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Abstract

We study the properties of the generalized stochastic gradient (GSG) learning in
forward-looking models. GSG algorithms are a natural and convenient way to model
learning when agents allow for parameter drift or robustness to parameter uncertainty
in their beliefs. The conditions for convergence of GSG learning to a rational expecta-
tions equilibrium are distinct from but related to the well-known stability conditions
for least squares learning.
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1 Introduction

Over the past decade or two there has been a significant amount of macroeconomic research
studying the implications of adaptive learning. This literature replaces rational expectations
with the assumption that economic agents are boundedly rational but employ a learning
scheme such as recursive least squares (RLS) algorithms to estimate and update the param-
eters of their forecasting model. A central issue in this literature is to obtain the conditions
under which the economy with learning converges to a rational expectations equilibrium
(REE) in the long run.

The basic learning setting presumes that the agents’ perceptions take the form of a
forecasting model with fixed unknown parameters, which they update over time as new data
becomes available. Such a setting does not explicitly allow for parameter drift and regime
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comments. Financial support from National Science Foundation Grant No. SES-0617859 and ESRC grant
RES-000-23-1152 is gratefully acknowledged.
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switching or for model uncertainty and robustness. Both of these topics have received a lot
of attention in the recent macroeconomics literature; for example, see the recent papers Sims
and Zha (2006), Cogley and Sargent (2005), Primiceri (2006) and Sargent, Williams, and
Zha (2006).

A standard way of modeling parameter drift makes use of the Kalman filter, which is
known to provide the Bayesian estimator when the coefficients evolve according to Gaussian
random walk. We develop an approximation to the Kalman filter, which is given by the
following algorithm

ϕt+1 = ϕt + γΓzt(yt − ϕ′tzt), (1)

where ϕt are the estimates of the vectors of drifting parameters, yt is the endogenous variable,
and zt is the vector of regressors. γΓ is the perceived covariance matrix of the parameter
drift with Γ controlling the direction and γ the speed of the drift. As we will see, algorithm
(1) also emerges as the maximally robust estimator in a setting where there is uncertainty
about the true data generating process and one wants to employ an estimator that performs
well across a number of alternative models. Additionally, this estimator is optimal under
“risk-sensitivity” since it minimizes the expected exponential of the sum of squared errors.

In fact, the algorithm (1) with Γ = I has been previously studied in the statistics and
learning literature, where it is known as the constant-gain Stochastic Gradient (SG) algo-
rithm.1 We will, therefore, call (1) the Generalized Stochastic Gradient (GSG) algorithm.
An advantage of the GSG over the classic SG algorithm is (as we will see) that it can preserve
scale invariance.

The main focus of this paper is to consider stability of equilibrium under GSG learning
in the context of standard macroeconomic models. In contrast to the classical statistical
framework, macroeconomic models with expectations and learning are self-referential, i.e.
the evolution of the endogenous variables is influenced by the learning process itself. This
has the consequence that it is not a foregone conclusion that estimators will be consistent,
as the feedback from the learning process to the evolution of the state variables may lead
the overall system to fail to converge to an equilibrium.

It is well-known that an REE is locally stable under RLS learning if what are known as
expectational stability (E-stability) conditions hold. Some recent papers have examined the
relationship between E-stability and convergence of classic SG learning in specific models.2

We clarify and extend the existing results by considering the conditions for convergence of
GSG learning for a general class of self-referential linear models. We develop sufficient condi-
tions that strengthen E-stability and guarantee GSG-stability for all weighting matrices, Γ.
We also show that E-stability and GSG-stability are equivalent in “diagonal” environments.
Finally, convergence of Bayesian learning in self-referential models is demonstrated when the

1In decreasing-gain versions of the SG algorithm γ is replaced by a decreasing gain sequence such as 1/t.
2The two conditions are identical in cobweb-type models; see Evans and Honkapohja (1998). In models

with dependence on expectations of future values of the endogenous variables, the correspondence between
E-stability and convergence of SG learning no longer holds. See Barucci and Landi (1997) and Heinemann
(2000). Giannitsarou (2005) provides an economic example with lagged endogenous variables in which E-
stability of the fundamental REE does not imply convergence of SG learning.

2



GSG stability holds.

2 Bayesian and Robust Justifications for the GSG Al-

gorithm

2.1 Bayesian Interpretation of GSG

We show here that for any prior of the form of Gaussian random walk parameter drift there
is a corresponding GSG algorithm that approximates the Bayesian estimator. We generalize
Sargent and Williams (2005), who consider Kalman filter estimation when parameter drift
is modeled according to a random walk hypermodel with a specific prior that is associated
with RLS estimation.

We suppose that an agent believes that the data are generated by the drifting coefficients
model:

yt = β′t−1zt + ηt (2)

βt = βt−1 + Λt (3)

where η and Λ are viewed as mean zero Gaussian shocks with Eη2
t = σ2 and cov(Λt) =

V << σ2I. We assume that yt is a scalar.
The agent’s estimator is ϕt ≡ β̂t|t−1, the optimal estimate of βt conditional on information

up to date t − 1. It is well known that the (Bayes) optimal estimates in this linear model
are provided by the Kalman filter. The Kalman filtering equations here are:

ϕt+1 = ϕt +
Pt

1 + z′tPtzt

zt(yt − ϕ′tzt) (4)

Pt+1 = Pt − Ptztz
′
tPt

1 + z′tPtzt

+ σ−2V. (5)

Here cov(ϕt − βt) ≡ σ2Pt.
While one could in principle work directly with the Kalman filtering equations, and indeed

we do so below in Proposition 8, it is convenient in practice to consider some approximations.
This will allow us to more readily study the analytic properties of the learning rules, compare
different specifications, and link our results to a broad previous literature. Benveniste,
Metivier, and Priouret (1990) note that for large t (5) is well approximated by:

Pt+1 = Pt − PtMzPt + σ−2V,

where Mz = Eztz
′
t.

3 Using this approximation (and assuming 1/(1 + z′tPtzt) ≈ 1), the
Kalman filter equations simplify to:

ϕt+1 = ϕt + Ptzt(yt − ϕ′tzt) (6)

Pt+1 = Pt − PtMzPt + σ−2V. (7)

3It would be possible to extend the analysis to models with lagged endogenous variables. The extension
is discussed in the 2006 working paper version.
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The approximations which we’ve used are valid for slowly varying models, in which V is
“small” in a sense made clear below. In what follows we use the fact that (7) is independent of
ϕt to first analyze the limit of {Pt}. Then we use this limiting evolution as an approximation
in (6). In particular, we have:

Lemma: Under (7), Pt locally converges to the unique positive definite matrix P that solves
the equation:

PMzP = σ−2V. (8)

Proofs of this and other results are in Appendix A.
The prior belief V on the form of the parameter drift influences the estimator, as it

influences the speed and direction along which parameters should be updated. In particular,
suppose we normalize V by writing:

V = γ2σ2Ω,

where γ controls the overall speed of the parameter drift and Ω specifies the direction of the
drift (e.g. we might normalize by setting det(Ω) = 1). Since the Pt recursion (7) converges,
the limit P satisfies:

PMzP = γ2Ω or (γ−1P )Mz(γ
−1P ) = Ω.

Therefore, letting Γ = γ−1P we have:

ΓMzΓ = Ω = γ−2σ−2V. (9)

Substituting P for Pt and using this relation, we see that asymptotically the parameter
estimates satisfy the GSG algorithm (1):

Proposition 1 The GSG algorithm (1) asymptotically approximates the Bayesian optimal
estimation (4)-(5) for model (2)-(3).

Note that while (1) has the same asymptotic behavior as (4)-(5) under the assumed form
of V (since Pt converges to γΓ), the transient responses from arbitrary initial conditions in
general differ.

