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Introduction

• What is large deviation theory?

• Loosely: a theory of rare events. Typically provide exponential
bound on probability of such events and characterize them.

• Large growth area in math/applied probability in last ≈ 20
years. Seeing some applications in economics.

• Why is it useful?

• Often interested in characterizing extreme events in themselves
(crashes, failures, busts).

• Bounding probability of extreme events can characterize
likelihood of “typical” events.
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Formal Definition of LDP

Consider {Zε} on (Ω,F , P ), taking values in X .

A rate function S : X → [0,∞] has the property that for any
M < ∞ the level set {x ∈ X : S(x) ≤ M} is compact.

Definition: A sequence {Zε} satisfies a large deviation principle
(LDP) on X with rate function S and speed ε if:

1. For each closed subset F of X ,:

lim sup
ε→0

ε log P {Zε ∈ F} ≤ − inf
x∈F

S(x).

2. For each open subset G of X ,:

lim inf
ε→0

ε log P {Zε ∈ G} ≥ − inf
x∈G

S(x).



Notes on Large Deviations 3

Interpretation

• Under regularity, upper & lower hold with equality:

lim
ε→0

ε log P {Zε ∈ F} = − inf
x∈F

S(x) = −S̄.

i.e. log P{Zε ∈ F} ≈ C exp(−S̄/ε).

• Note F is independent of ε. If Zε → Z̄ /∈ F then P → 0.

• Compare w/CLT. Let ε = 1/n, Zn =
∑

i Xi/n, Xi, i.i.d., a > 0.

CLT : P

(
|Zn − Z̄| ≥ a√

n

)
→ 2Φ(−a)

LDP : P
(|Zn − Z̄| ≥ a

) → C exp(−S̄an)
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Contexts & Applications

• Performance of decision rules (and estimators, robustness)

• Performance of portfolios (outperforming benchmarks, large
losses)

• Proofs of convergence (implies weak LLN)

• Rare events: extreme or non-equilibrium outcomes (large
business cycles, escape dynamics)

• Transitions between equilibria and equilibrium selection
(evolutionary games)
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Chebyshev

P (Xi ∈ [a,∞)) ≤ E [exp (λ (Xi − a))]

a
0

1

exp(λ(X −a))

Pr(X >= a)
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Basic idea: Cramer’s theorem

Take Zn =
∑

Xi/n, Xi i.i.d. Fix a > E(X). Define:

H(λ) = log E exp(〈λ,X〉)
S(x) = sup

λ
{〈λ, x〉 −H(λ)}

Then Zn satisfies an LDP with rate function I and speed 1/n.
Sketch of proof for upper bound:
Consider scalar case, and fix a > EX.

P (Zn ∈ [a,∞)) = E [1{Zn − a ≥ 0}]
(Chebyshev) ≤ E [exp (nλ (Xi − a))] for all λ ≥ 0

= exp(−nλa)
n∏

i=1

E exp(λXi)

log P (Zn ∈ [a,∞)) ≤ −n sup
λ>0

[λa− log E exp(λXi)] = −nS(a)
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Illustration: Bivariate N(0, Σ)

S = min
x

1
2
x′Σ−1x s.t. ||x|| ≥ a
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Some notes

• Lower bound is also key: uses (exponential) change of measure.

• Low probability event → deterministic optimization problem.

• Let x∗ = arg minx∈F S(x). Then for all δ > 0:

lim
n→∞

P (|Zn − x∗| < δ ||Zn ∈ F ) = 1.

• Tom’s favorite quotes:
1. Rare events are exponentially rare.
2. “If an unlikely event occurs, it is very likely to occur in the
most likely way.”
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Some Extensions

• Gärtner-Ellis: varying statistics. Let Zε ∼ µε. Define:

H(λ) = lim
ε→0

ε log E exp (〈λ/ε, Zε〉)

Provided limit exists, rate function S is Legendgre of H.

• Sanov’s Theorem: Gives LDP for empirical measures of i.i.d.
sample. Rate function is relative entropy w.r.t. original meas.

• Donsker-Varadhan: extend to empirical measures of Markov
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Some Relationships

• Entropy: information theory, statistical mechanics

• Perturbation methods and sharp LD:

log P ≈ C + εS̄1 + ε2S̄2 + . . .

• Risk sensitivity and (asymptotic) robustness via Varadhan.
Let L be a (continuous) loss function L : X → R.

lim
ε→0

ε log E[exp(L(Zε)/ε)] = sup
x∈X

{L(x)− S(x)}

• Idempotent probability/Possibility theory/fuzzy measures.
Puhalskii: “Deviabilities” Π(F ) = supx∈F exp(−S(x)).
A nonadditive measure: Π(A ∪B) = Π(A) ∨Π(B).

LDP : lim
ε→0

(∫

X
h(x)

1
ε dµε(x)

)ε

= sup
x∈X

h(x)Π(x)
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Applications: i.i.d. or cross-section

• Hypothesis testing: Say accept hypothesis when (sample) log
likelihood ratio above a cutoff. Asymptotics of type I and II
errors for fixed cutoffs determined by LDP (Chernoff).

