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ABSTRACT. We use a Bayesian Markov Chain Monte Carlo algorithm to estimate the pa-

rameters of a “true” data generating mechanism and those of a sequence of approximating

models that a monetary authority uses to guide its decisions. Gaps between a true expecta-

tional Phillips curve and the monetary authority’s approximating non-expectational Phillips

curve models unleash inflation that a monetary authority that knows the true model would

avoid. A sequence of dynamic programming problems implies that the monetary author-

ity’s inflation target evolves as its estimated Phillips curve moves. Our estimates attribute

the rise and fall of post WWII inflation in the US to an intricate interaction between the

monetary authority’s beliefs and economic shocks. Shocks in the 1970s made the mon-

etary authority perceive a tradeoff between inflation and unemployment that ignited big

inflation. The monetary authority’s beliefs about the Phillips curve changed in ways that

account for Volcker’s conquest of US inflation.
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I. INTRODUCTION

Today, many statesmen and macroeconomists believe that inflation can largely be de-

termined by a government monetary authority. Then why did the Federal Reserve Board

preside over high US inflation during the late 1960s and the 1970s? And why, under Paul

Volcker, did it quickly arrest inflation during the early 1980s? This paper answers these

questions by estimating a model that allows discrepancies between a true data generating

mechanism and a monetary authority’s approximating model. Our model features a process

that makes a sequence of economic shocks induce the monetary authority to alter its model

of inflation-unemployment dynamics, the Phillips curve. At each date t, the monetary au-

thority updates its beliefs about the Phillips curve and then computes a first-period action

recommended by a “Phelps problem”, a discounted dynamic programming problem that

minimizes the expected value of a discounted quadratic loss function of inflation and un-

employment.1 The monetary authority pursues the same objectives at each date and uses

the same structural model. But its estimates of that model change.2 This model of the sys-

tematic part of inflation puts the monetary authority’s beliefs about the Phillips curve front

and center.3

We assume that the monetary authority’s model of the Phillips curve deviates in two

ways from the true data generating model, a version of Robert E. Lucas Jr.’s (1973) ag-

gregate supply function used by Kydland and Prescott (1977) and many others. The first

deviation is that the monetary authority omits the public’s rational expectation of inflation

from its Phillips curve. By itself, this omission need not prevent the outcomes of our model

from coinciding with those predicted by Kydland and Prescott, nor need it imply that the

government’s model is wrong in a way that could be detected even from an infinite sample.

1Sargent (1999) called it a Phelps problem.
2There is some debate about whether policy objectives or the structural models used by policymakers have

evolved over time. However introducing such an evolution of understanding into formal models is difficult

without arbitrarily imposing exogenous changes. We need no such exogenous shifts.
3As does Kydland and Prescott’s (1977) model of time-consistent suboptimal inflation.
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The reason is that, depending on the history of outcomes, the constant term and lagged

rates of inflation and unemployment can stand in perfectly for the expected rate of infla-

tion that the government has omitted from its Phillips curve.4 If the monetary authority

were to believe that the coefficients of its Phillips curve were constant over time, then its

estimates would converge to ones that support a self-confirming equilibrium (SCE). After

convergence, its estimated Phillips curve would correctly describe occurrences along the

SCE path for inflation and unemployment. Such an after-convergence version of our model

has little hope of explaining the rise and fall of US inflation: that model would have in-

flation fluctuating randomly around a constant SCE level that coincides with Kydland and

Prescott’s time consistent suboptimal (i.e., excessive) level.5

This outcome motivates our second subtle deviation from a rational expectations equi-

librium. Instead of thinking that the regression coefficients in its Phillips curve are time

invariant (which they indeed are in an SCE), our monetary authority believes that they

form a vector random walk with innovation covariance matrix V . Given that model, the

monetary authority updates its beliefs using Bayes’ rule. The covariance matrix V and the

initial condition for the regression parameters in the monetary authority’s Phillips curve

become hyperparameters of a model that shapes evolution of the monetary authority’s be-

liefs.6 After calibrating the initial condition and imposing that the systematic part of in-

flation is determined by the time t solution of the Phelps problem, we estimate V along

with parameters of the true expectational Phillips curve that, unbeknownst to the monetary

authority, actually governs inflation-unemployment dynamics. We use a Bayesian Markov

4See Kydland and Prescott (1977) for a heuristic argument and Sargent (1999) for a demonstration that the

outcome in a self-confirming equilibrium is identical with Kydland and Prescott’s time-consistent outcome.
5Parkin (1993) and Ireland (1999) advocate the hypothesis that the post WWII US inflation data can

be accounted for by well understood medium term movements in the natural rate of unemployment, stable

government preferences, and steady adherence to the time-consistent suboptimal equilibrium of Kydland and

Prescott (1977).
6As is true in a rational expectations model, the monetary authority’s beliefs are outcomes, not free

parameters.



SHOCKS AND GOVERNMENT BELIEFS 3

Chain Monte Carlo (MCMC) algorithm to estimate statistics that describe the posterior

distribution of these parameters of our model. We obtain a much better explanation of the

monetary authority’s inflation choices than earlier efforts to estimate similar models had

achieved.

We find that our model fits the data better than a benchmark time series model. We use

several criteria to compare the empirical performance of our theoretical model with those

of some atheoretical Bayesian vector autoregressions (BVARs). Our model has better fore-

casting performance than BVARs over one-month, two-year, and four-year horizons. For-

mal model selection criteria, such as the Schwarz criterion and Bayes factors, strongly favor

our model. Equally important, our model outperforms the BVARs in predicting several key

turning points in the inflation time series. Finally, while the fit of our model is competi-

tive with statistical models, our results yield important insights that help to understand the

US inflation experience, something a purely statistical model cannot. One essential feature

accounting for our model’s success in fitting the data is how our estimation procedure ex-

ploits the cross-equation restrictions that the government’s Phelps problem imposes on the

sequence of government beliefs about the empirical Phillips curve. These restrictions are

very informative for estimating the key government belief parameters in V .

With particular a priori settings of the parameter innovation covariance matrix V , Sims

(1988), Chung (1990), Sargent (1999), and Cho, Williams, and Sargent (2002) all studied

versions of our model.7 When Chung and Sargent estimated their a-priori-fixed-V versions

of our model, they obtained discouraging results. They did not come close to explaining

the rise and fall of US inflation in terms of a process of the monetary authority’s learning

about its Phillips curve.8

7Sargent and Williams (2005) is an extended theoretical study of a version of our model that focuses on

the impact of different settings of V on rates of convergence to, escapes from, and cycles around an SCE.
8Previous failures to match the data with a model like ours seem to be widely recognized and helped to

promote a literature that makes the “stickiness” (or persistence) of inflation exogenous.
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This paper estimates settings for V that attain substantial improvements in the model’s

ability to rationalize the choices made by the US monetary authority. 9 The MCMC algo-

rithm finds values for V that allow the model to reverse engineer a sequence of government

beliefs about the Phillips curve that, through the intermediation of the Phelps problem,

capture both the acceleration of US inflation in the 1970s and its rapid decline in the early

1980s. Our MCMC method estimates a V that accommodates an avenue by which eco-

nomic shocks impinge on the monetary authority’s beliefs, via its use of Bayes’ rule, and its

decisions, via successive solutions of its Phelps problem. The monetary authority’s views

about parameter drift and its application of Bayes’ rule add a source of history dependence

to its procession of decisions that is absent in either the SCE or the Markov perfect equilib-

rium of Kydland and Prescott’s model. The resulting interactions of shocks and monetary

beliefs forms the basis for our explanation of the rise and fall of US inflation.

The rest of the paper is organized as follows. Section II relates our findings to other

work. In Section III, we lay out the model and discuss theoretical characterizations of it.

Section IV develops an econometric methodology for estimation, and Section V reports the

estimated results. In Section VI, we present further empirical results, stress the importance

of cross-equation restrictions via the Phelps problem, examine the forecasting performance

of the model, conduct some counterfactual exercises, and explore some important impli-

cations. Section VII discusses the estimated model’s long-run properties. Section VIII

concludes. Four appendices describe the data and provide technical details about our prior

distribution and the posterior sampling scheme.

