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1 Introduction

In recent years there has been a renewed interest in the study of optimal monetary policy under

uncertainty. Typical formulations of optimal policy consider only additive sources of uncertainty,

where in a linear-quadratic (LQ) framework the well-known certainty-equivalence result applies and

implies that optimal policy is the same as if there were no uncertainty. Recognizing the uncertain

environment that policymakers face, recent research has considered broader forms of uncertainty

for which certainty equivalence no longer applies. While this may have important implications, in

practice the design of policy becomes much more difficult outside the classical LQ framework.

One of the conclusions of the Onatski and Williams [31] study of model uncertainty is that, for

progress to be made, the structure of the model uncertainty has to be explicitly modeled. In line

with this, in this paper we develop a very explicit but still relatively general form of model un-

certainty that remains quite tractable. We use a so-called Markov jump-linear-quadratic (MJLQ)

model, where model uncertainty takes the form of different “modes” (or regimes) that follow a

Markov process. Our approach allows us to move beyond the classical linear-quadratic world

with additive shocks, yet remains close enough to the LQ framework that the analysis is trans-

parent. We examine optimal and other monetary policies in an extended linear-quadratic setup,

extended in a way to capture model uncertainty. The forms of model uncertainty our framework

encompasses include: simple i.i.d. model deviations; serially correlated model deviations; estimable

regime-switching models; more complex structural uncertainty about very different models, for in-

stance, backward- and forward-looking models; time-varying central-bank judgment—information,

knowledge, and views outside the scope of a particular model (Svensson [39])—about the state of

model uncertainty; and so forth. Moreover, while we focus on model uncertainty, our methods

also apply to other linear models with changes of regime which may capture boom/bust cycles,

productivity slowdowns and accelerations, switches in monetary and/or fiscal policy regimes, and

so forth. We provide an algorithm for finding the optimal policy as well as solutions for arbitrary

policy functions. This allows us to compute and plot consistent distribution forecasts—fan charts—

of target variables and instruments. Our methods hence extend certainty equivalence and “mean

forecast targeting,” where only the mean of future variables matter (Svensson [39]), to more gen-

eral certainty non-equivalence and “distribution forecast targeting,” where the whole probability

distribution of future variables matter (Svensson [38]).1

1 The importance of the whole distribution of future target variables was recently emphasized by Greenspan [20]
at the 2005 Jackson Hole symposium, with reference to his [19] so-called risk-management approach:

In this [risk management] approach, a central bank needs to consider not only the most likely [rather:
mean] future path for the economy but also the distribution of possible outcomes about that path. The
decisionmakers then need to reach a judgment about the probabilities, costs, and benefits of various
possible outcomes under alternative choices for policy.

We agree with Feldstein [17] that Greenspan’s risk-management approach is best interpreted as standard expected-
loss minimization and we consider the risk-management approach and the approach of this paper as completely
consistent. See Blinder and Reis [5] for further discussion of possible interpretations of the risk-management approach.

1



Certain aspects of our approach have been known in economics since the classic works of Aoki

[2] and Chow [8], who allowed for multiplicative uncertainty in a linear-quadratic framework. The

insight of those papers, when adapted to our setting, is that in MJLQ models the value function

for the optimal policy design problem remains quadratic in the state, but now with weights that

depend on the mode. MJLQ models have also been widely studied in the control-theory literature

for the special case when there are no forward-looking variables (see Costa and Fragoso [10], Costa,

Fragoso, and Marques [11] (henceforth CFM), do Val, Geromel, and Costa [15], and the references

therein). More recently, Zampolli [45] uses an MJLQ model to examine monetary policy under

shifts between regimes with and without an asset-market bubble, although still in a model without

forward-looking variables. Blake and Zampolli [4] provide an extension of the MJLQ model to

include forward-looking variables, although with less generality than in our paper and with the

analysis and the algorithms restricted to observable modes and discretion equilibria.

