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This paper analyzes the quantitative importance of adaptive learning in busi-
ness cycle fluctuations. We first introduce adaptive learning in a real business cycle
model and a New Keynesian model, using specifications drawn from the literature
which assume that agents learn about the equilibrium laws of motion. We consider a
variety of learning rules, and find that in both environments learning has very minor
effects on the volatility and the persistence of the key economic variables. However
we discuss some potential theoretical drawbacks to this formulation of learning, and
consider an alternative formulation in which agents learn about the structural fea-
tures of the economy. In some simplified settings, we show that structural learning
has much greater effects. We also illustrate how learning with misspecified beliefs
can lead to fluctuations of a different kind, as agents “escape” from an equilibrium.
Overall, our results show that the importance of learning depends greatly on the
specification of beliefs.

1. INTRODUCTION

Many theoretical economic models have difficulty in matching the volatility and
persistence observed in economic data. The inherent amplification and propagation
mechanisms in many models are relatively weak, so that most of the persistence in the
theoretical models is inherited from the persistence of exogenous stochastic shocks.
In order to better match the data, many models have incorporated adjustment costs,
decision delays, or additional frictions in order to prolong the effects of a shock. In
this paper we study the importance of adaptive learning as a source of amplification
and propagation in some standard economic models.

When agents are uncertain about their economic environment, exogenous shocks
lead to revisions of beliefs over time, which may draw out the effects of a shock.
Moreover the belief updating process may lead to more overall volatility, as agents’
subjective views of the economy change over time and alter their decisions. We seek to
quantify the size of these potential effects in explaining business cycle fluctuations. In
broad terms, the idea of this paper follows Barsky and DeLong (1993), Timmermann
(1993), and Timmermann (1996) who looked at effects of learning on stock market.
Timmermann (1996) in particular showed how adaptive learning can lead to the excess
volatility and predictability of returns. This suggests the possibility that learning in
a business cycle framework could have similar effects.

We focus throughout on adaptive learning models, which have been widely studied
in macroeconomics. A distinct but related literature in macroeconomics focuses on

1



2 NOAH WILLIAMS

“learning” in the sense of filtering or signal extraction in partial information environ-
ments. Models in this line of research have dealt more explicitly with the issues we
focus on here. In contrast, typical papers in the adaptive learning literature focus
on the question of whether adaptive agents, who base their actions on simple learn-
ing rules, could eventually learn a rational expectations equilibrium. This provides a
foundations for rational expectations models, and limits focus to equilibria which are
“learnable”.1 The focus of this paper however is not on the stability of equilibria, but
on the quantitative importance of learning for outcomes.

We first follow much of the learning literature by supposing that instead of rational
expectations, agents forecast future outcomes using a statistical model. They update
this model over time as they observe data. In particular, we initially assume that
agents form beliefs about the equilibrium reduced form law of motion for the economy.
We introduce adaptive learning in this form into a real business cycle model and a
New Keynesian model. The stability of rational expectations under learning has been
established in the literature, with Evans and Honkapohja (2001), Packalen (2000),
and Bullard and Duffy (2002) studying the RBC model and Evans and Honkapohja
(2002b) and Bullard and Mitra (2002) the New Keynesian model. However, to our
knowledge, the quantitative importance of learning has not been addressed.2 A number
of modifications have needed to be introduced in both models (see King and Rebelo
(1999) and Christiano, Eichenbaum, and Evans (2001) for example) in order to improve
their empirical fit, largely by increasing the persistence of responses to external shocks.
Learning thus may add to or substitute for some of these modifications in improving
the performance of the models.

While theoretical results from the theory of stochastic approximation (see Kushner
and Yin (1997)) may help to characterize the effects of learning dynamics analytically,
we follow the “calibration” literature by conducting some simulation studies. We find
that the effects of learning are very small in both environments. Learning only slightly
increases the volatility and persistence of the key economic variables over a horizon
comparable to the post-war period. However even over the very short run, assuming
that agents have very relatively little prior information, the effects of learning are
quite modest in both models. Agents who learn in this manner rather quickly learn
to have rational expectations, and so the learning process has very little consequence
for outcomes.

However we discuss below some potential difficulties in the interpretation of this
specification of learning. By learning about equilibrium laws of motion, the distinction
between beliefs and decisions is blurred and the learning rules are difficult to interpret.
We then develop a natural alternative, where agents learn about the structure of the
economy instead of its reduced form. We show in some simplified settings that in this
case learning leads to much more substantial effects. By learning about the structural
parameters, we make more explicit how beliefs influence decisions. Decision rules are
typically nonlinear functions of the underlying structural parameters, which amplifies

1See Evans and Honkapohja (2001) for a monograph on these issues, with a wide variety of applications.
2Bullard and Duffy (2002) study the quantitative importance of learning for the trend-cycle decomposition

in the RBC model.
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the effect of variations in structural beliefs. Moreover, by more explicitly modeling
agents’ decision problems, we are naturally led consider what happens if agents’ beliefs
are misspecified. We develop a simple model with an aggregate production externality
that illustrates that misspecified learning rules may lead to an alternate source of
long-run fluctuations. Agents’ beliefs occasionally, but recurrently, “escape” from
their equilibrium values, which leads to significant changes in outcomes. We apply the
results of Williams (2002a) to characterize these fluctuations, showing that they take
a particular, predictable form in which agents internalize the external effect.

While we argue that the structural learning specification is more natural and has
more significant effects in some simple settings, we do not quantify its importance
in a more reasonably calibrated model. As we discuss below, there are difficulties
in formulating structural learning in the baseline RBC model which remain to be
addressed.3 More generally, our results illustrate the importance of explicitly modeling
agents’ beliefs and decisions, and show that the specification of learning rules can have
a substantial effect on outcomes. Clearly more work is needed to sort through these
issues and to arrive at a learning specification which is consistent with individual
behavior and with the aggregate data.