9To rationalize the US inflation experience, the random coefficients specification of the values of V and

P1|0 that we estimate attributes beliefs to policymakers that differ from ones that they would have attained by

running least squares period by period.
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II. RELATION TO RECENT LITERATURE

Cogley and Sargent’s (2005a) explanation of US post WWII inflation also features the

interaction of a government learning process and a sequence of Phelps problems.10 Cogley

and Sargent’s government applies Bayes’ rule recurrently to estimate three Phillips curve

models, only one of which is a rational expectations version of a natural rate model. Cogley

and Sargent focus on the role of model uncertainty in policy making and take no stand on

the true data generating mechanism. Their story is about how an almost discredited model

that has even a very small posterior probability will nevertheless be very influential if it

leads to very bad outcomes under the policies that would have been recommended if its

posterior probability were exactly zero.11

Primiceri (2003) also develops a learning model to explain the rise and fall of US infla-

tion. He estimates his model on US data and finds that its fit is comparable to an atheoretical

VAR as a description of the data. Like us, he emphasizes that inflation remained high in the

1970s due to the government’s perception that disinflation was too costly. Unlike us, a key

component of his story is that the monetary authority’s mismeasurement of the natural rate

of unemployment caused policy to be looser than policymakers intended. Primiceri’s main

focus is on a backward-looking Keynesian model that has no explicit role for private sector

expectations that respond to the government’s decision rule, unlike our true model, which

10Christopher Sims has pointed out that neither the present paper, nor any of the papers in the literature

that we survey, provides what one would really like: a statistically respectable measure of the uncertainty

that attaches to these alternative explanations of the history of U.S. inflation. Because the models that we

survey assume the form of a likelihood function, in principle one could treat each of them as submodels and

calculate a posterior probability distribution over them. We agree that such a project would be interesting.
11The monetary authority in our model updates only one model, an outmoded one at that, in light of the

rational expectations revolution. From their readings of minutes of the FOMC, Christina Romer and David

Romer (2002) infer that the Fed’s learning process was confined to a primitive Phillips curve specification

like the one we impute to the monetary authority. Their story about the evolution of Fed beliefs assigns no

influence to rational expectations ideas.
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has private sector expectations responding in the best way to government decisions.12 In

the SCE of Primiceri’s model, the government learns that the coefficients on inflation in the

Phillips curve sum to one. This restriction is correct in his specification, but need not hold

under rational expectations.13 Primiceri finds that the model’s transient learning dynamics

are able to reproduce low frequency features of post WWII US inflation-unemployment

dynamics.

Our paper differs substantially from Primiceri’s because our true data generating mech-

anism (DGM) is a rational expectations natural rate model. Policymakers’ misspecified

model can eventually converge to attain a self-confirming equilibrium in which the inflation-

unemployment dynamics generated by the true DGM agree with those expected by the

government along the equilibrium outcome process. Unlike Primiceri, we view the rational

expectations natural rate theory and the associated SCE as a useful starting point. We build

on Sims (1988), Chung (1990), Sargent (1999), and Cho, Williams, and Sargent (2002),

as generalized by Sargent and Williams (2005). These studies a priori adopted parameter

specifications that opened a substantial gap between a Ramsey inflation outcome (the one

that would be chosen by a government that knew the correct DGM) and the Nash infla-

tion outcome that emerges from the SCE. The latter three contributions discovered mean

dynamics that on average push outcomes toward the Nash inflation level and escape dy-

namics that recurrently push them toward the Ramsey outcome.

The present paper estimates key parameters that control the mean dynamics and the

escape dynamics. Our empirical estimates teach us to deemphasize the empirical relevance

of both the mean dynamics and the escape dynamics and instead to focus on the short-term

impacts of shocks on government beliefs. In addition, our estimate of a small gap between

the Nash and Ramsey inflation levels supports Blinder’s (1998) skepticism about whether

that gap is quantitatively important for the monetary authority’s decision problem.

12Primiceri also considers a New Keynesian rational expectations model, but it fits substantially worse

than his backward-looking specification.
13See Sargent (1999) for a discussion.
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III. THE MODEL

We extend the model of Sargent and Williams (2005). There is a Lucas natural-rate

version of the Phillips curve and a true inflation process:

ut −u∗∗ = θ0(πt −Et−1πt)+θ1(πt−1−Et−2πt−1)+ τ1(ut−1−u∗∗)+σ1w1t , (1)

πt = xt−1 +σ2w2t , (2)

where ut is the unemployment rate, πt is inflation, xt is the part of inflation controllable by

the government given the information up to time t, and w1t and w2t are i.i.d. uncorrelated

standard normal random variables. Equation (1) is an expectations-augmented Phillips

curve in which systematic monetary policy has neither short-run nor long-run effects on

unemployment.14 Equation (1) embodies a stronger form of “policy irrelevance” than do

many of today’s New Keynesian Phillips curves. In this paper, we ignore the nonneutralities

present in those models and aim to reverse engineer a set of government beliefs that can

explain the low frequency swings in US data while insisting that the true DGM have the

strong policy irrelevance of the Lucas supply function. Section V shows that our reverse-

engineering succeeds quantitatively in tracking the post-WWII inflation data.

Equation (2) states that the government determines inflation up to a random shock. The

public has rational expectations, so that Et−1πt = xt−1. The government dislikes inflation

and unemployment. The policy decision xt−1 solves the tth component of the following

sequence of “Phelps problems”:

min
{xt−1}∞

t=0

Ê
∞

∑
j=0

δ j((πt+ j−π∗)2 +λ (ut+ j−u∗)2) (3)

where Ê represents the expectation formed with respect to the model (2) and

ut+ j = α̂ ′t|t−1Φt+ j +σwt+ j, (4)

14If abs(θ0) > abs(θ1), (1) becomes a version of a natural-rate Phillips curve that allows a serially corre-

lated disturbance (Sargent 1999).
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where π∗ and u∗ are the targeted levels of inflation and unemployment, both α̂t|t−1 and

Φt are r× 1 vectors, wt is an i.i.d. standard normal random variable, and where (4) is

the monetary authority’s model of inflation-unemployment dynamics. The vector Φt of

regressors consists of lags of unemployment and inflation. The government’s policy at

time t is the best response function xt−1 = h(α̂t|t−1)′Φt . By comparing (4) with the true

DGM (1), we see that the government fails to account explicitly for the role of expectations

in determining the unemployment rate. Here Ê represents expectations with respect to the

government’s subjective model, and the subscript t−1 means that the government updates

α̂t|t−1 and at each t computes xt−1 by solving the time t Phelps problem before observing

πt and ut . Thus, the government sets policy based on its estimated Phillips curve (4), not

the true Phillips curve (1). A self-confirming equilibrium (SCE) is a vector of government

beliefs αSCE that is consistent with what it observes in the sense of satisfying the population

least squares orthogonality condition:

E
[
Φt(ut −Φ′

tαSCE)
]
= 0, (5)

where the mathematical expectation is evaluated with respect to the probability distribution

of ut ,πt , and xt−1 induced by (1), (2), and the decision rule implied by the Phelps problem

associated with αSCE.

Self-confirming equilibrium outcomes agree with the time-consistent Nash equilibrium

outcomes in which policymakers set inflation higher than the socially optimal Ramsey level

(see Sargent 1999).15 Nash inflation is

πNash = π∗−λ (u∗∗−u∗) [(1+δτ1)θ0 +δθ1] . (6)

The larger are u∗∗− u∗, θ0, and θ1 in absolute value, the higher is the Nash inflation rate

compared to the Ramsey rate π∗.

15As explained by Sargent (1999, chapter 3), the gap between the Ramsey and Nash or SCE outcomes for

inflation reflects the benefit to the government of being able to commit to a policy.
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A self-confirming equilibrium is a population object that restricts beliefs to be time-

invariant and that forms a benchmark – and as it can turn out, a limit point – for our model.

Unlike an SCE, the government updates its beliefs at each date in our model. In particular,

the government bases α̂t|t−1, its mean estimate of the drifting parameter vector αt , on the

observations up to and including time t−1 from the following (misspecified) econometric

model:

ut = α ′t Φt +σwt , (7)

αt = αt−1 +Λt , (8)

where Λt , uncorrelated with wt , is an i.i.d. Gaussian random vector with mean zero and

covariance matrix V . Thus, the government believes that the true economy drifts over time.

That is why it continually adapts its parameter estimates with non-vanishing weight on

new observations. The innovation covariance matrix V governs the perceived volatility of

increments to the parameters, and is a key component of the model. The mean estimate of

αt for the econometric model (7)-(8) is

α̂t|t−1 ≡ E(αt |It−1),

It ≡ {u1,π1, . . . ,ut ,πt}.

Let

Pt|t−1 ≡Var(αt |It−1).

Given the government’s model, the mean estimates are optimally updated via the special

case of Bayes rule known as the Kalman filter. Given α̂1|0 and P1|0, the Kalman filter

algorithm updates α̂t|t−1 with the following formula:16

16Many learning models such as Sargent (1999) have focused on a recursive least squares learning (RLS)

rule that is closely related to the Kalman filter. Sargent and Williams (2005) show that RLS can be approxi-

mated by a Kalman filter with V proportional to σ2E(ΦΦ′)−1.
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α̂t+1|t = α̂t|t−1 +
Pt|t−1Φt(ut −Φ′

tα̂t|t−1)
σ2 +Φ′

tPt|t−1Φt
, (9)

Pt+1|t = Pt|t−1−
Pt|t−1ΦtΦ′

tPt|t−1

σ2 +Φ′
tPt|t−1Φt

+V. (10)

An important issue is whether the learning process will converge to a self-confirming

equilibrium in which the discrepancy between the government’s model and the true DGM

vanishes for outcomes that occur thereafter with positive probability. To summarize what

we known about this, we scale the innovation covariance matrix as V = ε2V̂ , for ε > 0.