Thus, the choice of the gain matrix Γ in the GSG rule is closely tied to the prior V
on the parameter drift. Just as a prior is specified in advance and fixed throughout the
sample (although of course the posterior is updated), the gain matrix Γ is specified based
on a priori assumptions or knowledge about the regressors. Sargent and Williams (2005)
apply results from Benveniste, Metivier, and Priouret (1990) to show that if V = γ2σ2M−1

z ,
then the Kalman filter is closely related to a constant gain RLS algorithm, as Γ = M−1

z .4

Alternatively, suppose that instead of being proportional to the ratio of the observation

4The two rules have the same limits, but the transient phases differ. In the application of Sargent and
Williams (2005), the Kalman filter converges faster.
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noise variance to the covariance matrix of the regressors (Mz), the parameter innovation
covariance matrix is proportional to the product of the two: V = γ2σ2Mz. In this case Γ = I
and the classic SG rule results. More generally, the prior on V will lead through (9) to a
particular choice of the optimal matrix Γ in the GSG rule.

2.2 GSG Algorithm and Robustness

In the previous section, we showed that the GSG rule is an approximate optimal predictor
for a particular model of parameter variation. However, while the random walk form of
parameter variation is commonly used, it is quite particular, and its appropriateness in any
given application is an open issue. In this section, we provide a motivation that is in some
ways more general in that it encompasses a range of different model specifications. More
particularly, if the correct specification of the model is not known, then one may want to
choose an estimator which is robust in that it performs well across a range of alternatives.
Here we show that the GSG algorithm is such a robust optimal estimator. Our results
here follow Hassibi, Sayed, and Kailath (1996). Robust control methods have recently been
applied to a range of economic problems (see Hansen and Sargent (2007) for an overview),
and it is interesting to see that the GSG algorithm has a robust interpretation.

In particular, we suppose that the true coefficients are believed to be constant over time,
but we are uncertain about the data generating process. We represent this by a variation on
(2)-(3) which now takes the form:

yt = β′t−1zt + ηt (10)

βt = βt−1, β0 = β.

But now, instead of the ηt shocks having a Gaussian distribution, ηt is treated as an ap-
proximation error without a specified probability distribution. The ηt shocks are introduced
as a means of capturing the possible misspecification of the model, and they may be both
autocorrelated and correlated with the state zt.

The key assumption in (10) is that there is no (unique) prior probability distribution
over the shocks. A sequence of predictors ϕt is chosen to minimize the prediction errors:

et = β′zt − ϕ′t−1zt, (11)

but acknowledging the potential misspecification error. In particular, we treat (10) with
ηt ≡ 0 as a benchmark model, but consider a set of perturbations in a neighborhood of this
model. As we cannot evaluate the likelihood of potential perturbations, we guard against
the worst case in the set of possibilities.

More specifically, instead of minimizing the expected squared errors as in the Kalman
filter case, we now solve a minimax problem. At date zero we have an initial estimate ϕ−1

of the true value β, with prior precision (γΓ)−1, where Γ is a symmetric, positive definite,
nonsingular matrix and γ a positive constant. Our use of the same notation as above is
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not coincidental, as again γ is a scale parameter while Γ governs the “shape” of the prior
precision. Then the estimation problem is:

min
{ϕs}

max
{ηs},β

t∑
s=0

|es|2

subject to (10), (11), and:

t∑
s=0

|ηs|2 +
1

γ
(β − ϕ−1)

′Γ−1(β − ϕ−1) ≤ µ. (12)

Here µ > 0 measures the size of the set of the alternative models, which are represented
by different values of the parameter β and the shocks ηs satisfying the bound (12). As is
standard, we can convert the problem from a constrained to a penalized one by putting a
Lagrange multiplier θ > 0 on the constraint (12). Then we can re-write the problem as:

min
{ϕs}

max
{ηs},β

t∑
s=0

(|es|2 − θ|ηs|2
)− θ

γ
(β − ϕ−1)

′Γ−1(β − ϕ−1), (13)

subject to (10) and (11), where we leave off the inessential term in µ. Notice that θ and µ
are inversely related, so we can use θ as a measure of the size of the set of alternatives, which
hence is a measure of robustness.

As θ increases to infinity, perturbations are penalized more, and the size of the set of
alternatives shrinks (µ → 0) to just the baseline model. There is also a lower bound θ for
θ which makes the problem well-posed, and this “maximally robust” critical value is the
square of the so-called H∞ norm of the system, see Hansen and Sargent (2007). This is the
largest set of uncertainty µ that the problem can tolerate, and also has an interpretation as
what is known as an induced norm. Loosely speaking, the H∞ norm of a system represents
the maximum factor by which errors in inputs get translated into errors in outputs.

The robust estimation problem (13) is a special type of a robust control problem, and in
turn is equivalent to a H∞ estimation problem, see Hassibi, Sayed, and Kailath (1996). The
solution is known to have the following form:

ϕt+1 = ϕt + Ktzt(yt − z′tϕt) (14)

Kt =

(
P−1

t − θ−1ztz
′
t

)−1

1 + z′t
(
P−1

t − θ−1ztz′t
)−1

zt

P−1
t+1 = P−1

t + (1− θ−1)ztz
′
t, (15)

with P−1 = γΓ. Note the similarities between these equations and the Kalman filter algo-
rithm in (4)-(5) with V = 0. In particular, as θ → +∞ we see that they coincide.

While the robust rule collapses to the Kalman filter as the level of robustness decreases,
it is more interesting in this case to consider the maximally robust learning rule with θ = θ.
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Hassibi, Sayed, and Kailath (1996) show that if limT→∞
∑T

t=0 z′tzt = +∞ and (γΓ)−1 >
supt ztz

′
t (i.e. the difference is a positive definite matrix), then θ = 1.5 Recalling our

discussion above, if θ were greater than one, then the learning rule would magnify the
effect of modeling errors on estimation errors. But here the maximally robust learning rule
allows for no such magnification, and hence performs well in the face of misspecification.

Under these conditions, setting θ = θ = 1, we see from (15) that Pt = γΓ for all t. This
in turn implies that:

Kt =
(γ−1Γ−1 − ztz

′
t)
−1

1 + z′t (γ−1Γ−1 − ztz′t)
−1 zt

= γΓ,

where the last equality follows from the matrix inversion lemma. Thus the “gain matrix”
Kt in the maximally robust learning rule (14) is constant over time, and thus this rule is
the constant gain GSG rule (1) from above. The following proposition summarizes this
discussion. A more formal proof is given in the appendix.

Proposition 2 Given prior precision (γΓ)−1 on β, the GSG algorithm (1) is the maximally
robust learning rule.

2.3 Constant Gain GSG Learning and Risk Sensitivity

The previous section showed that the constant gain GSG learning rule was the (maximally)
robust optimal predictor. This derivation was completely deterministic and relied on mini-
mizing the worst case performance of the predictor over a certain class of alternative models.
In this section we briefly discuss a different interpretation of these results in a stochastic set-
ting with enhanced risk aversion, known as risk-sensitivity.6 Once again we follow Hassibi,
Sayed, and Kailath (1996).

Consider again the state space model (10), where now β and η are Gaussian random
variables with means ϕ−1 and 0 and variances γΓ and I respectively. Then instead of
minimizing the expected sum of squared errors as in the Kalman filter case, suppose that we
solve the following:

min
{ϕs}

2θ log E exp

(
1

2θ

t∑
s=0

|es|2
)

(16)

subject to (10) and (11). This exponential adjustment of the objective function increases
risk aversion, and hence (16) is known as a risk-sensitive optimization problem (see Whittle
(1990) for a monograph on problems of this type). This can also be thought of as a particular
choice of an undiscounted recursive utility objective as in Epstein and Zin (1989). This

5Hassibi, Sayed, and Kailath (1996) set Γ = I, but allowing for more general weighting matrices Γ is
straightforward.

6Applications of risk-sensitivity in economics include Tallarini (2000) and Anderson (2005). See Hansen
and Sargent (2007) for further discussion.
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specification shares some features of the Bayesian Kalman filter setup we began with, in
that it exploits the linear Gaussian nature of the model. However the interpretation of Γ is
closer to the robust filtering approach above, as it captures the prior uncertainty about a
fixed parameters. The degree of risk sensitivity is captured by 1/θ, so as θ decreases the loss
function is more sensitive to extreme events. There is a maximal degree of risk sensitivity,
which Whittle (1990) calls “the point of the onset of neurotic breakdown,” beyond which
the objective is not defined.