2. THE EFFECTS OF LEARNING: REDUCED FORMS

2.1. Overview

In this section we investigate the importance of introducing learning in two well-
known “canonical” models: the real business cycle model (RBC), as discussed in
Cooley (1995), and the baseline “New Keynesian” (NK) monetary model, as discussed
in Woodford (2002). Both models are known to have relatively weak propagation
mechanisms, and modifications such as adjustment costs have needed to be introduced
in both in order to improve their empirical fit. To fit the data reasonably well, both
specifications we study require persistent economic shocks. The goal of this section is
to see if learning may add to or substitute for some of these modifications in improving
the performance of the models.

In dynamic macroeconomic settings, the most widely used specification of learning
has focused on Euler equations. In particular, most studies have applied the method-
ology described in Evans and Honkapohja (2001). In this framework, the structural
model of the economy is used to formulate a system of linear expectational difference
equations. As is a standard practice in much of macroeconomics, this is accomplished
by log-linearizing the Euler equations and laws of motion which summarize the dy-
namic equilibrium in the model.4 This leads to systems of the form:

yt = A0 + A1E
∗
t yt+1 + A2yt−1 + A3zt (1)

zt = B0 + B1zt−1 + wt,

3Evans and Honkapohja (2002b) and Evans and Honkapohja (2002a) discuss a form of structural learning
by policymakers in the New Keynesian model.

4See Williams (2002b) for results justifying linearizations for some of the dynamic properties of models.
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where yt is a vector of endogenous variables, zt is a vector of exogenous variables, and
wt is a martingale difference sequence of stochastic shocks. As is well-known, many
dynamic macro models can be put into this form, and there are efficient solution
methods for computing equilibria when E∗

t corresponds to rational expectations.
The learning literature focuses on cases in which the E∗

t is instead associated with
a perceived law of motion (PLM), which in most cases takes the form of the reduced
form equilibrium law of motion for the economy. In this example, a natural PLM is:

yt = a0 + a1yt−1 + a2zt. (2)

If agents use (2) to form expectations, then substituting these into (1) leads to the
actual law of motion:

yt = T0 + T1yt−1 + T2zt, (3)

where the Ti constants depend on the perceptions ai and the true structural parameters
Ai and Bi. This “T-map” is the key to the notion of “E-stability” and also governs the
(local) stability of adaptive learning rules (see Marcet and Sargent (1989) and Evans
and Honkapohja (2001)).

Under adaptive learning, the parameters ai in (2) are updated according to a statis-
tical algorithm each period as agents observe data. We focus on different specifications
of the recursive least squares algorithm, which have the following structure. As of date
t, agents’ beliefs are summarized by the vector of coefficients at = [a′0t, a

′
1t, a

′
2t]
′, and

we denote the regressors xt = [1, y′t, z
′
t]
′. The algorithm accounts for the volatility of

the regressors by updating a matrix Rt which is an estimate of the second moment
matrix of xt. The updating rule is:

at+1 = at + εtR
−1
t xt (yt − a′txt) (4)

Rt+1 = Rt + εt (Rt − xtx
′
t) . (5)

Here εt is a sequence known as the gain. We consider the least squares (LS) case in
which εt = 1

t+1
and we also consider constant gain (CG) settings in which εt = ε.

Constant gain learning rules make learning a persistent process, as agents discount
past data and continually pay equal attention to new observations.

A key question of interest is whether adaptive agents who use such learning rules
would eventually converge to a rational expectations equilibrium. While this is an
important issue, here we focus not on the stability of equilibria, but on the quantitative
importance of learning for outcomes. Stability is a prerequisite for our analysis, and
this has been addressed in the RBC model by Evans and Honkapohja (2001), Packalen
(2000), and Bullard and Duffy (2002) and in the NK model by Bullard and Mitra
(2002) and Evans and Honkapohja (2002b). We use the specifications in these papers
to simulate the models and analyze the effects of introducing learning. We study
different specifications of the learning rule that agents are assumed to employ, and we
summarize the ability of learning to add additional persistence and volatility to the
models.
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We find that this formulation of learning, focusing on the reduced form laws of
motion, has very modest effects. Later in the paper we then study the effects of
structural learning in simpler settings, which has much more sizable effects. We also
discuss there some difficulties in the interpretation of these reduced-form learning
rules as a model of agent learning. This opens the possibility that more plausible
specifications lead to different results, as our results there suggest.

2.2. A Real Business Cycle Model

A natural place to begin the study of the quantitative importance of learning is
with a real business cycle (RBC) model. RBC models are arguably the benchmark for
all dynamic macro models, and the New Keynesian model discussed below developed
as an extension of them. While the empirical success or failure of the RBC approach
has always been a contentious issue, it has resurfaced with recent papers by Gali
(1999) and Francis and Ramey (2001), who show that estimated technology shocks
do not produce business cycle patterns in the data. Further, as mentioned above
the RBC model has been extended to incorporate additional propagation mechanisms
to improve its match to the data. We address whether learning can add additional
amplification and propagation mechanisms, which could potentially make the model
consistent with smaller technology shocks and eliminate some of the ad-hoc adjustment
costs. However, as we discuss below, we find that in our model that this does not
appear to be the case. Significant effects from learning seem to require a different
formulation. One possibility is studied later in the paper.