Key analytical results from Sargent and Williams (2005) that highlight possible outcomes

of the government’s learning process are:

(1) In this model, inflation converges much faster to the SCE under Kalman filtering

learning than under RLS. The Kalman filter learning rule with drifting coefficients

discounts past data more rapidly than the constant gain RLS learning rule.

(2) As the government’s prior belief parameter ε → 0 (at the zero limit there is no time

variation in the parameters), inflation converges to the self-confirming equilibrium

(SCE) and the mean escape time becomes arbitrarily long.

(3) As the government’s prior belief parameter σ → 0 (in the zero limit, either there is

no variation in the government’s regression error or there is arbitrarily large time

variation in the drifting parameters), large escapes from an SCE can happen arbi-

trarily often and nonconvergence is possible.

(4) The covariance matrix V in the government’s prior belief about the volatility of the

drifting parameters affects the speed of escape. The covariance matrix V combined

with the prior belief parameter ε , affects the speed of convergence to the SCE from

a low inflation level.
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IV. EMPIRICAL METHODOLOGY

The theoretical results indicate how very different outcomes can emerge from differ-

ent government beliefs. The task of this paper is to fit the model to the data and thereby

to estimate and quantify the uncertainty about the parameters, σ2 and V , jointly with the

model’s other structural parameters, including those governing the “true” expectational

Phillips curve (1). Before estimation, we fix the values of δ , λ , π∗, u∗, and α̂1|0 to avoid

overparameterization. We have set the parameters δ , λ , and π∗ to values taken from exist-

ing literature. We shall discuss the fixed values of u∗ and α̂1|0 in Section V.

Group all other free structural parameters as

φ = {v∗,θ0,θ1,τ1,ζ1,ζ2,u(CP),u(CV )},

where v∗ = u∗∗(1− τ1), CP and CV are upper triangular such that P1|0 = C′PCP and V =

C′VCV , and ζ1 = 1/σ2
1 and ζ2 = 1/σ2

2 represent the precisions of the corresponding inno-

vations. The notation u(CP) or u(CV ) means that only the upper triangular parts of CP or CV

are among the free parameters. Notice that among the parameters in φ , {v∗,θ0,θ1,τ1,ζ1,ζ2}
describe the true data generating mechanism while {u(CP),u(CV )} describe the govern-

ment’s beliefs.

The structural parameter ζ = 1/σ2 is not free. It is clear from (9), (10), and (14) that if

we scale V and P1|0 by κ and ζ by 1/κ , the likelihood value remains the same. There would

exist a continuum of maximum likelihood estimates (MLEs) if ζ were not restricted (i.e.,

the model is unidentified). Some normalization is necessary. Sargent and Williams (2005)

impose the restriction ζ = ζ1, a normalization that implies that the policymakers correctly

decompose the observed variation in the unemployment into variation in the regressors and

variation due to exogenous shocks.17 However, note that an SCE requires the orthogonality

conditions (5), but not necessarily the equality restriction ζ = ζ1. Indeed, the examples of

Sims (1988) allow ζ 6= ζ1. In what follows we set κ = 0.01, which makes the variability

17This normalization has the advantage that it makes limiting results easier to derive.
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of our estimated V the same order of magnitude as the variability of the data. That implies

that the standard deviation of the government’s regression error σ is smaller by a factor of

ten than the standard deviation exogenous unemployment shocks σ1. As noted above, this

implies that large escapes from the SCE may frequently occur.

As we’ve noted, Sargent and Williams (2005) show that whether monetary policy stays

close to a path associated with a self-confirming equilibrium, and when it does not, how it

evolves over time, are both very sensitive to the model’s parameters (especially the govern-

ment’s belief about the covariance matrix for the drifting coefficients). This sensitivity is

what enables us sharply to estimate key structural parameters, including the elements of V .

To take into account parameter uncertainty, we employ the Bayesian method and develop

a Monte Carlo Markov Chain (MCMC) algorithm that breaks φ into three separate blocks:

θ , {ζ1, ζ2}, and ϕ where

θ =




v∗

θ0

θ1

τ1




,

and ϕ = {u(CP),u(CV )}. The prior pdf of φ can be factored as:

p(φ) = p(θ) p(ϕ) p(ζ1,ζ2).

The prior distributions of both θ and ϕ take the Gaussian form:

p(θ) = Normal(θ̄ , Σ̄θ ); (11)

p(ϕ) = Normal(ϕ̄, Σ̄ϕ). (12)

The prior probability density for the precision parameters ζ1 and ζ2 is a Gamma distribu-

tion:

p(ζ1,ζ2) = Gamma(ᾱ, β̄ ) =
2

∏
i=1

1
Γ(ᾱ)β̄ ᾱ

ζ ᾱ−1
i e

− ζi
β̄ . (13)
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From equations (1) and (2) one can see that the Jacobian transformation from w1t and

w2t to ut and πt is equal to 1. It follows that the likelihood function is:

L (IT |φ) =
ζ T/2

1 ζ T/2
2

(2π)T/2 exp

{
−1

2

T

∑
t=1

[
ζ1z2

1t +ζ2z2
2t
]
}

, (14)

where z1t and z2t are the functions of θ and ϕ:

z1t = ut −u∗∗−θ0(πt − xt−1)−θ1(πt−1− xt−2)− τ1(ut−1−u∗∗),

z2t = πt − xt−1,

where the optimal decision rule depends on ϕ .

The posterior pdf of φ is proportional to the product of the likelihood (14) and the prior

p(φ):

p(φ |IT ) ∝ L (IT |φ) p(φ). (15)

The posterior distribution of φ can be simulated by using a Gibbs sampler, i.e., by alter-

nately sampling from the following conditional posterior distributions:

p(θ |IT ,ζ1,ζ2,ϕ),

p(ζ1,ζ2 |IT ,θ ,ϕ),

p(ϕ |IT ,θ ,ζ1,ζ2).

Appendix C tells how to sample from each of these conditional distributions.

V. REVERSE ENGINEERING ESTIMATION

In this section, we present our results. Using the monthly US data described in Appendix

A and the prior specified in Appendix B, we estimate φ by maximizing the posterior density

function. We obtained similar results using maximum likelihood, but the prior is crucial

for small sample inference. In estimation, we set δ = 0.9936,λ = 1,π∗ = 2, and u∗ = 1.

Kydland and Prescott (1977) set π∗ = 0. Because in practice central banks seem to target

positive inflation rates, we set π∗ = 2. The value of u∗ is set at a value low enough to allow
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Nash inflation to be higher than Ramsey inflation.18 Setting the unemployment target closer

to the natural rate has no effect on our main results.

We set the initial belief α̂1|0 at the regression estimate obtained from the presample data

from January 1948 to December 1959.19 We tried to fix P1|0 at the value that scales up

and down the presample regression estimate σ̂2(Φ′Φ)−1, but the fit was bad. Similarly,

fixing V at the value estimated from a presample-estimated covariance matrix with differ-

ent scales does not improve the poor fit. Departing from Sargent (1999), therefore, we

estimate the government’s prior beliefs P1|0 and V within the sample. Our MCMC or max-

imum likelihood algorithm reverse engineers the empirical Phillips curve at each date that,

in conjunction with the Phelps problem, rationalizes that date’s inflation rate. Estimating

P1|0 and V gives us the flexibility to succeed in this reverse engineering. Moreover, this

flexibility is arguably reasonable. We take the view that the presample data are informative

about the government’s subjective point estimates (which we fix), but that they substantially

understate the government’s subjective uncertainty about coefficient innovation volatility V

(which we estimate). Thus, we use the presample data to pin down the mean of the gov-

ernment’s estimate of the empirical Phillips curve, but not to estimate the belief innovation

covariance matrix V .

We report the posterior estimate of φ (evaluated at the peak of the posterior pdf) in

Table 1, along with the 68% and 90% probability intervals around the estimate.20 In our

estimation and inference, the regressor vector in the government’s Phillips regression (4)

18Alan Blinder (1998) emphasizes that the source of time inconsistency in Kydland and Prescott’s (1977)

Phillips curve example is their specification that u∗∗ 6= u∗∗ in the monetary authority’s preferences (3). His

experience as Vice Chairman of the Federal Reserve led Blinder to question whether the FOMC perceived

there to be much of a gap between u∗∗ and u∗∗.
19In an earlier draft, we followed Chung (1990) and estimated this belief from the sample data. Since it is

influenced by the updated beliefs in the sample, the value estimated this way is as difficult to interpret as that

in Chung.
20All probability intervals are derived from the empirical joint posterior distribution generated from a

sequence of 50,000 MCMC draws.
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is:

Φt =
[
πt πt−1 ut−1 πt−2 ut−2 1

]′
.

Among the parameters that we estimate are those of the expectational Phillips curve (1)

that we assume truly governs the data. As can be seen in Table 1, we estimate the natural

rate of unemployment u∗∗ in equation (1) to be 6.1 with wide probability intervals, a finding

that is consistent with the confidence interval in the statistical model of Staiger, Stock, and

Watson (1997). We find only weak responses of unemployment to inflation surprises (θ0

and θ1) and they are statistically insignificant according to the probability intervals. This is

an important finding for us, partly because it implies from (6) that Nash inflation is close

to π∗ despite the large difference between u∗∗ and u∗. Therefore, outcomes close to those

associated with the limit point of the mean dynamics are close to the Ramsey outcome.

