recall that g is C1). Then, 

for all t ≥ 0 such that x(t) and x′(t) are differentiable, we have

Ṗ = 2〈V (x′) − V (x), x′ − x〉x e−λt + (x′ − x)
ġ(x)(x′ − x) e−λt − λ‖x′ − x‖2
x e−λt

≤ −(λ − 2KV − Kg)‖x′ − x‖2
x e−λt , (D.5)

where we used Lemma D.2 to bound the second term in the first line. Taking λ > 2KV + Kg

then yields Ṗ ≤ 0; since x(t) and x′(t) are absolutely continuous, we conclude that P(t) is 
nondecreasing. �

We close this appendix with the proof of our permanence criterion:

Proof of Proposition 7.7. Define P : K → R as P(x) = − exp
(∑

α pαDh(eα, x)
)

for x ∈ K◦
and P(x) = 0 for x ∈ bd(K). The steepness of h implies that P is continuous, while Lemma 7.2
implies that d

dt
log(P (x)) = �(x) ≡ 〈v(x)|p − x〉 for all x ∈ X ◦. Hence, by Theorem 12.2.1 of 

Hofbauer and Sigmund (1998), it suffices to show that the function � is an average Lyapunov 
function for (HD), meaning that, for every initial condition x(0) ∈ bd(X ), there is a t > 0 such 
that

1

t

t∫
0

�(x(s)) ds > 0. (D.6)

We proceed by induction on the cardinality of the support of the initial condition. The claim is 
trivial if this cardinality is 1. For the inductive step, suppose that (D.6) holds when the cardinality 
is k ∈ {1, . . . , |A| − 2}, and consider an initial condition x(0) whose support A′ has cardinality 
k + 1. If x(t) converges to the boundary of the face X ′ of X spanned by A′, then our claim 
follows from the inductive hypothesis and the same arguments as in the proof of Theorem 12.2.2 
in Hofbauer and Sigmund (1998). If instead x(t) does not converge to the boundary of X ′, 
then there exists a δ > 0 and an increasing sequence of times tn ↑ ∞ with xα(tn) ≥ δ > 0 for 
all α ∈ A′. Then, letting x̄α(t) = t−1

∫ t

0 xα(s) ds and ū(t) = t−1
∫ t

0 〈v(x(s))|x(s)〉 ds, we may 
assume (by descending to a subsequence of tn if necessary) that x̄(tn) and ū(tn) converge to 
some x̄∗ and ū∗ respectively as n → ∞.

We now claim that vα(x̄∗) = ū∗ for all α ∈ A′, implying that x̄∗ is a restricted equilibrium 
of G. Indeed, let yα(t) = Dh(eα, x(t)) for all α ∈A′. Then, ẏα = 〈v(x)|x〉 −vα(x) by Lemma 7.2, 
so the linearity of v(x) in x implies that

1

t

t∫
0

〈v(x(s))|x(s)〉 ds − vα(x̄(t)) = yα(t) − yα(0)

t
. (D.7)

Given that x(tn) remains a minimal positive distance away from bd(X ′), it follows that yα(tn) is 
bounded from above for all α ∈ A′. Therefore, the right-hand side of (D.7) vanishes as tn → ∞, 
implying in turn that vα(x̄∗) = ū∗ for all α ∈ A′, as claimed.

Now, since x̄∗ is a restricted equilibrium of G, Proposition 6.3 implies that it is a boundary rest 
point of (HD), so ū∗ = 〈v(x̄∗)|x̄∗〉 < 〈v(x̄∗)|p〉 by (7.14). Moreover, since �(x) = 〈v(x)|p − x〉, 
setting t = tn in (D.6) yields
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t−1
n

tn∫
0

�(x(s)) ds = t−1
n

tn∫
0

〈v(x(s))|p − x(s)〉 ds = 〈v(x̄(tn))|p〉 − ū(tn) (D.8)

so limn→∞ t−1
n

∫ tn
0 �(x(s)) ds = 〈v(x̄∗)|p〉 − ū∗ > 0. This establishes (D.6) for large enough 

t = tn, completing our proof. �
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