We study a benchmark calibrated RBC model from Cooley and Prescott (1995). In
the planning version of the model, a social planner chooses sequences of consumption,
capital, and employment to solve:

max E
∑∞

t=0

(
β 1+η

1+γ

)t

[log Ct + θ log(1− ht)] (6)

s.t. (1 + γ)(1 + η)Kt+1 = (1− δ)Kt + eztKα
t h1−α

t − Ct

zt = ρzt−1 + wt

Here γ is the growth rate of technology, η is the growth rate of the labor force,
and all variables except hours ht are measured in efficiency units, normalizing by the
level of technology and the labor force. The rest of the notation is standard: Ct is
consumption, Kt capital, ht hours (taken as a fraction between zero and one), and zt

the AR(1) technology shock. Throughout we use the parameter values calibrated in
Cooley and Prescott (1995).

As is well-known, this model is nearly log-linear, so we employ the standard log-
linearization. Letting lower case letters denote logarithms, this allows us to represent
the equilibrium of the economy via the expectational difference equation system:

ct = A10 + A11E
∗
t ct+1 + A12E

∗
t kt+1 + A13E

∗
t zt+1 (7)

kt = A20 + A21ct−1 + A22kt−1 + A23zt−1

zt = ρzt−1 + wt.
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Details of the linearization are given in Bullard and Duffy (2002) who pay special
attention to the constant terms, and provide explicit formulas for the constants Aij in
terms of the underlying parameters.

As Evans and Honkapohja (2001) note, there two main alternatives for formulating
a reduced-form PLM for this economy. The first natural candidate, which is that used
by Bullard and Duffy (2002), takes the form:

ct = a10 + a11ct−1 + a12kt−1 + a13zt−1 (8)

kt = a20 + a21ct−1 + a22kt−1 + a23zt−1.

There is a problem with learning based on this specification, however, as consumption
is an endogenous variable which is a linear combination of capital and the technol-
ogy shock. Thus there is perfect collinearity which causes the learning algorithms
to explode.5 A conceptually simple way around this problem is to add a exogenous
shock to the consumption equation in (7), which breaks the collinearity. If the shock
is sufficiently small its importance is minor. However, the fact that the system re-
mains nearly collinear leads to some fragility in its behavior. An alternative PLM
proposed by Evans and Honkapohja (2001) avoids this problem. It uses only the state
(or predetermined) variables as regressors and forecasts consumption within a period:

ct = b10 + b11kt + b12zt (9)

kt = b20 + b21kt−1 + b22zt−1.

In this section, we focus on the effects of learning based on the first specification (8).
Similar results in this model obtained using the alternative (9). However when we
consider a simplified RBC model later in the paper, we use the PLM (9) which proved
slightly more stable in that environment.

To analyze the impact of learning in the RBC model, we ran a number of simulations
of different specifications. For each specification, we first ran the economy in the
rational expectations equilibrium for a small number (twenty) of “training” periods
and estimate the parameters of the PLM (non-recursively) via OLS. This served as the
initial condition for agent’s beliefs. We then ran the simulation for 150 periods under
adaptive learning, to roughly correspond to a typical post-war quarterly data set. We
considered both the recursive least squares (LS) learning rule and several different
constant gain (CG) settings, repeating each specification 1000 times. For some of the
simulation runs, the learning algorithm led to explosive outcomes. Rather than set
up a “projection facility” as in Marcet and Sargent (1989) to guide beliefs back to a
stable region, we instead simply re-started the simulation run. Thus the results to be
follow are conditioned on non-explosion, which seems a reasonable restriction.

Table 1 summarizes our results. For each specification, the table lists the mean
across simulations of the different time series statistics. As is clear from the table, the
effects of learning in this model are very small. Most specifications result in slightly

5The recursive least squares learning algorithm requires an inversion of the second moment matrix of the
regressors. The collinearity makes this matrix singular, and thus the inversion becomes unstable.
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TABLE 1.

Summary statistics from 1000 simulations of 150 observations of the RBC model under
rational expectations and different learning rules.

Rational Least Constant Gain

Expectations Squares ε = 0.1 ε = 0.05 ε = 0.03

std(yt) 3.0459 3.0172 3.0969 3.1062 3.1481

std(ct) 1.9105 1.9099 1.9503 1.9262 1.9207

std(kt) 2.4447 2.4268 2.5217 2.5524 2.6201

corr(yt, yt−1) 0.9125 0.9096 0.9152 0.9158 0.9166

corr(ct, ct−1) 0.9779 0.9766 0.9787 0.9798 0.9794
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FIGURE 1. Mean impulse and pseudo-impulse responses of different variables in the RBC model to a
technology shock. RE= rational expectations, LS=least squares, CG= constant gain with ε = 0.03.

higher volatility for most of the variables, and a slight increase in the persistence of
output and consumption, but the effects are very small. Further, for output and the
capital stock there is an increase in volatility as the size of the gain ε shrinks in the
constant gain specifications. This suggests that most of the minor changes that we do
find are due to the predictable path of convergence toward the rational expectations
equilibrium, not to fluctuations around it. Smaller gain settings imply slower learning,
but smaller fluctuations around a limit point. The results indicate that the fluctuations
around the limit are very small, even for relatively large gain settings. This point was
also confirmed by directly initializing the simulations at the limit point instead of
using the training data. In this case, the differences from rational expectations were
incredibly minute (roughly the order of machine precision for my computer).
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The results in Table 1 suggest that in this model, agents learn to have rational ex-
pectations very quickly. The overall picture is one of very slight changes in volatility,
mostly due to the convergence of beliefs. However it is possible that at least at the
beginning of a sample period, learning may increase the persistence of the response
of the economy to exogenous shocks. To investigate this, we ran an additional set of
simulations in which we initialized agents’ beliefs with some training data as above.
Then, rather than simulate the economy, we simply input a one standard deviation
technology shock and traced out the pseudo-impulse responses of the different vari-
ables. These are only pseudo-impulse responses because the learning process adds
some nonlinearities to the model. However these nonlinearities proved to be slight,
as nearly identical results obtained if the shock size was increased to two standard
deviations.