Unemployment is by itself a persistent series and the persistence is tightly estimated.

It can be seen from the estimates and probability intervals of ζ1 and ζ2 that their posterior

distribution is tight but skewed downward, especially for ζ1, whose estimate (evaluated at

the peak of the posterior pdf) is outside the 90% interval.

The estimated P1|0 shows strong correlations (at least above 0.95) among all the ele-

ments. The relatively large variance for the drifting coefficient on πt−2 (the 4th element)

implies that the government is relatively uncertain about this coefficient, which affects

the uncertainty about other coefficients even though their marginal variances are relatively

small.

The estimated V shows strong correlations among the innovations to the coefficients on

current and lagged inflation variables. As discussed above, the scale of V is pinned down

only relative to the government’s regression error variance σ2. Our V is large relative to σ2

(which recall is .01σ2
1 ), implying that the government is willing to adjust its beliefs quickly

in response to recent data. The constant term has the largest variance, which can be inter-

preted as reflecting its uncertainty about the natural rate of unemployment. The uncertainty

in the constant affects the coefficients on the lagged unemployment variables because of
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FIGURE 1. Inflation: actual vs one-step forecast (i.e, government controlled inflation)

their high correlations, but it has a small influence on the coefficients on inflation in the

government’s model. Because V is not small (or equivalently σ2 is), the government’s

beliefs are likely to drift significantly and inflation is likely to escape to the near-Ramsey

region.

Our estimates of the true expectational Phillips curve (1) imply a negligible difference

between the SCE and π∗. We show in Section VII.2 that even when we artificially alter the

parameters of (1) to allow the SCE inflation rate to be considerably higher than the Ramsey

rate, this large V permits frequent escapes to low inflation rates.

The inflation path produced by the government’s inflation policy is plotted against the

actual path in Figure 1, and one-step forecasts of unemployment are plotted against the
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TABLE 1. Posterior estimates of model parameters

Maximum log value of likelihood (multiplied by prior): 564.92

Estimates of coefficients in true Phillips curve and inflation process

with 68% and 90% probability intervals in parentheses

u∗∗ : 6.1104 (5.2500,7.1579) (4.2238,9.0586)

θ0 : −0.0008 (−0.0237,0.0475) (−0.0458,0.0719)

θ1 : −0.0122 (−0.0375,0.0297) (−0.0589,0.0526)

τ1 : 0.9892 (0.9852,0.9960) (0.9817,0.9996)

ζ1 : 35.6538 (28.7565,32.4947) (27.6017,33.7890)

ζ2 : 18.97671 (15.6565,18.2557) (14.7008,19.1196)

Estimate of P1|0:

0.1087 0.1432 0.0225 −0.2540 −0.0093 −0.1015

0.1432 0.1937 0.0296 −0.3398 −0.0119 −0.1359

0.0225 0.0296 0.0047 −0.0526 −0.0019 −0.0211

−0.2540 −0.3398 −0.0526 0.5990 0.0213 0.2396

−0.0093 −0.0119 −0.0019 0.0213 0.0008 0.0085

−0.1015 −0.1359 −0.0211 0.2396 0.0085 0.0958

Estimate of V :

0.0823 −0.0778 0.0092 0.0498 −0.0081 −0.4141

−0.0778 0.0814 0.0003 −0.0509 0.0194 0.6859

0.0092 0.0003 0.0299 0.0012 0.0370 0.7207

0.0498 −0.0509 0.0012 0.0320 −0.0105 −0.3996

−0.0081 0.0194 0.0370 −0.0105 0.0514 1.0064

−0.4141 0.6859 0.7207 −0.3996 1.0064 25.8831
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FIGURE 2. Unemployment rate: actual vs one-step forecast
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FIGURE 3. Differences between actual values and one-step forecasts of inflation
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FIGURE 4. Differences between actual values and one-step forecasts of unemployment

actual path in Figure 2.21 It is evident from these figures that the model explains the low-

frequency movements of inflation well; so well, in fact, that it is difficult to discern the

difference between the series.22 By this fit criterion, our reverse engineering exercise is

a success, especially compared to those carried out by Chung (1990) and Sargent (1999).

Figures 3 and 4 plot the one-step forecast errors for inflation and unemployment, showing

that for most of the sample, the forecasts are within one half a percentage point of the

realized value.

These forecast errors are comparable to those from BVAR models with the standard

prior settings proposed by Sims and Zha (1998). The root mean square error (RMSE)

and the mean absolute error (MAE) are 0.225 and 0.179 for our model, 0.397 and 0.297
21Inflation policy (xt−1) is sharply estimated. Although we do not plot the error bands around the estimated

xt−1 to avoid visually clustering Figure 1, they are quite tight and track the rise and fall of actual inflation

well.
22These empirical results provide a formal justification for Ireland (2005)’s key assumption that persistent

changes occurred in the Federal Reserve’s inflation target in the 1970s.
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for the BVAR with one lag (BVAR(1)), and 0.357 and 0.272 for the BVAR with 13 lags

(BVAR(13)). As another comparison model, we also consider the case where the gov-

ernment’s model is a Keynesian Phillips curve that puts inflation on the left side of the

regression, as discussed in King and Watson (1994) and Sargent (1999). The resulting

RMSE is 0.478 and MAE is 0.332, substantially larger than our model’s. The poor fit of

the Keynesian model is consistent with the findings of Cogley and Sargent (2005a).

We also use the Schwarz criterion (SC) to compare maximum log values of the likelihood

multiplied by the prior among our learning model, the BVAR(1), and the BVAR(13). The

Schwarz criterion (SC), sometimes called the Bayesian information criterion, adjusts the

log likelihood by the number of degrees of freedom times log of sample size divided by

2. This criterion is very useful because it can be readily computed from the estimates

reported in Table 1 and because, under standard regularity conditions, it will converge to

zero (or infinity) if the posterior odds ratio converges to zero (or infinity) as the sample size

increases. We follow Sims and Zha (in press) and use the likelihood multiplied by the prior

instead of likelihood itself, because models with a large number of parameters are better

characterized by the likelihood multiplied by a prior. The same asymptotic reasoning that

justifies the SC based on the likelihood applies to the likelihood multiplied by a prior. The

SC value is 564.92 for our model, 313.98 for the BVAR(1), and 309.37 for the BVAR(13).

Our learning model appears to dominate the two atheoretical models.

To see whether these asymptotic results holds in finite samples, we compute the marginal

data density (MDD) for our learning model, using the modified harmonic mean method

described in Geweke (1999) and Propositions 1 and 2 in Appendix C. The log MDD value

is 424.75. In comparison, the log MDD value is 172.05 for the BVAR(1) and 244.65 for
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the BVAR(13).23 As measured by Bayes factors (which would put essentially zero weight

on the BVARs), our learning model again dominates the BVARs.24

Higher Bayes factors, however, do not necessarily imply that our learning model outper-

forms BVARs in predicting the rise and fall of inflation. In Sections VI.3 and VI.5, there-

fore, we compare the performances of both our learning model and BVARs in forecasting

longer-term inflation. There we show that for forecasting low-frequency movements in

inflation, our model performs as well as or better than the BVARs. Without any assump-

tion about exogenous components of the persistence of inflation, the government’s inflation

policy explains, almost entirely, the rise and fall of post-war American inflation (Figure 1).

This result had not been achieved in previous work (e.g., Sims 1988, Chung 1990, and

Sargent 1999).

VI. FURTHER EMPIRICAL RESULTS

VI.1. Shocks and Beliefs. In our model, the rise and fall of inflation is driven by the

Phelps problem in conjunction with the government’s belief in an exploitable tradeoff be-

tween inflation and unemployment, which leads to a high inflation rate in the early 70s.

But then occasional sequences of stochastic shocks lead the government at least temporar-

ily to believe that it can cut inflation with no rise in unemployment, which leads to rapid

disinflation in the early 80s. During these episodes, the government learns a version of the

23These results differ from the SC results. It is well known, however, that the Schwarz criterion tends to

favor VAR models with shorter lags.
24The MDD values may be sensitive to the priors. But the differences between the MDD values of our

learning model and the BVAR models are large enough for us to conclude that our model appears to dominate.

The computed MDD for our model is based on one million posterior draws, which consume six days on a

Pentium-IV PC desktop. Using the method of Newey and West (1987), we obtain the numerical standard

error for the log value of the estimated MDD, which is about 0.99. It is known, however, that the standard

error computed this way may underestimate the uncertainty around the estimated marginal likelihood. From

independent sequences of posterior draws, we find that the estimated value of log MDD can vary on the order

of 5.
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FIGURE 5. Evolution of the government’s beliefs

natural rate theory in which the sum of the coefficients on inflation is nearly zero in its

model, reflecting a vertical long-run Phillips curve.