Our MJLQ approach is also closely related to the Markov regime-switching models which have

been widely used in empirical work. These methods first gained prominence with Hamilton [21]

which started a burgeoning line of research. Models of this type have been used to study a host

empirical phenomena, with many developments and techniques. summarized in [25]. More recently,

the implications of Markov switching in rational expectations models of monetary policy have been

studied by Davig and Leeper [13] and Farmer, Waggoner, and Zha [16]. These papers focus on

(and debate) the conditions for uniqueness or indeterminacy of equilibria in forward-looking models,

taking as given a specified policy rule.

Relative to this previous literature, one main contribution of our paper is the development of a

general approach for solving for the optimal policy in MJLQ models that include forward-looking

variables. This extension is key for policy analysis under rational expectations, but the forward-

looking variables make the model nonrecursive. We show that the recursive saddlepoint method of

Marcet and Marimon [29] can nevertheless be applied to express the model in a convenient recursive

way, and we derive an algorithm for determining the optimal policy and value functions.

A second main contribution of our paper is to deal with the case of unobservable modes. The

existing literature has almost exclusively focused on the case where agents can directly observe the

mode. While this may be plausible for some environments, such as for example when a new policy

regime is announced, in many cases it is more fitting to assume that the modes are not observ-

able. When the modes are not observable, we can represent the decision maker’s information as a

probability distribution over possible modes, and optimal policy will depend on that distribution.

In this paper, we analyze the special case where decision makers do not learn from observations of

the economy, but rather the future subjective distribution over modes is entirely governed by the

transition probabilities. In this case, the value function remains quadratic in the state, but with

weights that depend now on the probability distribution over modes. We develop algorithms for

solving this case.
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In addition to considering the optimal policy, we also consider the behavior of the model for

arbitrary time-varying or time-invariant instrument rules. This allows us to construct model-

consistent probability distributions—fan charts—of the variables relevant to policy makers for any

arbitrary instrument-rate path. Moreover, much of the literature in monetary policy analysis has

focused on “simple” instrument rules which are restricted to respond to only a subset of all available

information, with Taylor rules and various generalizations being most prominent. We show how to

derive optimal restricted instrument rules in our setting. Importantly, our approach is not restricted

to instrument rules; any given or optimal restricted policy rule, including targeting rules, can be

considered.

The more general case where modes are unobservable and decision makers infer from their

observations the probability of being in a particular mode is much more difficult to solve. The

optimal filter is nonlinear, which destroys the tractability of the MJLQ approach.2 Additionally,

as in most Bayesian learning problems, the optimal policy will also include an experimentation

component. Thus, solving for the optimal decision rules will be a more complex numerical task.

Due to the curse of dimensionality, it is only feasible in models with a relatively small number

of state variables and modes. Confronted with these difficulties, the literature has focused on

approximations such as linearization or adaptive control.3 While these issues are important, they

remain outside the scope of the present paper and are instead examined in Svensson and Williams

[42].

The rest of the paper is organized as follows. The bulk of our analysis is carried out in section 2.

There we lay out the model, discuss the differing informational assumptions we employ, and show

how to solve for the optimal policy. In section 3, we discuss how different kinds of model uncertainty

can be incorporated by our framework. In section 4, we present examples based on two empirical

models of the US economy: regime-switching versions of the backward-looking model of Rudebusch

and Svensson [33] and the forward-looking New Keynesian model of Lindé [27]. We also include

one estimated example focusing directly on the role of private sector expectations in policy choice.

In section 5, we show how the same probability distributions can be constructed for arbitrary

time-invariant instrument rules and optimal restricted instrument rules. Here we derive optimal

generalized and mode-dependent Taylor-type rules in the Lindé model. In section 6, we present

some conclusions. The appendices contain some technical details and extensions of the material in

the text.
2 The optimal nonlinear filter is well-known, and it is a key component of the estimation methods as well (Hamilton

[22] and Kim and Nelson [25]).
3 In the first case, restricting attention to (sub-optimal) linear filters preserves the tractability of the linear-

quadratic framework. See CFM [11] for a brief discussion and references. In adaptive control, agents do not take into
account the informational role of their decisions. See do Val and Başar [14] for an application of an adaptive control
MJLQ problem in economics. In a different setting, Cogley, Colacito, and Sargent [9] have recently studied how well
adaptive procedures approximate the optimal policies.
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2 The model

We set up a relatively flexible model of an economy with a private sector and a central bank, which

allows for relatively broad additive and multiplicative uncertainty as well as different relevant

representations of the central-bank information and judgment about the economy.