Figure 1 summarizes the results. Shown in the figure are the impulse responses
under rational expectations, and the mean across simulations of the pseudo-impulse
responses for the LS learning rule and the CG setting with ε = 0.03. Again we see
that, even at the beginning of the sample and with a relatively short set of training
data (five years), there is very little impact of learning. The only noticeable change
comes in the response of the capital stock, where the learning rules add a bit more
persistence on average, but even this effect is quite small.

2.3. A New Keynesian Model

In this section we analyze the impact of learning in a baseline New Keynesian (NK)
model following Woodford (2002) and Clarida, Gali, and Gertler (1999), which is the
basis for much current monetary policy research. A number of papers have studied the
properties of different policy rules models of this type, and much attention has focused
on the determinacy and more recently, as in Bullard and Mitra (2002) and Evans and
Honkapohja (2002b), the “learnability” of equilibria in this environment. However it is
also known that the simplest specifications of this model, which are completely forward
looking, do not match important features of the data. To lead to better empirical fit,
in one of the original formulations of this class of models Rotemberg and Woodford
(1997) added decision delays, while more recently Christiano, Eichenbaum, and Evans
(2001) have added additional sources of stickiness and adjustment costs. Thus again,
it is of interest to know whether learning could potentially lead to increased volatility
and persistence in this environment. While the results of the previous section suggest
that the effect of reduced-form learning in the RBC model is small, it is unclear how
broadly these results apply. In this section, we show that in the NK model as well the
effects of reduced-from learning are very modest.

The baseline NK model assumes monopolistic competition and sticky prices in
the form of staggered price setting, and introduces money through currency in the
utility function. It is laid out in Woodford (2002) among other places, and we do
not reproduce the derivation here, but instead proceed directly to the expectational
difference equations governing the rational expectations equilibrium.6 These take the

6This may not be without consequence, as Preston (2002) argues.
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form of an “IS equation” (log-linearized Euler equation) and a forward-looking Phillips
curve:

yt = E∗
t yt+1 + ψ(rt − rn

t − E∗
t πt+1) (10)

πt = κyt + βE∗
t πt+1

rn
t = ρrn

t−1 + wt.

Here yt is the output gap, πt is the inflation rate, rt is the nominal interest rate, and
rn
t is the “natural rate of interest,” which is the driving shock process. All variables

are in percentage deviations from their steady state values. We supplement the model
with a policy rule, which we take to be a simple Taylor rule. In fact, for simplicity we
focus on “the” Taylor (1993) rule:

rt = 1.5πt + 0.5yt.

Substituting this specification into (10) eliminates rt. We take the remaining param-
eters of the model from the calibration of Woodford (1999), which in turn is based on
the estimation results of Rotemberg and Woodford (1997).

Bullard and Mitra (2002) studied the stability of rational equilibria under adaptive
learning in this model for a variety of simple policy rules, including the Taylor rule we
adopt. We follow them in analyzing the natural reduced-form PLM:

yt = a10 + a11r
n
t (11)

πt = a20 + a21r
n
t .

As in the previous section, we run a number of simulations in order to analyze the
impact of learning in this model. We proceed exactly as above by generating a small
sample to initialize agents’ beliefs, and then run 1000 simulations of 150 observations
each. Table 2 summarizes our results.

TABLE 2.

Summary statistics from 1000 simulations of 150 observations of the New Keynesian model
under rational expectations for different learning rules.

Rational Least Constant Gain

Expectations Squares ε = 0.1 ε = 0.05 ε = 0.03

std(yt) 6.1007 6.1188 6.1138 6.0727 6.0655

std(πt) 0.2241 0.2257 0.2204 0.2137 0.2071

std(rt) 3.3864 3.3966 3.3868 3.3560 3.3424

corr(πt, πt−1) 0.3381 0.3399 0.3399 0.3402 0.3402

corr(rt, rt−1) 0.3381 0.3389 0.3378 0.3381 0.3376

As in the RBC model, we find that the effects of learning in this model are very
small. Here the largest effects are in the LS specification, which produces slightly
higher mean volatility and slightly more persistence. The CG specifications actually
lead to slightly less volatility than under rational expectations, with the lower gain
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FIGURE 2. Mean impulse and pseudo-impulse responses of different variables in the New Keynesian
model to a shock to the natural interest rate. RE= rational expectations, LS=least squares, CG= constant
gain with ε = 0.1.

settings leading to lower volatility. However none of these effects are at all substantial.
Thus, as in the RBC case, we turn to the analysis of the pseudo-impulse responses
of the model under learning, which are shown in Figure 2. As above, this figure
summarizes the average responses of the variables to a shock (now to the natural
interest rate) at the beginning of a sample. Here we see that learning has more
noticeable effects, particularly for inflation. In this case, under learning the shock has
a nearly permanent mean effect on the inflation rate, and a slightly more persistent
output gap response. These combine to make noticeable, if mild, increase in the
interest rate response. As in the table, all of these effects are largest in the LS case.