The evolution of the government’s updated beliefs is displayed in Figure 5. The sum of

the coefficients on inflation becomes very negative in the early 70s and stays quite negative

until the late 70s. Although the sum of the inflation coefficients is still negative, in the

1980s it is small enough to induce policymakers to decide to cut inflation without worrying

much about costs in unemployment.

Figure 6 displays the subjective covariations in the drift innovations of some key func-

tions of parameters in the government’s Phillips curve, derived from our estimated V re-

ported in Table 1. These key parameters are the sum of the coefficients on current and

lagged inflation variables (α1 +α2 +α4), the sum of the coefficients on current and lagged
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FIGURE 6. 68% and 90% probability ellipses about key parameters in the

government’s Phillips curve. The first row is based on the observation at

73:12; the second row is based on a limiting case associated with an SCE;

the third row displays scatter plots of the estimates throughout our 60:02-

03:12 sample. The asterisk symbol ∗ in the first row depicts the govern-

ment’s estimates at 73:12. The circle symbol ◦ in the second and third rows

depicts SCE values, which also equal limiting estimates from the mean dy-

namics.
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FIGURE 7. Perceived excess unemployment under the Ramsey policy of

2% inflation according to the government’s beliefs, with and without im-

posing the cross-equation restrictions.

unemployment variables (1−α3−α5), and the coefficient on the constant term (α6).25 As

shown by the symbol “∗” in the first row of graphs of Figure 6, the estimated constant co-

efficient has a large, positive value while the sum of the estimated inflation coefficients is

quite negative. This combination leads to a high perceived tradeoff between unemployment

and inflation in December 1973.

In contrast, at the point associated with the SCE (indicated by the symbol “◦” in the

second row of Figure 6), the estimated constant coefficient is small and the sum of the

inflation coefficients is near zero, providing the government no incentive to inflate in pursuit

of lower unemployment.

25See Sargent (1999, chapter 5) for how the sum of coefficients on π affects the advice rendered by the

Phelps problem.
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The probability ellipses shown in Figure 6 are quite large along the dimension of the

constant coefficient. The large variation implies that a tradeoff between inflation and un-

employment can be severe if there is a high probability that the constant coefficient and the

sum of the inflation coefficients fall far within the north-west quadrant, as in the case of the

upper-left graph. The bottom-left graph shows the historical estimates of these two belief

parameters, induced by the particular sequence of shocks throughout our post-war sam-

ple. The area in which the sum of the inflation coefficients is less than -1 and the constant

coefficient is greater than 15 covers most of the estimates for the 70s.

The constant and the sum of the unemployment coefficients are highly but negatively

correlated, as shown in the first two graphs in the second column of Figure 6. Later we will

see that in the transition to the SCE, the economy may go through periods of very volatile

inflation. If 1−α3−α5 and α6 frequently have opposite signs because they are negatively

correlated, the government would tend to predict unemployment below the natural rate

because of a large value of α6. This in turn would prompt the Phelps planner to disinflate

a lot to stabilize his objective function, thereby causing volatile fluctuations of inflation.

These volatile outcomes occur when these two parameters fall in the south-east and north-

west quadrants. Fortunately for US inflation outcomes, our historical estimates have been

concentrated around the north-east quadrant, as shown in the bottom-right graph. It is only

in out of sample simulations that we enter the more volatile regions. Exposure to those out

of sample possibilities is a byproduct of the large V (relative to σ2) that, in conjunction with

the Phelps problem, Bayes’ rule prompts us to use to reverse engineer the government’s

choice of inflation.

The belief parameters discussed above are key inputs to the government’s perceived sac-

rifice ratio. To assess the government’s perceived cost of having a stable low inflation

policy, we construct an artificial time series of the unemployment rate that the government

would have expected if it had it kept inflation constant at the Ramsey level of π∗ = 2%
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throughout the sample.26 Figure 7 plots the difference between this projected unemploy-

ment rate and our estimate of the natural rate. This provides a measure of the government’s

perceived sacrifice ratio, the expected unemployment in excess of the natural rate asso-

ciated with the Ramsey inflation policy.27 Here we see that, throughout the 1970s, the

government’s model implied that substantial increases in unemployment would result from

a low inflation policy.28 It wasn’t until the early 1980s that this ratio fell nearly to zero for a

sustained period of time, at which time the disinflation commenced. This point will be reit-

erated in Sections VI.5 and VI.6 where we present longer-term forecasts and counterfactual

paths around that time.

Figure 7 also plots the corresponding sacrifice ratio when, as described in the next sec-

tion, we do not impose the cross-equation restrictions. Here we see that the sacrifice ratio

is much lower, even negative, for much of the sample, implying that such a model will not

be able to reproduce the rise and fall of inflation that is observed in the data. We discuss

this in more detail in the next section. The difference between our model and a model

that does not impose the cross-equation restrictions is accounted for almost entirely by the

large scale of our estimated V . If we scale down our V by a factor of 1×10−4, the sacrifice

ratios implied by the resulting beliefs are nearly identical to the ones obtained when we do

not impose the cross-equation restrictions (see Figure 8). Our large estimated V makes the

government’s beliefs and its policy very sensitive to recent data, an essential key feature

that allows our model to explain the evolution of US inflation.

26In particular, at each date we feed the the actual past unemployment rates and 2% inflation into the

government’s Phillips curve and project the current unemployment rate.
27Note that our measure of the sacrifice ratio differs from a more conventional one that gives the cost of

disinflating from a current inflation rate. Instead, ours is a full-sample measure that is independent of current

inflation.
28A temporary drop in this sacrifice ratio around 1976 led to a temporary decline in inflation around that

time. See Cogley and Sargent (2005a) for a story in which the government was deterred from stabilizing in

the mid 1970s because it attached a small positive probability to a model that assigned high unemployment

costs to a rapid disinflation.
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FIGURE 8. Perceived excess unemployment under the Ramsey policy of

2% inflation according to the government’s beliefs with a scaled down V ,

and without imposing the cross-equation restrictions.

VI.2. Importance of Cross-Equation Restrictions. As we’ve already noted, the flexi-

bility that a large V (or small σ2) gives our model is crucial for giving us the ability to

reverse engineer government beliefs that, intermediated by the Phelps problem, account for

the government’s decisions about the predictable part of inflation xt−1. In particular, our

findings tell us to attribute the empirical failure of previous work with similar models by

Chung, and Sargent to the fact that they assumed a particular form for the key matrix V in

(8) that governs the innovations to the parameters in the government’s model.

To highlight the importance of V , we can estimate V (and P1|0) directly with (7) and

(8), thereby abstaining from imposing the Phelps problem. These estimates can serve as a

benchmark for what impacts on V occur from our imposing the cross-equation restrictions

via the Phelps problem discussed in Section VI.1.
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FIGURE 9. 68% and 90% probability ellipses about key parameters in the

government’s Phillips curve, derived from the estimated V without imposing

cross-equation restrictions. The asterisks mark the estimates of these belief

parameters at 73:12 (when inflation was quite high).

Figure 9 displays the covariations in the key belief parameters when the restrictions from

the Phelps problem are not imposed. Compared to Figure 6, where the restrictions from

the Phelps problem are imposed, the ellipses in Figure 9 are very tight – so tight that if we

were to combine Figure 9 and the first row of graphs in Figure 6, the tight Figure 9 ellipses

would appear as short thin lines. Furthermore, the SCE values are far outside the Figure 9

ellipses.

We have already discussed theoretical reasons that make the V matrix so important and

how different specifications of it affect the speed, direction, and stability of the learning

dynamics. The V depicted in Figure 9 and those imposed by Chung and Sargent differ sub-

stantially from what we estimate when we impose the cross-equation restrictions induced

by the Phelps problem. In particular, the V ’s of Chung and Sargent are smaller in overall
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scale (again relative to σ2) and have somewhat different correlations among parameters.

These specifications constrain how learning could occur, and diminish the variation in the

data that can be explained by evolving government beliefs.

Figure 10 shows what happens when we reestimate the model in the fashion of Chung

and Sargent, imposing our estimate of V from Figure 9. The fit deteriorates substantially.

The government’s optimal policy completely misses the two peaks in inflation in the 1970s,

which is what Sargent (1999) found.29 This is consistent with the implied sacrifice ratio

shown in Figure 7 above, which shows essentially no tradeoff between unemployment and

inflation. Chung (1990) and Sargent (1999) found that with their choices of V , the govern-

ment should have cut inflation much earlier than actually occurred.

