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1. OVERVIEW

Robust control considers the design of decision or control rules that fare well across a

range of alternative models. Thus robust control is inherently about model uncertainty,

particularly focusing on the implications of model uncertainty for decisions. Robust con-

trol originated in the 1980s in the control theory branch of the engineering and applied

mathematics literature, and it is now perhaps the dominant approach in control theory.

Robust control gained a foothold in economics in the late 1990s and has seen increasing

numbers of economic applications in the past few years.1

The basic issues in robust control arise from adding more detail to the opening sen-

tence above – that a decision rule performs well across alternative models. To begin,

define a model as a specification of a probability distribution over outcomes of interest

to the decision maker, which is influenced by a decision or control variable. Then model

uncertainty simply means that the decision maker faces subjective uncertainty about the

specification of this probability distribution. A first key issue in robust control then is

to specify the class of alternative models which the decision maker entertains. As we

discuss below, there are many approaches to doing so, with the most common cases tak-

ing a benchmark nominal model as a starting point and considering perturbations of this

model. How to specify and measure the magnitude of the perturbations are key practical

considerations.

With the model set specified, the next issue is how to choose a decision rule and thus

what it means for a rule to “perform well” across models. In Bayesian analysis, the deci-

1For related surveys see Hansen and Sargent (2001) and Backus, Routledge, and Zin (2005). For a more comprehen-

sive view of the leading approach to robust control in economics, see Hansen and Sargent (2007).
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sion maker forms a prior over models and proceeds as usual to maximize expected utility

(or minimize expected loss). Just as we defined a model as a probability distribution, a

Bayesian views model uncertainty as simply a hierarchical probability distribution with

one layer consisting of shocks and variables to be integrated over, and another layer aver-

aging over models. In contrast, most robust control applications focus on minimizing the

worst case loss over the set of possible models (a minimax problem in terms of losses, or

max-min expected utility). Stochastic robust control problems thus distinguish sharply

between shocks which are averaged over, and models which are not. The robust con-

trol approach thus presumes that decision makers are either unable or unwilling to form

a prior over the forms of model misspecification. Of course decision makers must be

able to specify the set of models as discussed above, but typically this involves bounding

the set of possibilities in some way rather than fully specifying each alternative. Finally,

there are some approaches which seek a middle ground between the average case and the

worst case, for example by maximizing expected utility subject to a bound on the worst

case loss. These have been less prominent both in control theory (Limebeer, Anderson,

and Hendel (1994) is one example) and in economics (Tornell (2003) is one exception),

and thus will not be discussed further. For the remainder of the article robust control

will mean a minimax approach.

2. MORE DETAIL

2.1. Robustness and Worst Case Analysis

Broadly speaking, the control theory literature has adopted the worst-case philosophy

out of concerns for stability. A basic desiderata for robust control in practice is that the

system remain stable in the face of perturbations, and since instability may be equated

with infinite loss, minimizing the worst case outcomes will insure stability (when pos-

sible). Moreover many engineering applications have specific performance objectives

which must be maintained, and a cost function penalizing deviations is not clearly speci-

fied. However in dealing with economic agents rather than controlled machines, decision

theoretic criteria naturally come into play. In this sphere, robust control is closely related
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to the notions of Knightian uncertainty, ambiguity, and uncertainty aversion, which are

all roughly equivalent (although sometimes differing in formalization).

Starting with the observations of the classic Ellsberg (1961) paradox – that (some)

decisionmakers prefer environments with known odds to those with uncertain proba-

bilities, there has been a broad literature in decision theory which has weakened the

Savage axioms to incorporate preferences which display such aversion to uncertainty

or ambiguity. The most widely used characterization is due to Gilboa and Schmeidler

(1989), who axiomatized ambiguity preferences with multiple priors. Decisionmaking

with multiple priors can be represented as max-min expected utility: maximizing the

utility with respect to the least favorable prior from a convex set of priors. More re-

cently, Epstein and Schneider (2003) have extended the static environment of Gilboa and

Schmeidler to a dynamic context, where the set of priors is updated over time. Hansen,

Sargent, Turmuhambetova, and Williams (2006) formally established the links between

robust control and ambiguity aversion, showing that the model set of robust control as

discussed above can be thought of as a particular specification of Gilboa and Schmei-

dler’s set of priors. Moreover, although the ambiguity preferences are characterized by

posing particular counterfactuals which require multiple priors, once the least favorable

prior is chosen, behavior could be rationalized as Bayesian with that prior. Thus from

a Bayesian viewpoint Sims (2001) views robust control as a means of generating priors,

which then naturally leads to questioning whether the worst case prior accurately reflects

actual beliefs and preferences.2 Finally, in many cases robust or ambiguity averse prefer-

ences are similar to enhanced risk aversion, and in some cases they are observationally

equivalent. This insight dates to Jacobson (1973) and Whittle (1981) in the control the-

ory literature, and the relations between robust control and a particular specification of

Kreps and Porteus (1978)/Epstein and Zin (1989)/Duffie and Epstein (1992) recursive

utility with enhanced risk aversion have been shown by Anderson, Hansen, and Sargent

(2003), Hansen, Sargent, Turmuhambetova, and Williams (2006), and Skiadas (2003).