While being motivated as an enhanced adjustment to risk instead of robustness against
unknown disturbances, there are well-established results linking the solutions of robust and
risk-sensitive control problems.7 In particular, as shown by Hassibi, Sayed, and Kailath
(1996), the risk sensitive optimal filter solving (16) is identical to the robust optimal filter
(14)-(15) above. Loosely speaking, the risk sensitivity adjustment skews the loss and gives
more weight to the tails of the distribution. As θ decreases, the weight on the tails increases.
Finally, as θ approaches its lower bound, the loss function weights the maximal prediction
error. Thus for the maximally risk sensitive level (with the smallest θ), minimizing the
exponentially tilted expected squared prediction errors is the same as minimizing the worst
case prediction error. So for the maximally robust level of θ = θ = 1, which is also the
maximally risk sensitive value, risk-sensitive optimal predictor is again the constant gain
GSG rule (1).

3 GSG Algorithms in Self-Referential Models

We now take up self-referential models and the stability of REE when agents employ GSG
learning because they are either (approximate) Bayesians concerned with parameter drift or
because they are concerned about model uncertainty and robustness (or have extreme risk
sensitivity).

3.1 The Basic Framework

We study GSG learning within the multivariate linear forward-looking model

yt = α + AE∗
t yt+1 + Bwt + ηt, (17)

wt = Fwt−1 + et,

where yt is n× 1, the k × 1 observed exogenous variables wt are assumed to follow a known
vector autoregression (VAR), and the unobserved shock ηt is white noise. The innovation et

has zero mean and covariance matrix Σe. F is assumed to be invertible with roots inside the
unit circle. The asymptotic covariance matrix limt→∞ Ewtw

′
t = Mw is positive definite and

7As noted above, these connections go back to Jacobson (1973), but the explicit formulation given here
was established by Glover and Doyle (1988). See Whittle (1990), Hassibi, Sayed, and Kailath (1996), and
Hansen and Sargent (2007) for further discussions.

8



solves the Lyapunov equation:
Mw = FMwF ′ + Σe.

E∗
t yt+1 denotes the expectations held by private agents, which under learning can differ from

rational expectations (RE). This model has a unique RE solution of the form yt = ā + b̄wt.
This solution is often called the “fundamentals” or minimal state variable (MSV) solution.8

Under learning agents have a “perceived law of motion” (PLM) of the form yt = a + bwt

and estimate the parameters a and b econometrically. Thus at time t agents have the
estimated PLM:

E∗
t yt = at + btwt,

which implies the forecast function

E∗
t yt+1 = at + btFwt.

To simplify the analysis we have assumed that F is known, but it would be straightforward
to allow F also to be estimated, and our results would be in essence unaffected. Any given
PLM induces an “actual law of motion” (ALM) that gives the temporary equilibrium value
of yt. This is obtained by substituting E∗

t yt+1 into (17). For PLM estimates at, bt we obtain

yt = α + Aat + (AbtF + B)wt + ηt.

Introducing the notation z′t = (1, w′
t) for the state variables and ϕ′t = (at, bt) for the

parameters, we can summarize the PLM at t as yt = ϕ′tzt and the ALM at t as yt =
T (ϕt)

′zt + ηt, where
T (ϕ)′ = (α + Aa,AbF + B). (18)

The MSV RE solution is given by the fixed point of T , i.e. ϕ̄′ = (ā, b̄), where ā = (I−A)−1α
and b̄ = Ab̄F + B.

In the current setting the generalized stochastic gradient algorithm for estimating and
updating at, bt is given by:

ϕt = ϕt−1 + γΓzt−1(yt−1 − ϕ′t−1zt−1)
′, (19)

we γ > 0 is a small scalar gain parameter. Substituting in the ALM we can write:

ϕt = ϕt−1 + γΓzt−1

[
z′t−1(T (ϕt−1)− ϕt−1) + η′t

]
, (20)

which is formally a (constant-gain) stochastic approximation or stochastic recursive algo-
rithm. Provided a suitable stability condition is satisfied, with sufficiently small γ the time
paths of (20) converge to a stochastic process near the REE. Here convergence is in the
sense of weak convergence, as discussed e.g. in Chapters 7 and 14 of Evans and Honkapohja
(2001) and Cho, Williams, and Sargent (2002). In this case we say that the REE is locally

8For simplicity, our main points are made within the purely forward-looking model (17). Our earlier
working paper Evans, Honkapohja, and Williams (2006) shows how to extend the analysis of convergence of
GSG learning to models with lagged endogenous variables.
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stable for sufficiently small γ > 0. We remark that in the multivariate case we are assuming
that the same weighting matrix γΓ is used for each of the endogenous variables. Generaliza-
tion to heterogeneous weighting matrices would be possible but would take us outside GSG
framework.

A well-known method for obtaining the convergence conditions is based on a study of
stability of an ordinary differential equation that is associated with the recursive algorithm.
In the current case of constant-gain learning the trajectories of differential equation give the
mean dynamics of the stochastic process.9 Convergence of ϕt depends, in particular, on the
properties of the mapping T (ϕ). For the system (20) the mean dynamics will converge locally
to a fixed point ϕ̄ of T (ϕ) if ϕ̄ is a locally stable equilibrium of the associated differential
equation

dϕ

dτ
= ΓMz(T (ϕ)− ϕ), (21)

where τ is notional or virtual time.10 Since both Γ and Mz are positive definite, their product
is nonsingular, which implies that the only equilibrium of the differential equation is the REE
ϕ̄.

Local stability conditions for ϕ(τ) → ϕ̄ are given by the linearization of the matrix
differential equation (21), giving

d vec ϕ′

dτ
= (ΓMz ⊗ I)(DT ′ − I) vec ϕ′,

where “vec” refers to the vectorization of a matrix and DT ′ is the n(k + 1) × n(k + 1)
Jacobian matrix, of the vectorized T ′ map given in (18), evaluated at the fixed point ϕ̄.11

Local stability of the differential equation requires that all eigenvalues of

(ΓMz ⊗ I)(DT ′ − I) (22)

have negative real parts. In what follows we say that a matrix is stable if all of its eigenvalues
have negative real parts. Equivalently, the GSG stability condition is that the matrix

(ΓMz ⊗ I)

(
I ⊗ A− I 0

0 F ′ ⊗ A− I

)
(23)

is stable. When n = 1 the matrix (23) can be simplified to

ΓMz

(
A− 1 0

0 AF ′ − I

)
. (24)

9See Evans and Honkapohja (2001), especially Chapters 6 and 7 for a discussion of stochastic recursive
algorithms and the study of their convergence properties.

10Global convergence applies because equation (21) is linear here. Thus ϕ̄ is in fact globally asymptotically
stable if it is locally so.

11For an m × n matrix X, vecX is the mn × 1 vector that stacks in order the columns of X. For the
vectorization and matrix differential results see the summary in Section 5.7 of Evans and Honkapohja (2001).
For a full discussion, see Magnus and Neudecker (1988).
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3.2 The Classic SG Special Case

We remark that since Mz = diag(1,Mw), for the classic SG algorithm the stability conditions
are that A− I and (Mw ⊗ I)((F ′⊗A)− I) are stable matrices. Here “diag” denotes a block
diagonal matrix. It is also worth noting that setting Γ = M−1

z , where Mz = limt→∞ Eztz
′
t =

diag(1,Mw) delivers an algorithm that is asymptotically equivalent to RLS. In this case, one
obtains the stability condition that the matrix DT ′ − I is stable. Equivalently, A − I and
F ′ ⊗ A − I are stable matrices,12 which are standard E-stability conditions. Note that in
contrast to SG-stability, the E-stability conditions that govern convergence of RLS learning
do not depend on Mw.

Remark: SG- and E-stability conditions are not always the same, i.e. in general neither
implies the other.

Appendix B gives numerical examples showing that stability differences can arise in purely
forward-looking models with a single endogenous variable and two exogenous variables.
These are the simplest examples that can be provided, since with a single exogenous variable
it is immediate that E-stability and SG-stability are equivalent.

Next, we comment more on SG- and E-stability. The fact that SG-stability depends
on Mw suggests that the stability conditions depend on how the exogenous variables are
measured. We now show that this is the case and with a suitable change of variables the
two sets of stability conditions coincide.

We begin with the Cholesky decomposition:

Mw = QQ′.