Our results show how that outcome came from attributing to the government particular

beliefs about how its model changes over time. By imputing to the government the nec-

essary “openness to recent data” that is required by the cross-equation restrictions called

for by the Phelps problem, the rise and fall of inflation can be much better explained by

the evolution of government’s beliefs in response to a particular sequence of shocks in the

70s and 80s. For someone who hopes or believes that the FOMC took the long view and

did not highly discount data beyond the recent past, this large V (or again, small σ2) could

be viewed as disappointing or surprising. However, Tetlow and Ironside (2005) document

large and consequential changes in the properties of the FRB/US model reported by the Fed

staff from July 1996 to November 2003, including among them significant changes in the

inflation-employment sacrifice ratio. Our large estimated value of V is consistent with the

findings of Tetlow and Ironside (2005). For what it is worth, our large estimated V is also

29If we use the sample estimate of the second moment matrix and we choose the proportionality factor so

that the new V matrix has the same norm as our estimate, the fit would be as poor as Figure 10. Similarly, if

the originally estimated V in Section VI.1 is scaled down by, say, 0.01 so that inflation dynamics are governed

by the SCE, the implied inflation policy would completely miss the rise and fall of actual inflation.
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FIGURE 10. Actual inflation and one-step prediction from the benchmark

model in which V is estimated without imposing the cross-equation restric-

tions.

consistent with our own reading of the drifting views that we detect in our own readings of

FOMC transcripts.30

VI.3. Longer-Horizon Inflation Forecasts. Longer-term forecasts of inflation play an

important part in policy discussions at Federal Open Market Committee (FOMC) meet-

ings. At each FOMC meeting, Federal Reserve economists prepare a report called the

Greenbook that forecasts various economic variables over the two-year horizon. How well

30One can infer from reading historical records of the Federal Open Market Committee that decision

makers spent enormous amounts of time evaluating current economic conditions and that policy delibera-

tions were dominated by interpretations of very recent changes in economic data. Even in the Greenspan

era, policymakers’ beliefs seemed to be heavily influenced by new developments (see various chapters in

(Chappell, McGregor, and Vermilyea, 2005)). Our reverse-engineering estimate of V quantifies the FOMC’s

preoccupation with recent data in the context of a formal model.
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FIGURE 11. Two-year-ahead inflation forecasts: learning model versus BVAR(13)

would our learning model do in producing two-year-ahead forecasts of inflation throughout

the sample, as compared to the BVAR(13) model?

Figure 11 depicts the two-year-ahead median forecasts of inflation from our model and

also ones from a BVAR(13).31 The forecast and actual values are aligned in such a way

that if the forecast were on target, the values would coincide. As shown in the figure, the

learning model produces forecasts that differ substantially from the BVAR.32 Our learning

model predicts the first two rises of inflation about between 1 and 2 years two early and

31At each time t, we first draw a sequence of structural shocks w1 t+k and w1 t+k defined in (1) and (2) for

k = 1, . . . ,24. Conditioning on the estimated values of the structural parameters, the estimated beliefs at t,

and the data It defined in Section III, we then employ (1) and (2) to generate the forecasts ut+k and πt+k

by recursively solving the inflation policy via the Phelps problem. We repeat this simulation 1000 times and

calculate the median of all simulated values of πt+24. This computation takes about 40 hours on a Pentium-IV

PC desktop.
32The RMSE and MAE are 1.9292 and 1.3233 for the learning model, 2.3939 and 1.6809 for the BVAR(1),

and 2.0861 and 1.4617 for the BVAR(13).
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a third small rise of inflation about 5 years too early. And it predicts a permanent fall of

inflation after 1985 with less forecasting volatility than the BVAR(13). By contrast, the

two-year ahead forecasts of inflation from the BVAR(13) seem to lag the rise and fall of

actual inflation.

Figure 12 traces these predicted accelerations of inflation to features of the government’s

beliefs that lead the Phelps planner to expect to “step on the gas” each of these three times.

The left graph in the first row shows that the sum of inflation coefficients move from left

to right over time, getting more negative and prompting the government to step on the gas.

In the right graph, one can see that the sum of unemployment coefficients and the constant

coefficient are in the north-east quadrant, indicating that the inflation forecast is stable for

this period, as discussed in Section VI.1. The second and third rows show similar patterns,

with differences in how negative the sum of inflation coefficients gets over time. The left

graph in the fourth row, however, reveals a completely different story. The sum of inflation

coefficients moves toward zero over time and then passes into positive territory. Thus, the

government faces at most weak inflation-unemployment trade-offs. These results explain

why, after a third run-up of actual inflation between 1986 to 1990, the government would

not want to step on the gas. Interestingly, the BVAR continues to predict a run-up even

after 1990.

VI.4. Good Low Frequency Outcomes. Figure 13 displays the four-year-ahead predic-

tions from our model and the BVAR(13). Neither model predicts the magnitude of the rises

of inflation that occurred. But our model captures the timings of the first two rises almost

perfectly, while the predictions of the BVAR(13) again lag behind. The RMSE and MAE

are 1.761 and 1.241 for our model, 2.838 and 2.195 for the BVAR(1), and 2.433 and 1.820

for the BVAR(13). Our model’s 4-year forecast errors are smaller than its 2-year forecast

errors, while the forecast errors from the BVARs are larger for the 4-year horizon than for

the 2-year horizon.
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FIGURE 12. Estimates of key step-on-gas parameters over the three pre-

dicted run-up periods and over the Greenspan era. The first row shows the

evolution of these belief parameters for 72:01-73:12 (the first predicted run-

up period); the second row for 76:01-77:12 (the second predicted run-up

period); the third row for 83:01-84:12 (the third predicted run-up period);

and the fourth row for 87:07-03:12 (the Greenspan era).
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FIGURE 13. Four-year-ahead inflation forecasts: learning model versus BVAR(13)

VI.5. Two Peaks and an Enduring Decline. To reinforce the results in the last section,

we now analyze in further detail how the model forecasts the two peaks of inflation in the

1970s and the sharp decline in the early 1980s. We look at both the point forecasts and the

associated distributions at various forecast horizons, conditioning on the estimated values

of the structural parameters. We use Monte Carlo simulations to assess the distribution of

forecasts going forward over four year horizons from different initial conditions. In each

case, we take the estimated beliefs at the starting date and repeat 5000 simulations of 50

periods.33 We then plot the actual experienced inflation and the median forecast along with

68% and 90% probability bands. In each plot, the initial condition is shown as date zero,

from which we look forward 50 periods.

The left column of graphs in Figure 14 reports the forecasts from our model. The top

panel on the left starts in January 1973 when inflation was at a very low level (3.3%). This

is also when we say that the government most overestimated the tradeoff between inflation

33Adding uncertainty in the parameters would widen our forecast bands only a little.
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FIGURE 14. Dynamic forecasts of inflation with 68% and 90% error bands

from our learning model (left column of graphs) and from BVAR(13) (right

column of graphs), using as initial estimated conditions at 73:01, 74:01,

77:01, and 80:04.
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and unemployment (see Figure 5). According to the model, the government exploited the

tradeoff and pushed up inflation to lower unemployment. The model predicts a steadily

rising inflation path as high as 10% towards the end of the 4-year horizon (the upper 90%

band), and gives little probability to a lower inflation rate in the medium run.

Due to a sequence of shocks, the inflation path reached its peak earlier than the model

predicts. But this is a treacherous period in which to predict, and as we show later in this

section, our model’s prediction of rising inflation compares favorably to predictions coming

from alternative statistical models.

A year later in January 1974, which is shown in the second panel from the top in the left

column of Figure 14, inflation had continued upward, now reaching 8.4%. Here we see

that the model tracks the actual inflation path quite well, predicting a further increase in

inflation prior to a return to lower levels.

January 1977, shown in the third panel from the top, was another difficult time to predict

inflation because inflation was at its trough and a second run-up was about to begin. Al-

though actual inflation reached its peak at a later date, the model assigns an overwhelming

probability to higher inflation and the upper 90% reaches as high as 10%.

The disinflation episode in the early 1980s is often interpreted as reflecting the intellec-

tual triumph of the rational expectations version of the natural rate theory. What does our

learning model say about this period? Would the government continue to pursue a higher

inflation policy? After all, from the vantage point of April 1980 when inflation reached

its second peak, most forecasting models either predict that inflation was very likely to go

higher than it actually did, or they fail to predict the fall of inflation. The bottom panel on

the left column of Figure 14 displays the forecast from our learning model. While actual

inflation declines at a somewhat slower speed than the model predicts in 1980 and 1981,

the forecast of a fast decline in inflation is remarkable. The model’s prediction is espe-

cially good further in the forecasting period. Unlike many forecasting models, our model

gives almost no probability to rising inflation in the medium horizon, because the tradeoff
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between inflation and unemployment by then is not high enough for the government to

pursue double-digit inflation.

We now compare the model’s forecasts with those from the BVARs. Above we com-

pared the fit of our model against BVARs with 1 and 13 lags. Although by some measures

of fit the BVAR(1) performs better than the BVAR(13), with only one lag there are rela-

tively little dynamics in the predictions. Thus we focus here on the BVAR(13). The right

column of graphs in Figure 14 shows the forecasts of inflation at the various dates from

the BVAR(13), as in the counterparts from our model in the left column of the figure. The

68% and 90% error bands are produced by simulating the VAR shocks while holding the

parameter estimates fixed at those obtained using the 60:01-03:12 sample, the same proce-

dure we applied to our learning model. The forecasts at 73:01 from the BVAR(13) clearly

fail to predict any rise of inflation with a significant probability. Moreover, the error bands

are relatively wide, giving probability half to a decline of inflation. For the forecasts at

74:01, the BVAR forecasts are comparable to those from our learning model. The forecasts

at 77:01 from the BVAR(13) again give probability half to a decline of inflation, while the

forecasts from our learning model in the left column put a vast majority of probability to

rising inflation. For the forecast at 84:04, the BVAR(13) predicts a decline of inflation. But

our learning model predicts a much sharper decline of inflation with narrow bands while

the BVAR assigns considerable probability to higher inflation than the actual path. Overall,

our learning model performs as well or better than the BVARs in explaining the rise and

fall of inflation at these crucial dates.