2.1 The baseline model

As our benchmark, we consider the following model of an economy with a central bank:

Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + Cjt+1εt+1, (2.1)

EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit, (2.2)

where Xt is an nX -vector of predetermined variables (the state) in period t (the first element may be

unity to incorporate nonzero intercepts in a convenient way), xt is an nx-vector of forward-looking

variables in period t, it is an ni-vector of central-bank instruments (control variables) in period t,

and εt is an nX -vector of zero-mean i.i.d. shocks realized in period t with covariance matrix InX .

The forward-looking variables and the instruments are the nonpredetermined variables.4

The matrices A11jt , A12jt , B1jt , Cjt , Hjt , A21jt , A22jt , and B2jt (assumed to be of appropriate

dimension) are random and can each take nj different values in period t, corresponding to the nj

modes jt ∈ Nj ≡ {1, 2, ..., nj} in period t. The modes jt follow a Markov process with constant

transition probabilities:

Pjk ≡ Pr{jt+1 = k | jt = j} (j, k ∈ Nj). (2.3)

While we focus throughout on the time-homogeneous case, it is straightforward to allow the modes

to depend directly on calendar time. Furthermore, P denotes the nj × nj transition matrix [Pjk]

and the nj-vector p ≡ (p1t, ..., pnjt)′ (where pjt ≡ Pr{jt = j}, j ∈ Nj) denotes the probability

distribution of the modes in period t, so

pt+1 = P ′pt.

Finally, the nj-vector p̄ denotes the unique stationary distribution of the modes, so5

p̄ = P ′p̄.

We assume that the matrix A22jt is nonsingular for each jt ∈ Nj , so equation (2.2) determines

the forward-looking variables in period t. There is no restriction in including the shock εt only in the
4 Predetermined variables have exogenous one-period-ahead forecast errors, whereas non-predetermined variables

have endogenous one-period-ahead forecast errors.
5 We assume that the Markov chain is recurrent and aperiodic, so the stationary distribution is unique and does

not depend on the initial mode (Karlin and Taylor [24]). A simple sufficient condition is that the matrix P m has all
elements positive for some m ≥ 1 (Ljungqvist and Sargent [28]).
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equations for the predetermined variables, since, if necessary, the set of predetermined variables can

always be expanded to include the shocks and the shocks this way indirectly enter into the equations

for the forward-looking variables. The shocks εt and the modes jt are assumed to be independently

distributed (although we allow the impact on the economy of the shocks εt to depend on the modes

jt through the matrix Cjt). However, this assumption is not restrictive. Mode-dependent additive

shocks are actually incorporated, since the fact that we allow one of the predetermined variables

to be unity implies that all our equations may have mode-dependent intercepts.6 For any random

variable qt+1 realized in period t + 1 the expression Etqt+1 denotes the conditional expectation of

the central bank and the private sector in period t; we hence assume that information is symmetric

between the central bank and the private sector. The precise informational assumptions underlying

the conditional expectations operator Et are specified below.

The central bank has an intertemporal loss function in period t,

Et

∞∑

τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ), (2.4)

where the period loss function, L(Xt, xt, it, jt), satisfies

L(Xt, xt, it, jt) ≡ Y ′
t ΛjtYt,

where

Yt ≡ Djt

[
Xt

xt

it

]

is an nY -vector of target variables and the weight matrix Λjt depends on the mode jt and is

symmetric and positive semidefinite for each jt ∈ Nj . It follows that the period loss function

satisfies

L(Xt, xt, it, jt) ≡
[

Xt

xt

it

]′
Wjt

[
Xt

xt

it

]
, (2.5)

where the matrix Wjt ≡ D′
jt

ΛjtDjt depends on the mode jt and is symmetric and positive semidef-

inite for each jt ∈ Nj . The scalar δ is a discount factor satisfying 0 < δ ≤ 1.7

2.2 Informational assumptions

We consider two alternative information assumptions, observable modes and unobservable modes.