This is always possible for a positive definite matrix, resulting in a matrix Q which is trian-
gular and nonsingular.13 Letting L = Q−1 we have LMwL′ = I. Transforming independent
variables to

w̃t = Lwt,

the RE solution becomes yt = ā + b̂w̃t where b̂ = b̄L−1.
Under SG learning with the transformed independent variables w̃t the PLM becomes

yt = a + b̃w̃t + ηt, where

w̃t = F̃ w̃t−1 + ẽt, with F̃ = LFL−1 and ẽt = Let.

Note that Ew̃tw̃
′
t = I. We have transformed the independent explanatory variables to

orthogonal variables with unit variances. Clearly w̃t has the same information content as
wt, and thus they are equally good for forecasting. Furthermore, note that F̃ has the same
eigenvalues as F because F and F̃ are similar matrices.

12We remark that the eigenvalues of F ′ ⊗ A − I are fkλi − 1, where fk and λi are eigenvalues of F and
A, respectively. This follows since the eigenvalues of the Kronecker product of two matrices consist of the
products of the eigenvalues of each matrix and, of course, F and F ′ have the same eigenvalues.

13For the Cholesky decomposition see, e.g., Hamilton (1994) pp. 91-2.
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The SG-stability conditions for the transformed specification are that A− I and (Mw̃ ⊗
I)((F̃ ′⊗A)− I) are stable matrices. But Mw̃ ⊗ I = I and hence the SG-stability conditions
are that A− I and F̃ ′⊗A− I are stable matrices. Since F̃ and F have the same eigenvalues
it follows that the SG-stability conditions of the transformed model reduce precisely to the
E-stability conditions. We have therefore shown:

Proposition 3 There exists a transformation of variables w̃t = Lwt, with L positive definite,
under which SG-stability is equivalent to E-stability.

There is a further aspect of the classic SG algorithms that has not received attention,
namely that the SG algorithm is not scale invariant and thus the resulting estimates are
affected by the choice of units. This is demonstrated in the Appendix, where we also show
that the SG algorithm with a change of units is equivalent to a GSG algorithm with a
non-trivial weighting matrix. In contrast, RLS is invariant to a change in units.

4 Stability Results

4.1 Stability for GSG Algorithms

We return to our main focus of GSG learning. The preceding result suggests that there
may be useful results for GSG stability that do not depend on Mw. Suppose we transform
the exogenous variables using the Cholesky transformation, so that w̃t = F̃ w̃t−1 + ẽt and
Mw̃ = I. The GSG-algorithm is given by (19) with zt replaced by z̃′t = (1, w̃′

t), and where we
allow for a possibly different weighting matrix Γ̃. The GSG-stability condition would then
be that the matrix

(Γ̃⊗ I)

(
I ⊗ A− I 0

0 F̃ ′ ⊗ A− I

)
(25)

is stable.
To obtain further results we introduce the definitions:14

Definition: A matrix C is H-stable if all the eigenvalues of HC have negative real parts
whenever H is a positive definite matrix.

Definition: A matrix C is D-stable if all the eigenvalues of DC have negative real parts
whenever D is a positive diagonal matrix.

A sufficient condition for convergence of GSG learning is:

Proposition 4 Consider model (17) and a GSG algorithm (19). Suppose that the matrix

(
I ⊗ A− I 0

0 F̃ ′ ⊗ A− I

)
(26)

14Honkapohja and Mitra (2006) use H-stability to obtain sufficient stability conditions in the context of
structural and learning heterogeneity.
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is H-stable, where F̃ = LFL−1. Then GSG-stability holds for all Γ and the REE is locally
stable under GSG learning.

This is a strengthening of the E-stability condition, which is that the matrix (26) is
stable. The property of H-stability is quite restrictive. A sufficient condition for H-stability
of a matrix C is that C is negative quasi-definite, i.e. that C + C ′ is negative definite, i.e.
has negative eigenvalues.15 Note that if Γ is diagonal, then the set of sufficient conditions
is that (i) A − I is a stable matrix and (ii) (F̃ ′ ⊗ A) − I is D-stable. There exist various
necessary or sufficient condition for D-stability, but a full characterization is apparently not
available (this is in contrast to H-stability).16

Corollary: Assume E-stability. If in addition F̃ is symmetric with positive eigenvalues and
A− I is negative quasi-definite then GSG-stability holds for all Γ.

The conditions in the Corollary can be convenient to apply, but they are much stronger than
E-stability of the MSV REE.

In the next case of diagonal Γ and uncorrelated exogenous variables, it is unnecessary to
transform variables into Cholesky form in order to obtain stability results.

Proposition 5 When Γ, F and Σe are diagonal, E-stability and GSG-stability are equiva-
lent.

This case arises in applications, as illustrated below.
There are some further special cases in which E-stability guarantees convergence of GSG

learning. In many cases it is natural to assume zero off-diagonal elements of the first row
of Γ. Assuming again scale-invariance so that the Cholesky transformation can be used, we
have the following result for models with a scalar endogenous variable:

Proposition 6 Assume that n = 1 with |A| < 1 and that Γ = diag(Γ̃, Γ̂) for Γ̃ > 0. If the
largest singular value of F̃ is not greater than one, then E-stability implies GSG-stability for
all Γ.

We recall that the largest singular value of F̃ is equal to the largest eigenvalue of F̃ F̃ ′.

4.2 Convergence of Bayesian Learning

Returning to the economic model (17) in the scalar case n = 1, it follows that if agents are
updating their estimates according to the approximate Bayesian learning rule (6)-(7) then
for small γ local stability is determined by (24). We have the following result.

15See, for example, Arrow and McManus (1958). They refer to H-stability as S-stability. Necessary and
sufficient conditions for H-stability are given in Carlson (1968).

16See Arrow (1974) and Johnson (1974).
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Proposition 7 (i) The REE ϕ̄ is locally stable for sufficiently small γ > 0 under the ap-
proximate Bayesian learning rule (6)-(7) if the matrix (24), with Γ defined in (9), is stable.
(ii) The approximate Bayesian learning rule (6)-(7) is invariant to a change of variables to
z̃t = Dzt for any positive definite matrix D.

We now ask whether there are restrictions on the economic model that guarantee local
stability of Bayesian learning for all priors on the parameter drift that are sufficiently small.
Combining the Propositions 4 and 7 we obtain the following result.

Corollary: If the matrix (
A− 1 0

0 AF̃ ′ − I

)
(27)

is H-stable, then under the approximate Bayesian learning rule (6)-(7), the REE ϕ̄ is locally
stable for all priors V on the parameter drift, where V is sufficiently small (in the sense of
small γ in the normalization above).

Note that the Corollary gives a condition for local stability, for all sufficiently small
priors V , that holds regardless of how the variables wt are measured. We also remark that
the condition given is a strengthening of E-stability, since the latter is equivalent to A < 1
and stability of the matrix AF̃ ′ − I.

The convergence results just described can be extended to the system under exact
Bayesian learning.

Proposition 8 The REE ϕ̄ is locally stable for sufficiently small γ > 0 under the Bayesian
learning rule (4)-(5) if the matrix (24), with Γ defined in (9), is stable.

Remarks on stability of robust estimation: For the self-referential economic model
(17), the issue of local stability of the REE also arises in the context of robust estimation.
Since, according to Proposition 2, the maximally robust learning rule takes the form of the
GSG algorithm (1), the earlier stability results apply directly. For a given Γ the REE is
locally stable if the matrix (23) is stable. If the matrix (27) is H-stable then the REE is
locally stable for all Γ and all γ sufficiently small. We also remark that using an argument
along the lines of part (ii) of Proposition 7, it can be shown that the maximally robust
learning rule is invariant to a change of variables z̃t = Dzt since the corresponding initial
estimate of β̃ becomes ϕ̃−1 = D−1ϕ−1 with prior precision (γD−1ΓD−1)−1 = D(γΓ)−1D.

This setup is particularly interesting in the context of the self-referential model with learn-
ing, since under robust estimation agents explicitly allow for possible misspecification. This
contrasts, for example, with standard least-squares learning formulations in which agents ig-
nore a transitory misspecification. There agents assume that the true regression parameters
are constant over time, while in reality, under learning, the parameters are time-varying,
although they converge over time to the (constant) REE values.