Taken together, these results suggest that over short horizons with relatively little
prior knowledge, learning may lead to additional volatility and persistence. But over
longer horizons, its effects are very mild and may lead to slightly less volatility. These
results are further illustrated in Figure 3, which shows some time series from a repre-
sentative sample of the model. The top two panels plot the time series of the output
gap and inflation under learning, here subtracting off the rational expectations levels.
We clearly see that the largest effects of learning occur within the first twenty peri-
ods, after which only the slow-learning specification (the CG setting with ε = 0.03)
displays any noticeable fluctuations. However while the slow-learning case displays
larger fluctuations around rational expectations, it leads to smaller overall volatility.
The beliefs underlying these simulations are shown in the bottom two panels, which
plot the time series of the estimated slope coefficients from the IS and Phillips curve
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FIGURE 3. Simulated outcomes and beliefs in the New Keynesian model under different learning rules.
LS=least squares, CG= constant gain.
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regressions, a11 and b11 from (11). The straight lines give the rational expectations
values. We see that for the LS and fast-learning CG case, convergence happens quite
quickly, while the slow-learning CG case takes the whole sample to converge. The
fact that both slopes remain below the rational expectations levels for an extended
period of time, means that agents’ perceived law of motion displays significantly less
responsiveness to fluctuations in the natural rate of interest. This in turn explains
why there is less overall volatility when learning is slow.

3. THE EFFECTS OF LEARNING: STRUCTURAL UNCERTAINTY

3.1. Overview

It may be tempting to conclude from our results above that learning has little
quantitative impact in the models that we studied. Instead, the results should be
read as suggesting that learning of the form specified above, in which agents learn
reduced form equilibrium laws of motion, has little impact. While this is bad news
from the vantage of trying to increase the amplification and propagation mechanisms
in the models, it is good news for the plausibility of rational expectations—nearly the
same results obtain when agents use boundedly rational learning rules. But there are
clearly many other ways in which agents may learn about the economy, some of which
may be arguably more plausible specifications. Here we consider a natural alternative,
in which agents are uncertain about the structure of the economy and learn about
this over time. We argue in the next section that this may be a more reasonable
and theoretically coherent formulation. Moreover, we show that it makes the learning
process have much more substantial effects on outcomes.

While it would ultimately be of interest to introduce structural learning directly
in the models above, this proved more difficult than it might seem. Thus we focus
for now on simpler models in the same vein. While this makes the analysis more
transparent, and establishes some points which are relatively general, we are not able
to make as strong a quantitative case. We focus on a simple special case of the
RBC model which has an analytical solution (full depreciation, i.i.d. technology, and
inelastic labor) and for which there is a natural structural learning specification. We
then extend this model to consider the effects of aggregate externalities, as in Romer
(1986). This example was introduced in Williams (2002a), and it provides a simple
framework in which to study misspecified learning rules. We show that misspecified
learning gives rise to additional low frequency fluctuations of a qualitatively different
nature. With correctly specified beliefs, agents converge to an equilibrium and learning
(especially constant gain versions) leads to fluctuations around the equilibrium. But
with misspecified beliefs, learning leads to occasional, but recurrent, large movements
away from an equilibrium. These are driven by the escape dynamics as studied by
Sargent (1999), Williams (2002a), and Cho, Williams, and Sargent (2002). We include
the results of Williams (2002a) which characterize the escape dynamics, and show that
they are driven by agents recurrently (but unknowingly) internalizing the externality.
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3.2. Structural Learning in a Simplified RBC model

The learning rules formulated above inherit a typical problem of reduced form esti-
mates: they are difficult to interpret. Agents’ decisions have in effect been substituted
out, so that the only role left for agents is forecasting. The specification does not
explicitly state any separation between agents’ beliefs and their decisions, as agents
forecast variables which are under their control. By contrast, if agents learn about the
structural parameters of the economy, there is a clear separation between beliefs and
decisions. Focusing on the structural features also shifts the focus from forecasting,
to analyzing how agents’ beliefs affect their decisions, and how this may matter for
outcomes. By more explicitly considering agents’ decision problems and beliefs, it is
also more straightforward to consider what happens when agents’ beliefs are incorrect.
In the next section we consider such an example of misspecified learning.

But being more explicit about agents’ uncertainty also leads to difficulties. Simply
put, there is not a natural way to introduce structural learning in a well-posed manner
in the full RBC model. The leading sources of uncertainty may be the features of
the technology accumulation process and the production process. But the level of
technology and the technology shock are observed, and coupled with the observations
of output and inputs, the technology parameters could be inferred exactly. A natural
extension would be to re-formulate the model with partial observations, so that agents
need to infer the state of technology from data they observe. However the problem of
coupling signal extraction with learning about the underlying parameters was beyond
the scope of this paper. Instead, as mentioned above, we focus on a well-known simple
special case of the RBC model. In this case, since the technology process is i.i.d. no
signal extraction is necessary and there is a direct way to formulate structural learning.

Formally, we consider a special case of the RBC model (6), in which technology is
i.i.d. (ρ = 0), there is no growth (γ = η = 0), labor is inelastically supplied (θ = 0),
and there is full depreciation of capital (δ = 1). We keep the remaining parame-
ters constant, except we increase the innovation standard deviation σ to maintain
the same unconditional technology shock variance. As is well-known, under rational
expectations the Euler equation is the following:

1

C t
= Et

[
β

αezt+1Kt+1

Ct+1

]
, (12)

where Kt+1 = eztKα
t − Ct. As is also well-known, this can be solved for the optimal

consumption policy, which is to consume a constant fraction of output:

Ct = (1− βα)Yt = (1− βα)eztKα
t . (13)

As before, we now relax the assumption of rational expectations and consider adap-
tive learning. It is straightforward to formulate the perceived law of motion (9) in this
model, in which agents estimate a log-linear consumption rule within a period. Taking
logarithms in (13), we see that the rational expectations values of the parameters are:

b10 = log(1− βα), b11 = α, b12 = 1.
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However the interpretation of (9) is unclear. Consumption is a choice variable, so
presumably agents should know the consumption rule that they are using and do not
need to learn its coefficients. Further (9) does not directly determine consumption, but
is only used to link forecasts of future consumption to forecasts of the other variables in
determining the actual level of consumption. This seems to introduce an inconsistency
between how agents perceive that they will behave and how they actually behave, one
that is resolved only once they converge to rational expectations. The specification
(8) encounters similar conceptual difficulties.7

It is possible that a more fully specified model, one which does not take the repre-
sentative agent/social planner specification as literally, could justify the specifications
(8)-(9). Such a “little k—big K” model would treat the perceived laws of motion as
forecasts of aggregate behavior which are used in an individual optimization problem.
But this does not immediately alleviate the problem: agents care about the marginal
utility of their individual consumption, which is a choice variable for them. The more
natural specification in a decentralized model would be to have agents forecast their
future wages and rates of return.