Under both alternatives, the central bank and the private sector know the probability distribution
6 Without significant loss of generality, we could assume that the ε shocks are discrete, εt ∈ {ε̄h}n̄

h=1, and hence
depend on separate modes h = 1, ..., n̄ which may be correlated with the j modes. Then we could consider nn̄
generalized modes (j, h) (j = 1, ..., n, h = 1, ..., n̄) and incorporate the ε shocks in intercepts that depend on the
generalized modes. This way we could, without loss of generality, write the model without any explicit additive ε
shocks.

7 When δ = 1, the loss function (2.4) normally becomes unbounded. To handle this case, we scale the intertemporal
loss function by 1− δ for δ < 1 and consider the loss function to be the limit

limδ→1(1− δ)Et

∞P
τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ). See appendix D for details.
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of the innovation εt, the transition matrix P , and the nj different values each of the matrices in

(2.1), (2.2), and (2.5) can take. That is, they have the same view of the nature of the model

uncertainty. Furthermore, in the beginning of period t, before the central bank sets the instru-

ments, it, under the assumption of observable modes the central bank’s and private sector’s in-

formation set includes the mode jt and more generally the whole history of past the realizations:

{Xt, jt, εt, Xt−1, jt−1, εt−1, xt−1, it−1, . . .}. Hence, the conditional expectations operator, Et, refers

to expectations conditional on that information.

Under the assumption of unobservable modes, the central bank and private sector cannot observe

the modes.8 Their subjective probability distribution over the modes in period t is denoted pt ≡
(p1t, ..., pnjt)′. As noted in the introduction, we do not consider the case where the central bank

and the private sector update their subjective distribution of modes based on observations of the

economy. While this case is important and is examined in Svensson and Williams [42], the learning

which it implies introduces nonlinearities which reduces the tractability of the MJLQ framework.

Moreover, the case without learning on that we focus on here provides a useful starting point to

analyze the effects of learning. In this paper, we assume that the subjective distribution simply

evolves according to the exogenous transition probabilities. Then, conditional on pt in period t, the

distribution of the modes in the future period t + τ is given by

pt+τ = (P ′)τpt (τ ≥ 0). (2.6)

It is worth noting what type of belief specification underlies the assumption that the central

bank and private sector do not learn from their beliefs. In general, this requires the central bank and

private sector to have subjective beliefs which are dynamically inconsistent or differ from the true

data-generating process. A first possibility, independent draws, is that the central bank and private

sector (incorrectly) view the future modes jt+τ as being drawn independently each period t+τ from

the exogenous distribution pt+τ given by (2.6) in period t. In particular, if pt = p̄, they view the

exogenous distribution as being the stationary distribution p̄ associated with the transition matrix

P . For this possibility, there is no (perceived) gain from updating the beliefs from observations of

the economy. Hence not updating beliefs is optimal for this subjective probability distribution. In

this case, in the beginning of period t, before the central bank sets the instruments, the common

information set is the same as under observable modes, except that all parties do not observe jt.

Instead, they believe that modes have a probability distribution pt, and that future modes will be

drawn independently according to the distribution given by (2.6). The conditional expectations

operator, Et, then refers to expectations conditional on that information and beliefs. In an earlier

version of the paper we focused on the assumption of independent draws.

A second possibility, forgetting the past, suggested to us by Alexei Onatski, is that the central

bank and private sector in period t forget past observations of the economy, such as {Xt−1, Xt−2, . . .},
8 Since forward-looking variables will be allowed to depend on the mode, parts of the private sector, but not the

aggregate private sector, may be able to observe the mode.
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when making decisions in period t. Without past observations, the policymaker cannot use current

observations to update the beliefs. This possibility has the advantage that the policymaker need

not view the modes as being independently drawn and may exploit the fact that the true modes

may be serially correlated. However, forgetting past observations implies that the beliefs do not

satisfy the law of iterated expectations, which requires the slightly complicated Bellman equations

and derivations below. Under unobservable modes and forgetting the past, in the beginning of

period t, before the central bank chooses the instruments, it, the common information set includes

Xt and pt, along with the fact that future modes will be distributed according to (2.6) and possibly

be serially correlated depending on the matrix P . The conditional expectations operator then refers

to expectations conditional on that information and those beliefs. We will employ the assumption

of forgetting the past in our analysis below.