14



5 Economic Examples

5.1 A Scalar Model: The Performance of Different Rules

The linearized overlapping generations model with money and preference and endowment
shocks leads to the equations (17), where the coefficient A is a scalar and the vector of
exogenous variables wt is 2× 1. Different cases for values of A can be generated by different
elasticity of substitution parameters. In particular, any value A < 1 is possible, including
cases where A < −1. For convenience we assume that Mz = I, i.e. the normalization of
variables has been done.

Our propositions imply GSG stability for a number of cases. First, if F is symmetric
with positive eigenvalues and A < 1, then there is GSG stability for all Γ. This follows from
the Corollary to Proposition 4. Second, if |A| < 1 and the largest eigenvalue of FF ′ is less
than one, then by Proposition 6 GSG stability holds for all Γ = diag(Γ̃, Γ̂). Finally, if A < 1
and the eigenvalues of A(F + F ′)/2 are less than one, then the matrix

(
A− 1 0

0 AF ′ − I

)

is H-stable and therefore GSG stability holds for all Γ. There are, however, cases in which
E-stability holds but GSG stability fails. This was already seen in the numerical examples
in connection with the classic SG special case.

We now analyze the performance of different learning rules in variations on this simple
model. While we’ve shown above that GSG rules have justifications as estimators, the results
above do not necessarily transfer to self-referential settings where agents’ beliefs determine
actual outcomes. However, here we see that the GSG rules do tend to outperform a version
of the more commonly used constant-gain RLS learning rule. We also analyze two different
Kalman filter specifications that also perform well. Moreover, our simulations show that for
small gain the asymptotic approximations we applied above hold up fairly well, as the GSG
rules track their Kalman counterparts relatively closely.

We take as the baseline model (17) as above with n = 1 and k = 2. We set the parameters

as follows: α = 0, A = 0.9, B = [1, 1], F =

[
0.8 0
0 0.8

]
, and Σe =

[
0.152 0

0 1

]
and Ση = 1.

Thus the only asymmetry between the two regressors is that the first is much less volatile.
Although our stability analysis has focused on the case where the parameters are fixed

over time and the model is correctly specified, our motivations for considering GSG rules
were that agents may allow for parameter drift or model misspecification. Thus we look
at four different data generating processes which reflect these varying specifications. We
consider:

• M0: Constant coefficients.

• M1: Drifting coefficients. The two elements of B follow independent random walks
with Gaussian innovations as in (3) with V = V 1 ≡ γ2σ2M−1

z , the prior consistent
with RLS and GSG with Γ = M−1

z .
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Figure 1: Mean squared forecast error under CG RLS, two Kalman filter specifications, and their corre-
sponding GSG approximations. Data generated by constant coefficients (NK0), two different specifications of
random coefficients (M1, M2) and an alternative model (NK4). Medians of 500 simulations of 1000 periods,
showing gain vs. MSE.

• M2: Drifting coefficients. The two elements of B follow independent random walks
with Gaussian innovations as in (3) with V = V 2 ≡ γ2σ2Mz, the prior consistent with
classic SG with Γ = I.

• M3: A misspecification. The model generating the data replaces the first equation of
(17) with:

yt = ρyyt−1 + α + AE∗
t yt+1 + Bwt + ηt

with ρy = −0.5 and the other coefficients as in M0.

For each model we consider five different learning rules, constant-gain RLS, the Kalman
filter with V = V 1 (Kalman 1), the Kalman filter with V = V 2 (Kalman 2), the GSG rule
where Γ = M−1

z that approximates Kalman 1 (GSG 1), and the classic SG rule where Γ = I
that approximates Kalman 2 (GSG 2). In each case the perceived law of motion corresponds
to the benchmark model in M0. Thus M1 and M2 explore different forms of parameter
drift. M3 studies a particular type of misspecification, where the perceived law of motion
neglects some dynamics. Here the dynamics come from partial adjustment of the type often
used in empirical analysis of model of this class. We then run a small simulation study,
whose results are shown in Figure 1. In each simulation run, we initialize agents’ beliefs at
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a perturbation of the REE values with constant coefficients.17 We then run each simulation
for 2000 periods and discard the first 1000 observations, in order allow for convergence to a
stationary distribution. We repeat this 500 times for a variety of gain settings. The figures
plot the median mean squared forecast error (MSE) for the endogenous variable yt from the
1000 simulations for different values of the gain γ.

Turning now to the relative performance of the different learning rules, note that for
larger gain setting the CG RLS rule performed rather poorly across all of the specifications.
By contrast, the GSG and Kalman filter rules all did well across all specifications. We
expected that in M0 all the rules would do reasonably well, and they all did although CG
RLS had some problems with relatively large gain settings. For gains of about 0.05 the all
the rules were quite similar. For M1, Kalman 1 is the theoretically optimal choice, GSG 1
approximates it, and CG RLS is very closely related. Kalman 1 and GSG 1 did indeed fare
quite well, with their similarity showing the validity of the approximations here, and the CG
RLS rule nearly matched them for small gains. The other Kalman and GSG specifications
imputed the wrong amount of parameter drift, and thus were not able to predict as well. A
similar story holds for M2, where Kalman 2 is optimal and GSG 2 approximates it. These
generally outperform the other rules, although for reasons that are not entirely clear, the
performance of GSG 2 worsens for very small gains. Finally, for M3 none of the rules are
optimal in any sense, but the robustness of the GSG rules shows through. For gains below
0.1 both GSG specifications outperform the other rules. CG RLS does very poorly in this
model, particularly for larger gain settings.

In summary, these results largely confirm our theoretical predictions. We find that the
approximations we use to justify GSG rules in a Bayesian setting are generally valid here,
and that the performance and robustness analysis is mostly borne out in this application.
Although we have shown above that the generalized stochastic gradient learning rules are
optimal in situations of parameter drift, and provide robustness to model misspecification,
that of course does not mean that all such rules are always preferable to other learning
rules. In this example we’ve seen that the Kalman filter specifications, which the GSG rules
approximate, perform relatively well. However, the GSG rules are nearly as good, and hold
up better when the model is misspecified. Thus the stochastic gradient rules may sacrifice a
bit of median performance in order to achieve greater robustness.

In interpreting the simulation results, it is important to recognize that the comparison
across different learning rules assesses the performance when all agents use the same rule.
In economic self-referential models, the choice of learning rule directly affects the stochastic
process followed by the endogenous variables. A distinct question, which we do not examine
in the current paper, is the performance of alternative estimation rules for an individual
agent, given the rules used by the other agents in the economy. This would require a
separate study.18

17In particular, each element of the belief vector is drawn from a normal distribution whose mean is the
REE values and variance is ΣηM−1

z .
18For specific models and simple learning rules this question has been analyzed in Evans and Honkapohja

(1993), Ch. 6 of Sargent (1999), Ch. 14 of Evans and Honkapohja (2001), Marcet and Nicolini (2003) and
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5.2 New Keynesian Model

As a second example we consider the bivariate New Keynesian model of monetary policy,
which is widely used in current discussions of monetary policy.19 The key equations of the
model take the form:

xt = cx + E∗
t xt+1 − σ−1(rt − E∗

t πt+1) + gt, (28)

πt = cπ + κxt + BE∗
t πt+1 + ut. (29)

Here xt is the output gap, πt is the inflation rate and rt is the nominal interest rate. The
parameters σ, κ > 0 and 0 < B < 1. cx and cπ are intercepts, which are from the log-
linearization of the exact model. These are usually suppressed by writing the model in terms
of deviations. w′

t = (gt, ut) consists of observable shocks to the output gap and inflation,
respectively. The stochastic process for wt has the form given in (17). The first equation
is the IS curve that comes from the Euler equation for consumer optimality and the second
equation is the forward-looking Phillips curve based on Calvo price stickiness.