VI.6. Counterfactual Exercises. As a way to quantify the role of econometric policy

evaluation in the government’s learning process, we use our estimated classical model to

calculate what would have happened if the government’s beliefs had differed from our

estimates. All of the results in this section condition on estimates of the historical shocks

of unemployment and inflation that we infer from our model estimates. We treat these

shocks as random and exogenous in our counterfactual exercises.
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FIGURE 15. Inflation dynamics with fixed beliefs at the dates 64:01 and 73:12.
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FIGURE 16. Inflation dynamics with fixed beliefs at the dates 79:10 and 73:12.
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The first episode begins in 1964:01. As seen from Figure 5, there is still little belief in

the inflation-unemployment tradeoff in the early 1964, but by then end of 1973 the sum

of the inflation coefficients is most negative. Such continual adaptation of beliefs towards

a bigger inflation-unemployment tradeoff gives the government an incentive, through the

Phelps problem, to run a high inflation policy. This can be seen indirectly in Figure 7

as the perceived costs of low inflation rise dramatically in the early 1970s. To obtain a

more direct comparison, suppose the government’s beliefs had been frozen at the 64:01

initial condition. As shown in Figure 15, the inflation path would have been smoother and

avoided much of the two large run-ups of actual inflation in the 70s. To take an opposite

example, we replace the government’s 64:01 beliefs with the 73:12 beliefs and fix them

throughout the history. In this case, Figure 15 shows that inflation would have been much

higher than was actually experienced throughout the sample and would have continued to

stay around 10%.

Figure 16 displays a second episode beginning with 1979:10, when Volcker’s disinfla-

tion policy took place. As we’ve seen, if the government had held fixed to its 1973:12

perceived tradeoff, inflation would have stayed much higher. Figure 16 shows that if the

government’s belief at 1979:10 had been fixed throughout the rest of the history, inflation

would have come down to 5% by 1986 due to the sequence of historical shocks, but there

would have been a tendency to return to a higher inflation level. These outcomes show the

important role that we assign to adapting government beliefs in the process of achieving

lower inflation. With the same sequence of historical shocks, actual inflation came down

and remained low as shown by the inflation path in Figure 16. Although the government’s

beliefs at the end of 1979 favored a disinflation, Figure 5 shows how the government’s

views continued to evolve to favor a low inflation policy. The experience of disinflation and

continued low inflation led the government away from believing in an exploitable Phillips

curve tradeoff.

These exercises suggest that while the rise of inflation in the 70s was caused by the

government’s misperceiving the Phillips-curve relationship, the fall of inflation in the 1980s
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can be explained by an econometric policy evaluation procedure that embodies adaptive

beliefs. The changes in beliefs over time that we estimate do not necessarily imply changes

over time in a linear policy rule that we could estimate by regressing xt on lagged values of

itself, inflation, unemployment. Because our estimate of xt tracks the actual inflation path

so well, our results are consistent with reduced-form empirical findings that changes in the

policy rule or the inflation process are difficult to detect statistically (Cogley and Sargent

2005b, Primiceri in press, and Sims and Zha in press).

VII. MODEL PROPERTIES

We have shown that our model is capable of tracking the post-WWII inflation data. It is

also important to examine the long run properties of the model to see if the government’s

adapting beliefs will eventually support near-Ramsey outcomes. We first use the small

variation limits of Sargent and Williams (2005) to obtain analytical asymptotic results.

Then we discuss the convergence of our baseline model to a limit distribution.

VII.1. Small Variation Limits. While it is difficult to obtain explicit convergence results

for arbitrary V , for small V ’s the beliefs drift at a slower rate, allowing us to approximate

their evolution with a differential equation. In particular, as in Sargent and Williams (2005),

we let V = ε2V̂ and study limits as ε → 0. However, Pt|t → 0 as ε → 0, so we define a scaled

matrix P̂t|t = Pt|t/ε that does not vanish. Sargent and Williams show that as ε → 0, the

sequence {αt|t , P̂t|t} generated by (9)-(10) converges weakly to the solution of the following

ODEs:

α̇ = PE
[
Φt(ut −Φ′

tα)
]

(16)

Ṗ = σ−2V̂ −PE(ΦtΦ′
t)P, (17)

where the expectations are calculated for fixed α . As we let the prior belief variance go

to zero by shrinking ε , the government’s beliefs track the trajectories of these differential
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FIGURE 17. Mean dynamics for the baseline estimates, initialized at the

start of the sample.

equations. We call the ODEs (16)-(17) the mean dynamics because they govern the ex-

pected evolution of the government’s beliefs. If the ODEs have a stable point, then the

government’s beliefs will converge to it as ε → 0 and t → ∞. Note from (16) that the lim-

iting beliefs satisfy the key least squares orthogonality condition (5) and hence comprise

a self-confirming equilibrium. This orthogonality condition is the key identifying assump-

tion in the government’s subjective model, and in the limit it is satisfied when the data are

generated by the true DGM.

In Figure 17 we plot trajectories of the mean dynamics for some functions of the parame-

ters describing the government’s beliefs starting from the initial conditions at the beginning

of the sample. Evidently, the mean dynamics converge to a stable self-confirming equilib-

rium. The self-confirming equilibrium beliefs are:

αSCE = [ −0.0008 −0.0000 0.9725 0.0000 0.0165 0.0688 ].
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In the SCE, the government knows the true value of θ0, the effect of current inflation on

unemployment. In the SCE, the government believes in a small tradeoff between inflation

and unemployment, and so sets inflation only slightly above the Ramsey level. In particular,

the mean inflation rate in the SCE is 2.24% instead of the Ramsey level of 2%.

However, mean dynamics around a self-confirming equilibrium govern the dynamics of

our model only for small ε . In practice, for our parameterization ε must be quite small, on

the order of 10−4, for the asymptotic approximations to be accurate. Thus, for our baseline

estimated V the mean dynamics do not fully characterize the evolution of beliefs. Loosely

speaking, for any V and ε > 0, we get convergence to a nontrivial limit distribution of be-

liefs. Only as ε → 0 does this limit distribution converge to a self-confirming equilibrium.

VII.2. Convergence to Near-Ramsey. What are the long-run implications of the esti-

mated V ? The large estimated value of V suggests that one would expect escapes from

SCE to be frequent even if the inflation rate at the Nash equilibrium were much higher. To

illustrate this point, we change θ0 from its estimated value of −0.0008 to −1.0 , the value

used by Sargent (1999), while keeping all other parameters fixed at the values we estimated.

This implies that the Nash inflation rate is around 10%, while the socially optimal Ramsey

level remains at 2%. As can be seen from Figure 18, inflation tends to be high, but the

large time-variation of the drifting beliefs implied by our estimated V allows the dynamics

to escape to low inflation repeatedly, and there is no tendency for inflation to stay for long

at the high level. Thus, our V matrix is consistent with repeated escapes in the long run,

but they are difficult to detect under our estimates because our estimate of θ0 implies such

a low sacrifice ratio.

To elaborate on this point, Figure 19 shows the inflation dynamics for simulations of

30,000 months starting at different estimated initial conditions: 1960:03 (the beginning of

the sample), 1973:12 (the date when both inflation and the perceived trade-off are quite

high), and 2003:12 (the end of the sample). Clearly, they all converge to a limiting distri-

bution around the Ramsey outcomes. This convergence occurs from the estimated initial
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FIGURE 18. Long-run inflation dynamics with θ0 = −1.0, using the end-

of-sample estimate as the initial condition.

conditions at any date. The fluctuations at the beginning of the simulation reflect the rise

and fall of an American inflation process that was temporarily off the SCE equilibrium. As

shown in the lower left panel, we are likely to see some high inflation in the near future but

such high inflation will be caused purely by exogenous random shocks to inflation, so long

as the government continues to see no tradeoff between inflation and unemployment (see

the lower right panel of Figure 19). The government’s beliefs are volatile for a while but
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eventually the sum of coefficients on inflation converges to near zero.34 Consequently, the

mean dynamics suggest that inflation converges to around 2%.

While the large inflation volatility in the out-of-sample forecasts are discomforting, the

future outcomes would be much better if the government were to discount data less heavily.

In particular, when we scale down our estimated V matrix by 1× 10−4 and project out of

sample, we obtain much more plausible predictions, as shown in Figure 20. Starting from

the end of 2003, the model predicts a disinflation to roughly zero, followed by convergence

to roughly 2%. These long run properties foster a view of US monetary history as a process

of continual learning before inflation becomes stable around the Ramsey outcomes. This

transition process would be much improved if the government were now to take a longer

horizon and put less weight on incoming data.