The difficulties with the reduced form specification relate to the failure to separate
beliefs and decisions. As discussed above, a natural alternative is to suppose that
agents are uncertain about structural features of the economy, but optimize given
their beliefs. In particular, we suppose here that agents to not know the parameters
of the production function, and do not separately observe the technology shock. They
estimate the return on their capital inputs via the regression equation:

yt = a0 + a1kt + ξt. (14)

Here ξt is a regression error which is due to the technology shock and the deviations
of the parameters from their true values, which clearly are:

a0 = 0, a1 = α.

Notice that the i.i.d. technology assumption is crucial in making (14) well-posed, as it
insures that kt and ξt are independent.

Following the literature on adaptive learning, we suppose that at each date agents
treat their estimates as if they were true and would be constant forever. We thus
abstract from parameter uncertainty and any potential experimentation motives. We
assume that agents know the law of motion for capital, which seems reasonable given
their direct observations of capital, output, and consumption. Agents then optimize
given their beliefs, leading to the optimal decision rule as in (13) which simply replaces
α by its estimate:

Ct = (1− βa1)Yt. (15)

7These points are related to but distinct from the issues raised by Preston (2002). He likewise considers
the consistency of learning models with agent optimization, but his concerns dealt with the derivation of
log-linearized models under potentially non-rational expectations. However he still considered reduced form
learning specifications.
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FIGURE 4. Simulated output time series in the simplified RBC model, for the reduced form and
structural learning specifications. Both use CG with ε = 0.03.

Based on their observations, agents then update their beliefs using a learning rule of
the form (4).

TABLE 3.

Summary statistics from 1000 simulations of 150 observations of the simplified RBC model
under rational expectations for different learning rules.

Rational Least Constant Gain

Expectations Squares ε = 0.1 ε = 0.05 ε = 0.03

Reduced-Form Learning (9)

std(yt) 2.4229 2.4268 2.4310 2.4235 2.4302

std(ct) 2.4244 2.4372 2.4421 2.4346 2.4412

std(kt) 2.4186 2.4427 2.4455 2.4379 2.4453

corr(yt, yt−1) 0.3873 0.3874 0.3819 0.3853 0.3829

corr(ct, ct−1) 0.3878 0.3790 0.3732 0.3772 0.3747

Structural Learning

std(yt) 2.4229 5.0775 8.8232 6.8955 5.7279

std(ct) 2.4244 6.6774 11.7096 8.8261 7.4200

std(kt) 2.4186 11.0567 21.2654 16.1966 13.0332

corr(yt, yt−1) 0.3873 0.5603 0.6891 0.6816 0.6374

corr(ct, ct−1) 0.3878 0.2571 0.1503 0.2306 0.2190

While we have expressed some theoretical reservations about the reduced form
specification (9), we now compare its quantitative impact to the structural specification
(14). As in the previous examples, we run 1000 simulations of 150 periods each,
initializing beliefs in each case via a training sample (which we now increase to fifty
periods). The results are summarized in Table 3. Once again, we find that the reduced
form learning specifications have very little effect, leading to very slight increases
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in volatility and decreases in persistence relative to rational expectations. However
structural learning has an enormous impact. The volatility of each variable is increased
dramatically. The largest effect is on capital (which is the same as investment in this
model), whose standard deviation increases by a factor of 5 to 7 across the different
learning specifications. Further, the persistence of output is greatly increased, while
that of consumption is decreased.

The increased volatility that we find is due to substantial fluctuations around the
rational expectations equilibrium, as Figure 4 illustrates. The figure plots a time series
of output from a single simulation run under reduced form and structural learning. The
figure shows that the mean level of output is roughly equal in each case (as it was in the
full suite of simulations), but that the structural rule displays persistent fluctuations
around this mean. These fluctuations are driven by the revisions of beliefs and, as
the table shows, their magnitude decreases with the weight that agents place on new
information. When agents heavily discount past data (having larger gain settings),
they are more willing to believe that the underlying parameters have changed. Since
the parameter estimates affect decisions in a nonlinear way, this revision process can
lead to substantial changes in outcomes.

3.3. An Extended RBC Model with External Effects

Thus far we have considered subjective models which, although not rational, were
correctly specified. However once we retreat from rational expectations, there is no
clear reason to suppose that agents always rely on models of the correct form. In this
section we analyze the effects of misspecification in a simple extension of the previ-
ous RBC model which was analyzed in Williams (2002a). We extend the model by
incorporating an aggregate production externality, as in Romer (1986), which leads to
external increasing returns. Similar models have been widely used in the literature on
indeterminacy and sunspots, as discussed in Benhabib and Farmer (1999). However
under our assumptions, there is a unique, determinate, equilibrium and therefore no
room for exogenous sunspots to play a role. We show that, as in the previous section,
learning produces substantial fluctuations. However when agents’ beliefs are misspec-
ified, there are occasional fluctuations of a qualitatively different nature. Rather than
fluctuating around an equilibrium, agents “escape” from the equilibrium for an ex-
tended period. These escape dynamics are further considered in the next section,
which reports some results of Williams (2002a).