The model is completed by specification of an interest rate rule. A wide variety of different
rules have been studied in the literature.20 One possibility is the standard Taylor rule:

rt = cr + φππt + φxxt, (30)

where cr denotes an intercept. The parameters satisfy φπ, φx > 0. Bullard and Mitra (2002)
show that the E-stability condition under the standard Taylor rule is

κ(φπ − 1) + (1− B)φx > 0. (31)

Alternatively, Evans and Honkapohja (2003b) consider optimal discretionary policy and show
that the expectations-based interest rate rule

rt = cr +

(
1 +

σκB
α + κ2

)
E∗

t πt+1 + σE∗
t xt+1 + σgt +

σκ

α + κ2
ut, (32)

where α is the weight on output gap in a quadratic loss function of the policy-maker and cr

is an intercept, always leads to E-stability of the REE. If the two shocks gt and ut in model
(28)-(29) are uncorrelated, Proposition 5 applies:

Proposition 9 Assume that gt and ut are independent stationary AR(1) processes and that
Γ is diagonal.
(i) Under the Taylor rule (30) the REE is GSG-stable if condition (31) holds, and
(ii) The REE is GSG-stable when optimal discretionary policy employs the expectations-based
rule (32).

Evans and Ramey (2006).
19See e.g. Clarida, Gali, and Gertler (1999), Svensson (2003), and Woodford (2003) for details and analysis.
20The issue of stability under learning has been examined by Bullard and Mitra (2002) and Evans and

Honkapohja (2003b) among others. Evans and Honkapohja (2003a) review the literature.
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In particular the Proposition holds when agents learn using the classic SG algorithm.
We next consider GSG-stability further under more general assumptions about the shocks
gt and ut. For brevity, we restrict attention to the case where the policy-maker employs the
Taylor rule (30). Introducing the notation yt = (xt, πt)

′, equations (28), (29) and (30) can
be combined to yield the bivariate system of the form (17) with:

A =
1

σ + φx + κφπ

(
σ 1− Bφπ

κσ κ + B(σ + φx)

)
.

We omit the explicit form of B as it does not affect the stability conditions.
We give numerical examples of the above results using the calibration of the model due

to Rotemberg and Woodford (1997) and widely employed in Woodford (2003).

Calibration: B = 0.99, σ = 0.157, κ = 0.024.

Suppose first that the policy parameters take on values φπ = 1.05 and φx = 0.2. The E-
stability conditions on A− I hold since both eigenvalues of A− I are in the interval (−1, 0).
Furthermore, A − I is negative quasi-definite as the eigenvalues of (A − I) + (A − I)′ are
−1.186 and −0.0174. Assuming that the coefficient matrix F̃ of the vector of shocks in (17)
is symmetric with positive eigenvalues, the sufficient conditions given in the Corollary to
Proposition 4 are met and therefore GSG-learning is convergent under the specified policy
parameter values.

As a second numerical example, set policy parameters at φπ = 1.1 and φx = 0.1. E-
stability on A− I continues to hold, as the eigenvalues of A− I are in the interval (−1, 0),
but A − I fails to be negative quasi-definite since the eigenvalues of (A − I) + (A − I)′

are −0.987 and 0.0599. Since E-stability holds we also have GSG-stability for Γ close to I
provided the regressors are put into Cholesky form, but GSG-stability may hold much more
generally. For example, suppose F̃ = diag(ρ1, ρ2) with |ρi| < 1 and let Γ = diag(Γ̃, Γ̂) for
Γ̃ > 0. We have conducted numerical searches over positive definite Γ̂ and over F̃ , and it
appears that GSG-stability holds generally. Thus GSG learning appears to be convergent
even though the sufficient condition of the Corollary to Proposition 4 fails. This suggests
that Proposition 6 established above for the case where n = 1 may hold more broadly:
apart from the fact that n = 2 here, all of the other conditions of the proposition hold. We
conjecture that a version of the result extends to higher dimensions.

These numerical examples illustrate both the applicability and limitations of the preced-
ing stability conditions.21

6 Conclusions

We have proposed GSG algorithms as a generalization of the classic SG algorithm and
studied their properties in self-referential macroeconomic models. The constant-gain GSG

21The theoretical stability results and applications have analogues for the classic SG algorithm using
untransformed exogenous variables, see the earlier working paper Evans, Honkapohja, and Williams (2006).
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algorithm can be viewed as an approximate Bayesian learning scheme when agents allow
for parameter drift in their beliefs. The GSG algorithm also has interpretations as the
maximally robust optimal prediction rule and as the risk-sensitive optimal filter when there
is parameter uncertainty.

The conditions for stability of REE under GSG learning differ from but are related to
the E-stability conditions that govern stability under least squares learning. We developed
several sufficient conditions under which E-stability of the REE implies convergence of GSG
learning. We have also provided examples in which the two condition differ. We have also
demonstrated that when the GSG stability conditions hold, the exact Bayesian learning
converges to the REE.

Recent macroeconomic research has emphasized the role of (actual or perceived) param-
eter drift and robust decision-making for understanding macrodynamics. The current paper
has shown how to extend the analysis of econometric learning by economic agents to settings
where agents allow for these features.
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Appendix

A Proofs of Results

Proof of Lemma of Section 2.1: Equation (8) is an algebraic Riccati equation. Existence
of a unique positive definite solution P follows from Theorem 3.7 of Kwakernaak and Sivan
(1972). The time invariant regulator associated with (8) takes the form ẋ(t) = u(t) and
z(t) = x(t). Thus in their general set-up we are setting A = 0, B = D = I, R3 = σ−2V and
R−1

2 = Mz. The result requires that the associated regulator is stabilizable and detectable.
Stabilizability is in turn implied by complete controllability (see their Theorem 1.27), which
follows from their Theorem 1.23. Detectability is implied by complete reconstructability (see
their Theorem 1.36), which follows from their Theorem 1.32. This establishes the existence
of a unique P .

To show local convergence we linearize and vectorize (7), yielding

vec dPt+1 = (I − PM ⊗ I − I ⊗ PM) vec dPt,

where dPt refers to the deviation from the steady state P . The eigenvalues of the coefficient
matrix are given by 1 − 2λ where the λ are the eigenvalues of PM . This follows from
Theorem 4.4.5 of Horn and Johnson (1991) concerning the eigenvalues of the Kronecker sum
of two matrices. Next, note that Theorem 7.6.3 of Horn and Johnson (1985) implies that
the eigenvalues of PM are positive. Finally, for V sufficiently small, P is small and the
eigenvalues of PM can be made small. Thus V sufficiently small implies that all eigenvalues
of the coefficient matrix have modulus strictly less than one. Local stability follows.

Proof of Proposition 2: The result is a slight generalization of Theorem 6 of Hassibi,
Sayed, and Kailath (1996). The proof here follows their Appendix A very closely.

First, we introduce the notation: ‖e‖2 =
∑∞

s=0 |es|2. Then as discussed above, it is well-
known (see Hansen and Sargent (2007) among others) that minimal value θ of the multiplier
is the square of the H∞ norm. In particular, we can rearrange the infinite horizon version
of (13) to now have:

θ = inf
{ϕs}

max
{ηs},β

‖e‖2

‖η‖2 + (β − ϕ−1)
′(γΓ)−1(β − ϕ−1)

. (33)

It is simple to show that θ ≥ 1. For example, suppose that an initial estimate ϕ−1 is
given and choose {ηs} so that the observation agrees with the expected output, i.e. so that
yt = β′zt+ηt = ϕ′−1zt. In this case ϕt = ϕ−1 for all t, and thus the right side of (33) becomes:

‖η‖2

‖η‖2 + (β − ϕ−1)
′(γΓ)−1(β − ϕ−1)

=
‖(β − ϕ−1)

′z‖2

‖(β − ϕ−1)
′z‖2 + (β − ϕ−1)

′(γΓ)−1(β − ϕ−1)
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Now with limT

∑T
t=0 z′tzt = +∞, for any ε > 0 we can find a β and an integer N such that∑N

s=0 |β − ϕ−1)
′zs|2 ≥ (β − ϕ−1)

′(γΓ)−1(β − ϕ−1). Thus for these have:

∑N
s=0 |(β − ϕ−1)

′zs|2∑N
s=0 |(β − ϕ−1)

′zs|2 + (β − ϕ−1)
′(γΓ)−1(β − ϕ−1)

≥ 1− ε.

Since this was just one particular choice of β and {ηs} we conclude that θ ≥ 1.
We now show that the GSG learning rule attains θ = 1. First, note that by defining

ϕ̂t = β − ϕt, we can write the GSG updating equation as:

(γΓ)−1/2ϕ̂t = (γΓ)−1/2
[
ϕ̂t−1 − γΓzt(yt − z′tϕt)

]
.