2See also Svensson (2001). Hansen, Sargent, Turmuhambetova, and Williams (2006) show how to back out the

Bayesian prior which rationalizes robust decisionmaking.
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2.2. Control Theory Background

Since many of the ideas and inspiration for robust control in economics come from

control theory, we give here just a broad outline of its development. More detail and dif-

ferent perspectives can be found in the books by Zhou, Doyle, and Glover (1996), Başar

and Bernhard (1995), and Burl (1999). Throughout the late 1960s and early 1970s opti-

mal control came into its own, largely through the work of Kalman on linear quadratic

(LQ) control and filtering. While this approach remains widely used today throughout

economics, starting in the late 1970s and early 1980s the control theory literature started

to change as theory and practice showed some of the limitations of the LQ approach. Al-

though LQ control with full observation (the so-called linear quadratic regulator or LQR)

was known to be robust to some types of model perturbations, Doyle (1978) showed

that there are no such assurances in the case of partial observation (the so-called linear-

quadratic-Gaussian or LQG case, which is an LQR control matched with a Kalman filter).

Doyle’s paper title and abstract are classic in the literature – title: “Guaranteed Margins

for LQG Regulators”, abstract: “There are none.”

Spurred by this and related work, control theorists started to move away from LQ

control to look for a more robust approach. Zames (1981) was influential in the devel-

opment of H∞ control as a more robust alternative to LQ control. Loosely speaking, in

LQ control the quadratic cost means that performance is measured with a 2-norm across

frequencies. By contrast, H∞ uses an ∞−norm that looks at the peak of the losses across

frequencies. It is also interpretable as the maximal magnification of the disturbances to

outputs of interest. While the early robust control literature used a frequency domain ap-

proach, in the late 1980s Doyle and others developed state space formulations (see Doyle,

Glover, Khargonekar, and Francis (1989) for example) which gave explicit solutions and

allowed for alterative formalizations. For example, the H∞ approach was given alter-

native justifications in terms of penalizing disturbances from the nominal model, which

can be implemented as a dynamic game between a decision maker seeking to minimize

losses and a malevolent agent seeking to maximize loss. (See Başar and Bernhard (1995)

for a development of this approach.) Finally, the uncertainty sets in the H∞ approach are

unstructured – they represent perturbations of the model which are bounded but have
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no particular form. The implications of structured perturbations have been studied more

recently. Some examples include parametric perturbations, unmodelled dynamics, or

uncertainty only about particular channels or connections in a model. Applications with

structured uncertainty use the structured singular value (also known an µ) rather than

the H∞ norm as a measure of performance. Although there are some important stability

and performance criteria, in general constructing control rules is a more daunting task

and the theory is not as fully developed as the unstructured case.

2.3. The Hansen-Sargent Approach

In the economics literature, the most prominent and influential approach to robust

control is due to Hansen and Sargent (and their co-authors), which is summarized in

their monograph Hansen and Sargent (2007). This approach starts with a nominal model

and uses entropy as a distance measure to calibrate the model uncertainty set. More

specifically, the model set consists of those models whose relative entropy or Kullback-

Leibler distance from the nominal model is bounded by a specified value. Note that this

puts no structure on the uncertainty, but only restricts the alternative models to those

which are difficult to distinguish statistically from the nominal model. In practice, a

Lagrange multiplier theorem is typically used to convert the entropy constraint into a

penalty on perturbations from the model. Then the solution of the control problem is

found via a dynamic game implementation: the agent maximizes utility by his choice

of control, while an evil agent minimizes utility by his choice of perturbation, while be-

ing penalized by the entropy of the deviations. Relative to the control theory literature

such as Başar and Bernhard (1995), the main differences are that all models are stochas-

tic, while control theory largely uses deterministic models. One exception is Petersen,

James, and Dupuis (2000) who use a similar approach to consider uncertain stochastic

systems. In addition, discounting is not typically considered in control theory, while it

is natural in economics. In full information problems discounting has relatively little ef-

fect, but it raises important issues in problems with partial information (see Hansen and

Sargent (2005a) and Hansen and Sargent (2005b)). Finally, the Hansen-Sargent approach

naturally extends beyond the LQ setting laid out in Hansen, Sargent, and Tallarini (1999),
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with some examples in Anderson, Hansen, and Sargent (2003), Cagetti, Hansen, Sargent,

and Williams (2002), and Maenhout (2004).