We extend the model by supposing that there are two different types of firms,
which operate in segmented markets and are owned by separate representative agents
who supply their capital. We consider different firm types because with a single
representative firm there would be no distinction between individual and aggregate
behavior. Further, the segmentation of markets allows us to dispense with prices, and
focus on the determination of quantities. Neither of these assumptions are compelling,
but they serve to keep the model simple and close to the preceding RBC model. We
can interpret the different firm types as reflecting different sectors or closed economies
that do not trade, but are only linked by productive externalities. Each firm uses
capital and inelastically-supplied labor inputs in production, but because of external
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effects, each firm’s output also depends on the capital input of the other firm. Thus
we specify that firms produce according to:

Y1t = ez1tKα
1tK

ν
2t (16)

Y2t = ez2tKα
2tK

ν
1t,

for α, ν > 0. Firms have constant internal returns to scale (with the inelastic labor
input which is suppressed), but there are social increasing returns of 1+ν. We continue
to assume that the technology shock process is i.i.d. over time, but we now suppose
that the two types have independent shocks zit with common variance. We retain the
parameter values of the previous section, and set the external effect at the relatively
small value of ν = 0.08.

We first consider the extension of the structural specification above, in which agents
learn their internal returns via the regression:

yit = a0i + a1ikit + a2ikjt + ξit, (17)

for i, j = 1, 2 with i 6= j. However we also study the case when agents’ beliefs are
misspecified. Here we assume that agents do not consider the possibility of productive
spillovers. This could be justified either by assuming that agents do not observe the
output of the other type of firm (and do not try to account for this fact), or simply
that they focus on estimating their own internal returns. We assume that agents learn
adaptively about their firm’s production function according to the regression:

yit = γ0i + γ1ikit + ξ∗it. (18)

Now ξ∗it also absorbs the effects other firm’s capital input which has been omitted from
(18). Agents optimize under either belief specification, and the optimal decision rule
is again of the form (15), where the fraction of output saved depends on their estimate
of the return on their own capital (ai1 or γ1i).

Standard results as in Evans and Honkapohja (2001) show that with the correct
belief specification, (under some technical conditions) agents will converge to the ra-
tional expectations (competitive) equilibrium. However with the misspecified learning
rule their beliefs continually differ from rational expectations. Williams (2002a) shows
that agents converge to a self-confirming equilibrium, with outcomes close to, but dis-
tinct from, rational expectations. In a self-confirming equilibrium agents optimize,
and their beliefs are not contradicted by their observations (see Fudenberg and Levine
(1998) and Sargent (1999)). Under (18), agents’ beliefs have an omitted variable which
is correlated with the regressor kit. This induces some bias in the limiting beliefs, and
therefore in agents’ decisions, which causes a wedge between the self-confirming and
rational expectations equilibrium outcomes. But we focus on parameterizations with
small increasing returns, so this bias is small and has relatively little effect.

We once again analyze the effects of learning through some simulations, now fo-
cusing on structural learning and comparing the correctly specified beliefs (17) with
the misspecified beliefs (18). For reasons that will be clear, we now focus on longer
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TABLE 4.

Summary statistics from 400 simulations of 2000 observations of the externality model
under rational expectations for different learning rules.

Rational Least Constant Gain

Expectations Squares ε = 0.05 ε = 0.03 ε = 0.01

Correctly Specified

std(yt) 2.4447 5.2939 10.5821 9.2550 8.1892

std(ct) 2.4464 6.3331 10.7224 9.1124 7.9879

std(kt) 2.4464 10.1516 23.7765 20.4553 17.7038

corr(yt, yt−1) 0.3878 0.6941 0.8030 0.7581 0.6696

corr(ct, ct−1) 0.3884 0.3738 0.4644 0.4405 0.3442

Misspecified

std(yt) 2.4447 4.2588 10.5221 7.4573 9.1732

std(ct) 2.4464 3.7078 8.0159 4.8799 6.1286

std(kt) 2.4464 7.6811 23.0556 15.7852 19.6129

corr(yt, yt−1) 0.3878 0.6395 0.7777 0.7271 0.6974

corr(ct, ct−1) 0.3884 0.2703 0.3122 0.2789 0.3269

simulated time series of 2000 observations, and we doing 400 runs of each specifica-
tion. Table 4 summarizes the results. As we see, the results are fairly similar, as
both correct and misspecified structural beliefs lead to an increase in the volatility
of all variables and an increase in the persistence of output. For all but the smallest
constant gain setting, the misspecified case leads to lower volatility than the correct
specification, and the misspecification results in consumption being less persistent
than under rational expectations. In all but the smallest gain setting, the volatility
decreases with the amount of weight put on new information, which again points to the
fact that the volatility is driven by fluctuations around the (rational expectations or
self-confirming) equilibrium. However it is interesting to note that under misspecified
beliefs, the volatility increases when the gain is cut from 0.03 to 0.01. This represents
the influence of the escape dynamics (see Sargent (1999), Williams (2002a), and Cho,
Williams, and Sargent (2002)), which lead to occasional episodes in which agents’
beliefs move away from the equilibrium.

The emergence of the escape dynamics is shown in Figure 5, which plots simulated
output series for one firm type under the correctly specified and misspecified beliefs.
The two series track each other rather closely at the beginning of the sample, as they
bounce around the equilibrium levels. But then after a period of time, we see that
output increases significantly in the misspecified case, after which it gradually drifts
back down to the equilibrium level. These “escapes” always occur in a similar manner,
leading to a rapid expansion of output. The figure also suggests that, at least in this
version and parameterization of the model, the escape dynamics happen at very low
frequencies. For larger gain settings, escapes may occur, but their effect is swamped by
the overall volatility of the model. There may be ways of separating these effects and
speeding up the escape dynamics, perhaps by considering a more general learning rule
which allows more flexibility in the specification of beliefs, as Sargent and Williams
(2002) study. However at present our results suggest that escape dynamics are not
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FIGURE 5. Simulated output time series in the externality model, with correctly specified and mis-
specified learning specifications. Both use CG with ε = 0.01.
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FIGURE 6. Simulated time paths of aggregate output and individual capital inputs from the externality
model. The self-confirming equilibrium output is 5.07, and the symmetric social optimum output is 5.84.

likely to be a source of business cycles, but rather may lead to longer term changes.
In the next section we explore these escape dynamics further.