VIII. CONCLUSION

Our estimates attribute the differing inflation outcomes over the post-war period to changes

over time in the monetary authority’s beliefs. Our empirical results suggest an interpreta-

tion that differs from the work we build on. Sargent (1999) and Cho, Williams, and Sargent

(2002) suggested that US experience could be explained by convergence to a high Nash

inflation level coupled with occasional escapes to a lower Ramsey level. As discussed by

34 In those volatile periods, the constant coefficient in the government’s estimated Phillips curve is often

very large (on the order of 100) and the sum of the unemployment coefficients tends to be negative. Thus,

these two government Phillips curve parameters fall in the north-west quadrant of the graph discussed in

Section VI.1. If the sum of the inflation coefficients is negative, one can see from the government’s dynamic

programming problem implies a large increase in inflation to restrain adverse fluctuations in unemployment.

Similarly, if this sum is positive, the government tends to generate a large rate of deflation. Such values for

the government parameters in our simulations are far outside of the range attained by the historical estimates,

as shown in the third row of graphs in Figure 6. When by chance we draw a sequence of shocks that keeps

these government Phillips curve parameters within their historical range, convergence to a stable inflation

path occurs without large swings of inflation.
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FIGURE 19. Government’s inflation choice in long Monte Carlo simula-

tions, using the different estimated initial conditions.

Sargent and Williams (2005), these outcomes also occur in our model when we arbitrar-

ily set parameters of the true Phillips curve to allow a larger gap between the Nash and

Ramsey levels of inflation, and when we also impose what, relative to our estimates, is a

scaled-down innovation volatility matrix V in the government’s belief-drift dynamics (8).

However, with our estimates, it appears that oscillations between the Nash and Ramsey

levels of inflation, driven alternately by the mean dynamics and then the escape dynamics



SHOCKS AND GOVERNMENT BELIEFS 46

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Inflation generated with less discounted V and P
T|T−1

 at the end of sample
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using a scaled down V matrix.

of the Sargent-Williams (2005) model, were not the main forces that accounted for the in-

flation process that the monetary authorities in the US chose to administer during the post

WWII years. Our estimates of the Nash level of inflation are so near the Ramsey level that

it arrests most of the action coming from the mean dynamics and the escape dynamics.35

Instead, the rise in inflation was driven by the interaction of government beliefs and the

shocks impinging on the economy, and the fall in inflation was ultimately due to changes in

those beliefs. If the US monetary authorities remember the lessons that prompted Volcker

to disinflate in the early 1980s, then maybe Volcker’s conquest of US inflation, sustained

by Greenspan, will endure.

35Furthermore, if we arbitrarily set the parameters of the true expectational Phillips curve to create a big

gap between the SCE-Nash and the Ramsey inflations, but retain estimated innovation covariance V , escapes

from a SCE again occur frequently enough to vitiate any pattern of recurrent oscillations between the SCE

and Ramsey levels of inflation.
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APPENDIX A. DATA

The two monthly series employed in this paper are:

• Civilian unemployment rate, 16 years and older, seasonally adjusted (source: BLS);

• PCE chain price index (2000=100), seasonally adjusted (source: BEA).

Inflation is measured as an annual rate (12-month ended) of change of the PCE price index.

The estimation sample (including lags) is from January 1960 to December 2003.

APPENDIX B. PRIOR SETTINGS

Our estimation results are quite similar to the maximum likelihood estimates. But the

prior is essential for obtaining finite-sample inferences because the government belief pa-

rameter matrix V may not have a proper density function when there is no prior. The prior

for θ is mostly based on economic theory. For example, the mass prior probability of θ0 is

in the negative region.

The prior mean for θ is set to



0.12

−0.20

−0.16

0.98




,

which implies that the natural rate of unemployment is 6.0 with somewhat persistent un-

employment. The prior mean of θ1 is only slightly less than that of θ0 in absolute value

(.16 < .20), implying the low serial correlation of structural disturbances in Sargent’s ver-

sion of the Phillips curve (pp.70-71, Sargent 1999). The prior variance for θ is

λ1




0.062

0.102

0.082

0.012




,
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where λ1 controls the tightness of the prior variance. With λ1 = 1, the prior standard

deviation allows large variation but at the same time gives little probability to negative

values of v∗, or positive values of θ0 and θ1, or the value of τ1 being greater than 1 (an

explosive root).

For the prior of ζ1 and ζ2, we set ᾱ = 4 and β̄ = 12.5λ2. By setting λ2 = 1, the prior

mean for ζi becomes 50 and the prior variance becomes 252, implying a quite loose prior

for ζi.

The prior mean for CP and CV is 0. The prior variance is 52λ3 for the diagonals of CP

and CV and 2.52 for the off-diagonal elements. The tightness control hyperparameter is set

at 0.5.

In this paper, we have checked the robustness of our estimated results by varying the

values of the tightness control parameters λ1, λ2, and λ3.

APPENDIX C. CONDITIONAL POSTERIOR DISTRIBUTIONS

Because xt−1 does not depend on θ , ζ1, and ζ2, it can be seen from (11)–(14) that the

posterior distribution of θ conditional on all other parameters is Gaussian and that the pos-

terior distribution of ζ1 and ζ2 is of Gamma. Algebra leads to the following propositions.

Proposition 1.

p(θ |IT ,ζ1,ζ2,ϕ) = Normal(θ̃ , Σ̃θ ), (C1)

where

Σ̃−1
θ = ζ1

T

∑
t=1

(yty′t)+ Σ̄−1
θ ,

θ̃ = Σ̃θ

(
ζ1

T

∑
t=1

(utyt)+ Σ̄−1
θ θ̄

)
,

yt =
[
1 z2t z2 t−1 ut−1

]′
,

z1t = ut −u∗∗−θ0(πt −Et−1πt)−θ1(πt−1−Et−2πt−1)− τ1(ut−1−u∗∗),
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z2t = πt − xt−1.

Proposition 2.

p(ζ1,ζ2 |IT ,θ ,ϕ) = Gamma(α̃ζ1
, β̃ζ1

)Gamma(α̃ζ2
, β̃ζ2

), (C2)

where

α̃ζ1
= α̃ζ2

=
T
2

+ ᾱ,

β̃ζi =
1

0.5∑T
t=1 z2

it + β̄−1
, ∀i ∈ {1,2}.

The government’s optimization problem renders the conditional posterior pdf

p(ϕ |IT ,θ ,ζ1,ζ2)

one of nonstandard form. To draw from this distribution, therefore, we use the following

Metropolis algorithm.

Metropolis Algorithm. We employ four steps to simulate ϕ from its conditional posterior

distribution.

(1) Given the value ϕ last, compute the proposal draw

ϕprop = ϕ last +ξ ,

where ξ is randomly drawn from the normal distribution with mean zero and co-

variance c Σ̃ϕ specified in (D1). The scale factor c will be adjusted to keep the

acceptance ratio optimal (around 25%−40%).

(2) Compute

q = min
{

p(ϕprop|IT ,θ ,ζ1,ζ2)
p(ϕ last|IT ,θ ,ζ1,ζ2)

, 1
}

.

(3) Randomly draw ν from the uniform distribution U(0,1).
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(4) If ν <= q, accept ϕprop as the value of the current draw; otherwise, keep ϕ last as

the value of the current draw.

It follows from Propositions 1 and 2 and the properties of the Metropolis algorithm

that a large number of MCMC samples alternately drawn from these conditional posterior

distributions will eventually form an empirical distribution of φ that emulates the posterior

distribution.36

APPENDIX D. PROPOSAL DENSITY FOR THE METROPOLIS ALGORITHM

The key to the Metropolis algorithm for the posterior distribution ϕ is to obtain the

covariance matrix for a normal proposal density. Since xt−1 is a function of ϕ , one can

approximate it by a second-order Taylor expansion at the posterior estimate ϕ̂ . It can be

seen from (15) that this approximation leads to the following covariance matrix for ϕ:

Σ̃−1
ϕ =(ζ1θ 2

0 +ζ2)
T

∑
t=2

∂xt−1(ϕ̂)
∂ϕ

∂x′t−1(ϕ̂)
∂ϕ

+ζ1θ 2
1

T

∑
t=2

∂xt−2(ϕ̂)
∂ϕ

∂x′t−2(ϕ̂)
∂ϕ

+ζ1θ0θ1

T

∑
t=2

[
∂xt−1(ϕ̂)

∂ϕ
∂x′t−2(ϕ̂)

∂ϕ
+

∂xt−2(ϕ̂)
∂ϕ

∂x′t−1(ϕ̂)
∂ϕ

]
+ Σ̄−1

ϕ ,

(D1)

where Σ̄ϕ is the prior covariance matrix for ϕ .

36For each draw of φ , ζ is normalized to be equal to ζ1 before the government’s inflation policy is solved.

This normalization is consistent with Wald normalization discussed in Hamilton, Waggoner, and Zha (2004).
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