To be more concrete, consider an LQ example where xt is the state, it is the agent’s

control, and εt is an i.i.d. Gaussian shock. The nominal model is:

xt+1 = Axt + Bit + Cεt+1, (1)

and the agent’s intertemporal preferences are:

E0

∞∑
t=0

βt (x′tQxt + i′tRit) (2)

where 0 < β < 1 and Q and R are negative definite matrices. The approach of Hansen

and Sargent perturbs the nominal model with an additional ”misspecfication shock” wt+1

which is allowed to be correlated with the state xt:

xt+1 = Axt + Bit + C(εt+1 + wt+1). (3)

The shock wt+1 is used to represent alternative models. These models are made to be

close to the nominal model in an entropy sense by imposing the bound:

E0

∞∑
t=0

βtw′
t+1wt+1 ≤ η (4)

for some constant η ≥ 0. The agent then maximizes (2) with respect to the worst case

perturbed model (3) from the set (4). Using a Lagrange multiplier theorem, the constraint

set can be converted to a penalty and the decision problem can by solved recursively by

solving the Bellman equation for a two player zero sum game:

V (x) = max
i

min
w
{x′Qx + i′Ri + βθw′w + βE [V (Ax + Bi + C(ε + w))|x]} (5)

where θ > 0 is a Lagrange multiplier on the constraint (4) and the expectation is over

the Gaussian shock ε. Often this multiplier formulation is taken as the starting point, for

example Maccheroni, Marinacci, and Rustichini (2006) characterize preferences of this

form, with θ governing the degree of robustness. As θ → ∞ the penalization becomes

so great that only the nominal model remains (thus η → 0), and the decision rule is less
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robust. Conversely, there is typically a minimal value of θ beyond which the value is

V (x) = −∞. This gives the most robust decision rules, allowing for the largest uncer-

tainty set.

2.4. Adding Structure to the Uncertainty Set

The approach discussed above uses unstructured uncertainty, and has been well de-

veloped and extended in different dimensions. We now discuss some alterative ap-

proaches which put more structure on the uncertainty set. There are many reasons to

do so. It may be that some of the models that are close to the nominal model in a sta-

tistical sense may not be plausible economically. Alternatively, the decision makers may

have a discrete set of models in mind, and bounding them all in one uncertainty set may

include extraneous implausible models. Perhaps most substantively, the decision maker

may be more confident some aspects of the model relative to others. Some examples of

this include knowing the model up to the values of parameters, or being more certain

about the dynamics of certain variables in the model. Not taking into account the par-

ticular structure may give a misleading impression of the actual uncertainty the decision

makers face.

There are many ways of building in structured uncertainty, and the distinctions be-

tween cases are not always clear. For example, consider the same nominal model (1)

as above, but suppose that instead of the unstructured perturbations (3) the uncertainty

is instead solely in the values of the parameters A and B. Thus we can represent the

parametric perturbed models as:

xt+1 = (A + Â)xt + (B + B̂)it + Cεt+1 (6)

for some matrices Â and B̂. Of course it’s possible to re-write (6) as a version of (3) with:

wt+1 = Âxt + B̂it, (7)

so in principle parametric perturbations are just a special case of the unstructured uncer-

tainty. However what makes a substantive difference is how uncertainty is measured,

that is whether we restrict wt+1 as in (4) or whether we restrict the parameters Â and B̂,

say by bounding them in a confidence ellipsoid around the nominal model. Moreover,
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as (7) makes clear the differences between the uncertainty measurements will depend on

the actual control rule it in place. Onatski and Williams (2003) provide an example of a

simple estimated model where the uncertainty specifications matter dramatically for out-

comes. In particular, the optimal policy for the largest possible unstructured uncertainty

set (i.e. for the minimal value of θ) leads to instability for relatively small parametric

perturbations. Thus the particular structure and measurement of uncertainty can have

important implications for decisions.3

Some economic applications with structured uncertainty include the following:

• The simplest cases are uncertainty sets with discrete possible models. Some exam-

ples include: Levin and J. Williams (2003) who consider both Bayesian and minimax

approaches, Cogley and Sargent (2005) and Svensson and Williams (2006) who focus on

a Bayesian approach, and the recent work of Hansen and Sargent (2006) who have built

this type of structure into their robust approach.

• Another common form is parameter uncertainty within a fully specified model.

Brainard (1967) is the classic reference from a Bayesian perspective with many refer-

ences in this line, while Giannoni (2002) and Chamberlain (2000) consider minimax ap-

proaches.

• Somewhat more broad are cases with different parametric model specifications. For

example this includes uncertainty about dynamics (lags and leads), variables which may

enter, uncertainty about data quality, and other features which are built into parametric

extensions of the nominal model. Examples include the model error modeling approach

of Onatski and Williams (2003) and the empirical specifications of Brock, Durlauf, and

West (2003).

• Finally, the model sets may be nonparametric but structured in particular ways.

For example, Onatski and Stock (2002) consider different structured types of uncertainty

such as linear time-invariant perturbations, nonlinear time-varying perturbations, and

perturbations which only enter particular parts of the model. Other examples include

3Petersen, James, and Dupuis (2000) modify the unstructured approach described above to deal with structured un-

certainty by to separating the entropy penalty for unstructured perturbations from a different penalization for struc-

tured perturbations.
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nonparametric specifications of uncertainty which differs across frequencies as in Onatski

and Williams (2003) and Brock and Durlauf (2005).
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