• Krasa-Villamil (1992) - Suppose a bank pools (i.i.d.) risks.
Probability of default decreases exponentially with size. If cost
increases slower w/size, interior optimal size.

• Dembo-Deuschel-Duffie (2003) - Portfolio consists of positions
subject to losses Zi at exposures Ui. Evaluate portfolio losses
Ln =

∑
i ZiUi, characterize P (Ln ≥ nx).

• Stutzer (2003): Minimize probability that portfolio will grow at
rate lower than some benchmark. Use LDP to derive long run
decay rate. Show that yields result similar to max utility of
wealth with endogenous preference power.
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Convergence of Exchange Economies

• Random excess demands zi(ω, p) : Ω× Rd 7→ Rd. Aggregate:
Zn(ω, p) =

∑n
i=1 zi(ω, p). Prices: πn(ω) = {p : Zn(ω, p) = 0}.

• “Expectation Economy”: z(p) = limn→∞ Zn(ω, p)/n. Prices π.

• Define H(λ, p), S(x, p) as in Gärtner-Ellis. Then under some
continuity conditions, Nummelin (2000) shows that {πn}
satisfies an LDP with speed 1/n and rate function S(0, p).

• Some simple conditions insure π is nonempty, gives asymptotic
existence (a.s. equilibrium exists eventually) and convergence
to expectation economy.
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Sample Path Large Deviations

• So far: LDP for single realization or sample average.
Now: Realization of event in a (dynamic) sample path.

• Most complete theory: Freidlin-Wentzell for diffusions

• Simplest to present: discrete time analogues
xσ

t+1 = gσ(xt) + σWt+1. Wt ∼ N(0, 1), gσ → g0, x∗ = g0(x∗).

• Gärtner-Ellis: given xt = x, 1-Step LDP at rate σ2 for xt+1

with rate function: S1(x, y) = 1
2 (y − g0(x))2

• For multi-step rate function, sum up the one-step transitions:

S(x, y, T ) = inf
{xt}T

t=0

1
2

T−1∑
t=0

(xt+1 − g0(xt))2 s.t. x0 = x, xT = y
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Multi-Step Sample Path LDP

• LDP conditional on xσ
0 = x is then:

lim
σ→0

σ2 log P

(
sup

1≤t≤T

∣∣xσ
t − x0

t

∣∣ > a

)
= − inf

{y:|y−x0
t |>a}

S(x, y, T )

• Define escape time from stable point x∗:

τσ = min {t > 0 : |xσ
t − x∗| ≥ a, |xσ

0 − x∗| < a}

• Let S̄ = inf{y∈x∗±a,T<∞} S(x, y, T ), y∗ the minimizer.

• Then for η > 0 we have:

lim
σ→0

P

(
exp

(
S − η

σ2

)
≤ τσ ≤ exp

(
S + η

σ2

))
= 1.

lim
σ→0

P (|xσ
τσ − y∗| < η) = 1.
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The Exit/Escape Problem I
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The Exit/Escape Problem I
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The Exit/Escape Problem II: 
Multiple Equilibria
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Application: Large Business Cycles

• “Small Noise Asymptotics . . . ” studies stochastic growth
model. Characterize prob. and freq. of large movements away
from deterministic steady state.

• Nonlinearity in policy function determines expected direction
of large movements. Convex: positive movements more likely.
Concave: negative more likely.

• The way state, policy defined in model implies sharp recessions
(slightly) more likely than large booms.
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“Intuition” for Asymmetry

Consider 2 step for simplicity. Say x∗ = 0, x1 = 0.5, a = x2 = 1.
Start of date 1: at x∗ = 0. End of date 1: at 0.5.
Start of date 2: at g0(0.5). End of date 2: at 1.
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Application: Escape Dynamics

• In some learning models, recurrent escapes from a stable limit
point are a key feature of time series.

• Example: Single agent learning a vector γ. Truth depends on
agent’s action, and beliefs.

Belief : yin = γixin + ηin, i = 1, 2,

Action : xn = bn + Wn, Wn ∼ N(0, σ2I)

Decision : bn = b(γ)

Truth : yin = fi(bn) + γ̄ixin

Updating : γn+1 = γn + ε(yn − γxn)xn

• Specify so for σ > 0 unique stable equilibrium γ̄.
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An Example

Convergence: as ε → 0, γn ⇒ γ̄ = [.75, .25]. Recurrent escapes.
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Overview: Escape Dynamics

• Similar type of LDP applies, gives predictions of probability
and frequency of escape, location of dominant escape path.

• With multiple equilibria, can calculate limit transition rates
between equilibria. Limit distribution over equilibria collapses
on “stochastically stable” or long-run equilibrium.

• With unique equilibrium, can still have interesting escape
dynamics (as in the example). Often have escapes toward a
“near equilibrium”.
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Analysis: “Near Equilibrium”

As noise → 0, there are 2 (stable) equilibria, 1 of which gets
“discovered” by escape dynamics.
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Comparing the Predictions to Simulations
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