Also, we can write:
ηt = yt − ϕ′t−1zt − ϕ̂′t−1zt.

Then square both sides of these last two equations and subtract the results to obtain:

ϕ̂′t(γΓ)−1ϕ̂t − |ηt|2 = ϕ̂′t−1(γΓ)−1ϕ̂t−1 − ϕ̂′t−1zt − (I − γΓztz
′
t)(yt − z′tϕt)

2.

Now since we’ve assumed that (γΓ)−1 ≥ ztz
′
t, the third term on the right is negative and

thus we can rearrange this to get:

ϕ̂′t−1(γΓ)−1ϕ̂t−1 + |ηt|2 ≥ ϕ̂′t(γΓ)−1ϕ̂t + |et|2,
where we recall the definition of et. Then adding the inequalities of this form for each date
from s = 0, . . . , t we have:

(β − ϕ−1)
′(γΓ)−1(β − ϕ−1) +

t∑
s=0

|ηs|2 ≥ ϕ̂′t(γΓ)−1ϕ̂t +
t∑

s=0

|es|2 ≥
t∑

s=0

|es|2

This in turn implies:
∑t

s=0 |es|2∑t
s=0 |ηs|2 + (β − ϕ−1)

′(γΓ)−1(β − ϕ−1)
≤ 1.

Then taking the limit as t →∞ we thus have that for the GSG learning rule:

‖e‖2

‖η‖2 + (β − ϕ−1)
′(γΓ)−1(β − ϕ−1)

= 1.

Thus the GSG attains the minimal value of 1 and so is the maximally robust learning rule.

Proof of Proposition 4: We consider the matrix (23)

(ΓMz ⊗ I)

(
I ⊗ A− I 0

0 F ′ ⊗ A− I

)

= (ΓMz ⊗ I)

((
I 0
0 F ′

)
⊗ A

)
− (ΓMz ⊗ I)

(
I 0
0 I

)
.
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Also, we have

Mz =

(
1 0
0 L−1

)(
1 0
0 (L−1)′

)

and define

Γ =

(
1 0
0 L′

)
Γ̃

(
1 0
0 L

)
so that Γ̃ =

(
1 0
0 (L−1)′

)
Γ

(
1 0
0 L−1

)
. (34)

Then

ΓMz =

(
1 0
0 L′

)
Γ̃

(
1 0
0 (L−1)′

)

and (
1 0
0 F ′

)
=

(
1 0

0 L′F̃ ′(L−1)′

)
=

(
1 0
0 L′

)(
1 0

0 F̃ ′

)(
1 0
0 (L−1)′

)
.

We get

(ΓMz ⊗ I)

((
1 0
0 F ′

)
⊗ A

)

=

(
1 0
0 L′

)
Γ̃

(
1 0

0 F̃ ′

)(
1 0
0 (L−1)′

)
⊗ A

=

((
1 0
0 L′

)
⊗ I

)(
Γ̃

(
1 0

0 F̃ ′

)
⊗ A

)((
1 0
0 (L−1)′

)
⊗ I

)

Also

(ΓMz ⊗ I)

(
I 0
0 I

)
=

(
1 0
0 L′

)
Γ̃

(
1 0
0 (L−1)′

)
⊗ I

=

((
1 0
0 L′

)
⊗ I

)
(Γ̃⊗ I)

((
1 0
0 (L−1)′

)
⊗ I

)
.

The last two expressions show that the matrix (23) is similar to the matrix (25), i.e.

(Γ̃⊗ I)

(
I ⊗ A− I 0

0 F̃ ′ ⊗ A− I

)
.

Therefore, stability of (23) is equivalent to (25) when Γ̃ is specified as in (34). To complete
the proof we simply note that if the matrix (26) is H-stable, then (25) and hence (23) are
stable matrices.

Proof of the Corollary to Proposition 4: Clearly I⊗A−I is negative quasi-definite.
Since A−I is negative quasi-definite, (A+A′)/2−I has negative eigenvalues and (A+A′)/2
has roots less than one. It follows that F̃ ⊗ ((A + A′)/2) has roots less than one and thus

F̃ ⊗ (A + A′)− 2I = (F̃ ⊗ A− I) + (F̃ ⊗ A′ − I)

= (F̃ ⊗ A− I) + (F̃ ⊗ A− I)′
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has negative roots, i.e. F̃ ⊗A− I is negative quasi-definite. Thus the matrix (26) is negative
quasi-definite and hence H-stable. The result follows.

Proof of Proposition 5: We start with the differential equation (21). This can be
written explicitly as

dϕ′

dτ
= (α + Γ̃(A− I)a, (AbF − b + B)MwΓ̂),

where Γ = diag(Γ̃, Γ̂) and Γ̃ > 0 is a scalar. The first equation gives as usual the condition
that A−I should be a stable matrix. For the b components, we write the differential equation
associated with GSG learning as

ḃ = (AbF − b)MwΓ̂,

where we have dropped the inessential constant term involving B. Under our assumptions
MwΓ̂ is diagonal. We first show that E-stability implies GSG-stability. Next, we write the
coefficient matrix A in real Jordan canonical form: A = SΛS−1, where Λ is an upper block
triangular matrix. The diagonal blocks are either 1×1 blocks, consisting of real eigenvalues,

or 2×2 blocks of the form

(
µ −ν
ν µ

)
for nonreal eigenvalues of the form µ±νi. Multiplying

we get
S−1ḃ = (ΛS−1bF − S−1b)MwΓ̂,

which, defining q = S−1b, is
q̇ = (ΛqF − q)MwΓ̂.

We then vectorize to get

vec(q̇) = (Γ̂MwF ⊗ Λ− Γ̂Mw ⊗ I)vec(q)

= (Γ̂Mw ⊗ I)(F ⊗ Λ− I)vec(q).

Now the matrix F ⊗ Λ− I is block diagonal, i.e.



f1Λ− I 0 · · · 0
0 f2Λ− I · · · 0

... · · · ...
. . .

...
0 0 · · · fKΛ− I


 ,

where moreover fiΛ− I are upper triangular matrices. Also Γ̂Mw ⊗ I is a diagonal matrix,
so that we get

(Γ̂Mw ⊗ I)(F ⊗ Λ− I) =




m̂1(f1Λ− I) 0 · · · 0
0 m̂2(f2Λ− I) · · · 0

... · · · ...
. . .

...
0 0 · · · m̂K(fKΛ− I)


 ,
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where m̂i is the i-th diagonal element of Γ̂Mw. Each of the matrices m̂k(fkΛ − I) is upper
block triangular with either diagonal elements of the form

m̂k(fkλi − 1),

where m̂k > 0 and where fkλi − 1 is negative by E-stability, or 2× 2 blocks of the form

m̂k

(
fk

(
µ −ν
ν µ

)
− I2

)
,

which again has eigenvalues with negative real parts by E-stability.
To prove that GSG-stability implies E-stability, we note that m̂k(fkλi − 1) < 0 for real

eigenvalues of A and negativity of eigenvalues of m̂k

(
fk

(
µ −ν
ν µ

)
− I2

)
for a complex

pair of eigenvalues of A clearly also imply fkλi − 1 < 0 and negativity of eigenvalues of

fk

(
µ −ν
ν µ

)
− I2, respectively as m̂k > 0 for all k. The latter are just the E-stability

conditions.

Proof of Proposition 6: It is sufficient to show that the eigenvalues of Γ̂(AF̃ ′ − I)
have negative real parts. We use results on the field of values of matrices given in Horn
and Johnson (1991). Let F(N) denote the field of values of a matrix N , which is defined as
F(N) = {z∗Nz | z ∈ Cn with |z| = 1}. Here z∗ denotes the complex conjugate of z′. By
assumption F̃ ′ is a “contraction” in the sense used by Horn and Johnson. By p. 155 of Horn
and Johnson (1991) we can write F̃ ′ as a finite sum F̃ ′ =

∑
ciUi where 0 < ci < 1, with∑

ci = 1, and where Ui are unitary matrices. Since unitary matrices are normal, F(Ui) is
equal to the convex hull of the spectrum of Ui, which we denote σ(Ui), see p. 11 of Horn
and Johnson (1991). Thus F(Ui) is a subset of the unit disk since the eigenvalues of Ui lie
exactly on the unit circle (see p. 71 of Horn and Johnson (1985)). By the properties of fields
of values given on pp. 9-10 of Horn and Johnson (1991) we have

F(F̃ ′) ⊂
∑

ciF(Ui) ⊂ unit disk.