3.4. Escape Dynamics

In order to focus more fully on the escape dynamics, we now work with a parame-
terization which makes them more apparent. We add a mean level to the productivity
factors, which are now of the form exp(1 + zit), and we set α = 0.33, ν = 0.08,
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FIGURE 7. Dominant and simulated time paths of a firm’s beliefs from the externality model, loga-
rithmic time scale.

σ = 0.02, and β = 0.995. The production parameters reflect small increasing re-
turns and the discount factor is set relatively high to reflect a short interval be-
tween periods. Under this parameterization, the self-confirming equilibrium beliefs
are (γ0i, γ1i) = (0.9873, 0.3348). This differs only slightly from the beliefs (γ1i = α)
that support the competitive equilibrium, so that the corresponding SCE outcomes
are close to the competitive equilibrium levels.

In Figure 6 we plot the time paths of aggregate output (adding up the two firms)
and the two firms’ capital inputs from a simulation. The figure plots the variables in
levels, not logarithms. We initialize agents’ beliefs at the SCE, and use a gain setting
of ε = 0.01. The figure is essentially a less noisy version of Figure 5, and shows that the
increases in output recur repeatedly in the model. The time paths are characterized
by rapid expansions, in which firms act nearly in unison to increase output, and slower
reductions in output as the firms stagger their return to the self-confirming equilibrium
level. Moreover, as figure shows, output always increases to nearly the same level. This
corresponds to the level of output in the social optimum in which agents internalize
the external effect. Although the time paths look similar to shifts between distinct
equilibria, it is important to recall that there is a single equilibrium in the model.

The escapes from the self-confirming equilibrium are driven by random occurrences
with small probability, due to an unlikely sequence of shock realizations. But as Figure
6 shows, when an escape occurs with very high probability it happens in a particular,
predictable way. Williams (2002a) provides a complete characterization of the escape
dynamics, determining their frequency and identifying the most likely path that beliefs
follow when they escape from a self-confirming equilibrium. There it is shown that
the most likely or dominant path can be found by solving a simple dynamic control
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problem, whose solution also determines the frequency of escapes. We now apply these
results in this model.

Figure 7 shows some results for the beliefs of one firm type (the other type is similar)
from 1000 simulations from the model. The top panel plots the slope coefficient from
the regression (18) and the bottom panel plots the constant coefficient, where we show
the dominant escape paths and the minimum, maximum, and mean simulated escape
paths. We see that the escapes are very regular, and that our predicted dominant
path provides a reasonable prediction of the mean path of beliefs. The time series are
characterized by a variable period near the self-confirming equilibrium level, followed
by a rapid increase in both the estimated slope and intercept coefficients of both firm
types. These changes in beliefs lead agents to increase savings, leading to increases in
output.

These plots suggest that the escapes are caused by agents internalizing the external-
ity. Along an escape the slope coefficient increases from its SCE level of γ1 = 0.3348 to
α + ν = 0.413, which corresponds to the social returns to capital. The driving shocks
in the model are the independent idiosyncratic technology shocks. This independence
implies that on average agents’ capital stocks are nearly independent, and thus agents
converge to the SCE. However, occasional correlated shock realizations cause agents
to synchronize their actions. The correlation in the capital inputs of the different firm
types in these episodes leads agents to discover the external return. Agents effectively
internalize the externality, which they interpret as an increase in the productivity
of their capital inputs. During these episodes, the complementarity of firms’ capital
inputs overrides the effect of the idiosyncratic shocks, and agents learn that it is ben-
eficial to jointly increase savings and expand production. However once they reach
the social optimum, they do not increase savings further and the idiosyncratic shocks
break the correlation between agents’ actions. Thus agents again only perceive the
effect of their internal returns on their outcomes, and this leads them back to the SCE.
Thus the escape dynamics and mean dynamics drive these endogenous long-run cycles
of the expansion and contraction of output.

4. CONCLUSION

The goal of the paper was to determine the importance of adaptive learning as
a source of amplification and propagation in standard economic models. While the
results are far from definitive, we have shown that under the most common learning
specification, in which agents learn about reduced-form equilibrium laws of motion,
learning has very little effect in either a calibrated RBC model or a New Keynesian
monetary model. However we discussed some difficulties with the interpretation of
this specification, and formulated an alternative in which agents learn about structural
features of the economy. In a simplified setting, we showed that structural learning
has a much more sizeable impact, and that it may lead to increased volatility and some
increases in persistence. Further, we have illustrated that if agents have misspecified
beliefs, then learning may add a further source of fluctuations via escape dynamics.
The quantitative importance of these escape dynamics and the increased volatility
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due to structural learning still remain to be established, but we have illustrated in a
simple setting that they may matter greatly. A more complete quantitative assessment
requires a more complete model, which is a task of future research.

More generally, our results point toward the importance of explicitly modeling
agents’ beliefs, including the possibility that their subjective models may be misspec-
ified. If learning is an important issue, which many would agree, then we need to take
a closer look at individuals’ beliefs, decisions, and learning procedures. In so doing,
there is the potential to bridge the extensive literature on learning in macroeconomics
with extensive literature on learning in games, which tackles precisely these issues.
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