Hence F(AF̃ ′ − I) = AF(F̃ ′) − 1 lies in the left half-plane of the complex plane. Next we
note that F(Γ̂) is a subset of the positive reals since Γ̂ is symmetric positive definite. (This
can be verified by direct computation). Finally, we use the result that σ(CD) ⊂ F(C)F(D)
if D is positive semidefinite (p. 67 of Horn and Johnson (1991)). Thus σ(Γ̂(AF̃ ′ − I)) lies
in the negative half-plane.

Proof of Proposition 7: (i) Given the positive definite matrix Ω, Lemma of Section
2.1 shows that for γ > 0 sufficiently small, and hence for V sufficiently small, the difference
equation (7) has a unique positive definite fixed point P and P is locally stable. It follows
that the evolution of ϕt can be approximated by (1). Finally, as noted in Section 4, local
stability of ϕ̄ under (1) is determined by (23).
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(ii) Under the transformation z̃t = Dzt the model being estimated becomes

yt = β̃
′
t−1z̃t + ηt

β̃t = β̃t−1 + Λ̃t,

where β̃t = D−1βt and Λ̃t = D−1Λt with cov(Λ̃t) = D−1V D−1. The corresponding estimator
of β̃t is given by

ϕ̃t+1 = ϕ̃t + P̃tz̃t(yt − ϕ̃′tz̃t)

P̃t+1 = P̃t − P̃tMz̃P̃t + σ−2Ṽ ,

where Mz̃ = limt→∞ Ez̃tz̃
′
t = DMzD and Ṽ = D−1V D−1. The initial priors will also be

related by ϕ̃0 = D−1ϕ0 and P̃0 = D−1P0D
−1. It is easily seen that the ϕ̃t, P̃t system is

equivalent to (6)-(7) with ϕt = Dϕ̃t and Pt = DP̃tD.

Proof of Corollary to Proposition 7: By (ii) of Proposition 7, the Bayesian learning
rule is invariant to a transformation of variables. Letting w̃t = Lwt we have w̃t = F̃ w̃t−1 and
Mz̃ = I. Since (27) is H-stable then (23) is stable for all Γ and hence for all V . Stability of
the REE then follows by (i) of Proposition 7.

Proof of Proposition 8: (Outline) We consider the algorithm (4)-(5). Since V =
γ2σ2Ω, equation (5) can be written as

Pt+1 = Pt − Ptztz
′
tPt

1 + z′tPtzt

+ γ2Ω.

Defining P̃t = γ−1Pt, we get the constant-gain algorithm

ϕt+1 = ϕt + γ

[
P̃t

1 + γz′tP̃tzt

zt(yt − ϕ′tzt)

]

P̃t+1 = P̃t + γ

[
Ω− P̃tztz

′
tP̃t

1 + γz′tP̃tzt

]
,

where under learning yt = T (ϕt)
′zt + ηt. Using stochastic approximation techniques we

compute the associated differential equation

dϕ

dτ
= hϕ(ϕ, P̃ ), (35)

dP̃

dτ
= hP̃ (ϕ, P̃ ), (36)

where using Lebesgue’s dominated convergence theorem

hϕ(ϕ, P̃ ) = lim
γ→0

E

[
P̃

1 + γz′tP̃ zt

(ztz
′
t(T (ϕ)− ϕ) + ztηt)

]

= E
[
P̃ (ztz

′
t(T (ϕ)− ϕ) + ztηt)

]

= P̃Mz(T (ϕ)− ϕ)
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and

hP̃ (ϕ, P̃ ) = lim
γ→0

E

[
Ω− P̃ ztz

′
tP̃

1 + γz′tP̃ zt

]

= Ω− P̃MzP̃ .

The system (35)-(36) has a fixed point at (ϕ̄, Γ), where Γ is a positive definite matrix as in
equation (9) and T (ϕ̄) = ϕ̄. The system is block recursive and clearly Γ is locally stable
under (36). Evaluating the linearization of (35) at the fixed point, we get the stability
condition the eigenvalues of the matrix ΓMz(DT − I) should have negative real parts.

B Numerical Examples

Here we provide numerical examples that justify the Remark at the end of Section 3.

Example 1: (E-stability does not imply SG-stability) For n = 1 and k = 2 select

A = −1.8800, F =

( −0.9390 −0.6979
0.8722 0.0828

)
, Σe =

(
1.0520 −0.5164

−0.5164 0.2581

)
.

These yield

(Mw ⊗ I)((F ′ ⊗ A)− I) =

( −0.2503 −1.3829
0.9012 0.3256

)
.

This solution is E-stable but it is not convergent under SG learning since the eigenvalues of
(Mw ⊗ I)((F ′ ⊗ A)− I) are 0.0377± 1.7086i.

Example 2: (SG-stability does not imply E-stability) For n = 1 and k = 2 select

A = −1.9022, F =

( −1.1281 0.7252
−0.4944 0.0117

)
, Σe =

(
0.5361 0.5760
0.5760 1.1807

)
.

These yield eigenvalues −0.0838±0.3493i for (Mw⊗I)((F ′⊗A)−I) and eigenvalues 0.0618±
0.3493i for F ′ ⊗ A− I.

To find the counterexamples we simply conducted a random search over A,F and Σe under
the required constraints. The Matlab routine is available on request.

C Scaling Invariance

One of the reasons for our investigation of GSG algorithms is that the classic SG algorithm
suffers from a disadvantage relative to RLS, which has not received attention. The SG
algorithm is not scale invariant, and thus the resulting estimates are affected by the choice
of units. This is demonstrated as follows.
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For simplicity, we consider a univariate case. Suppose we are estimating the regression
model:

yt = β′zt + ηt

by least squares, where β and zt are p× 1 column vectors. Our discussion here will initially
be in terms of the standard (non-self-referential) regression model, since the point holds
generally, but it also applies to the model (17) with learning. The RLS estimate using data
through t− 1 is given by

ϕt = ϕt−1 + γtR
−1
t zt−1(yt−1 − b′t−1zt−1)

′ (37)

Rt = Rt−1 + γt(zt−1z
′
t−1 −Rt−1),

where the standard decreasing gain assumption is that γt = 1/t. Suppose we now change
units of the regressors so that z̃t = Dzt, where D = diag(k1, . . . , kp). Here diag denotes a
diagonal matrix and we assume ki > 0. Then:

yt = β̃
′
z̃t + ηt,

where β̃ = D−1β. Let ϕ̃t be the RLS estimate of β̃ based on a regression of yt on z̃t. Then
RLS is scale invariant in the sense that:

ϕ̃t = D−1ϕt.

To see this, pre-multiply the RLS equation for ϕt by D−1 and for the Rt equation, premultiply
by D and postmultiply by D′ = D. Defining R̃t = DRtD

′ we get:

ϕ̃t = ϕ̃t−1 + γtR̃
−1
t z̃t−1(yt−1 − ϕ̃′t−1z̃t−1)

R̃t = R̃t−1 + γt(z̃t−1z̃
′
t−1 − R̃t−1).

But this is exactly RLS applied to a regression of yt on z̃t.
In contrast, SG estimation is not scale invariant. The classic SG algorithm for a regression

of yt on zt is:
ϕt = ϕt−1 + γtzt−1(yt−1 − ϕ′t−1zt−1).

Multiplying through by D−1 we get that ϕ̃t = D−1ϕt satisfies:

ϕ̃t = ϕ̃t−1 + γtD
−2z̃t−1(yt−1 − ϕ̃′t−1z̃t−1). (38)

But SG estimation based on a regression of yt on z̃t is instead:

ϕ̂t = ϕ̂t−1 + γtz̃t−1(yt−1 − ϕ̂′t−1z̃t−1),

and clearly ϕ̃t 6= ϕ̂t.
Note that the same argument applies to transformations of variable z̃t = Dzt for D

positive definite: RLS is invariant to such transformations while SG is not.
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