Under either observable or unobservable modes, we consider the optimization problem of mini-

mizing (2.4) in period t, subject to (2.1), (2.2), (2.5), with either (Xt, jt) or (Xt, pt) given. We focus

on optimization under commitment in a timeless perspective (see Woodford [44] and Svensson and

Woodford [43]), although our results do not depend on this. As explained below, we will then add

the term

Ξt−1
1
δ
EtHjtxt (2.7)

to the intertemporal loss function in period t, where the elements of the nx-vector Ξt−1 are the

Lagrange multipliers for equations (2.2) from the optimization problem in period t− 1.

2.3 Reformulation according to the recursive saddlepoint method

As mentioned above, there has been extensive research in control theory developing methods for

MJLQ systems. In order to apply those methods, we require that the system be recursive. However,

the presence of the forward-looking variables in (2.2) makes the problem nonrecursive. Fortunately,

the recursive saddlepoint method of Marcet and Marimon [29] can be applied to reformulate the non-

recursive problem with forward-looking variables as a recursive saddlepoint problem (see Marcet

and Marimon [29] for the general method and Svensson [40] for details of the method applied to

linear-quadratic problems). This method adds lagged Lagrange multipliers corresponding to the

forward-looking equations as additional state variables in the optimization problem. It also makes

the current value of these multipliers, as well as the current values of the forward-looking variables

themselves, additional control variables. By thus expanding the state and control space, we convert

the non-recursive problem to a recursive one.

It will be practical to replace equation (2.2) by the two equivalent equations,

EtHjt+1xt+1 = zt, (2.8)

0 = A21jtXt + A22jtxt − zt + B2jtit, (2.9)
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where we introduce the nx-vector of additional forward-looking variables, zt. Introducing this vector

is a practical way of keeping track of the expectations term on the left side of (2.2). Furthermore,

it will be practical to use (2.9) and solve xt as a function of Xt, zt, it, and jt,

xt = x̃(Xt, zt, it, jt) ≡ A−1
22jt

(−A21jtXt + zt −B2jtit). (2.10)

We note that, for given jt, this function is linear in Xt, zt, and it.

For the application of the recursive saddlepoint method, the dual period loss function can be

written

EtL̃(X̃t, zt, it, γt, jt) ≡
∑

j

pjtL̃(X̃t, zt, it, γt, j),

where X̃t ≡ (X ′
t, Ξ

′
t−1)

′ is the nX̃ -vector (nX̃ ≡ nX +nx) of extended predetermined variables (that

is, including the nx-vector Ξt−1), γt is an nx-vector of Lagrange multipliers, and where

L̃(X̃t, zt, it, γt, jt) ≡ L[Xt, x̃(Xt, zt, it, jt), it, jt]− γ′tzt + Ξ′t−1

1
δ
Hjt x̃(Xt, zt, it, jt). (2.11)

For future reference, we can also write

L̃(X̃t, zt, it, γt, jt) ≡
[

X̃t

ı̃t

]′
W̃jt

[
X̃t

ı̃t

]
, (2.12)

where ı̃t ≡ (z′t, x′t, i′t)′ and W̃jt is an (nX̃ +nı̃)× (nX̃ +nı̃) matrix, where nı̃ ≡ nx +nx +ni. Further-

more, the case of unobservable modes corresponds to a given subjective probability distribution

over modes, pt = (p1t, ..., pnjt)′, whereas the case of observable modes corresponds to pjt = 1 for

j = jt, pjt = 0 for j 6= jt if jt ∈ Nj is the true mode. Then the dual intertemporal loss function is

Et

∞∑

τ=0

δτ L̃(X̃t, zt, it, γt, jt), (2.13)

and the dual optimization problem is find a saddlepoint such that (2.13) is maximized over {γt+τ}τ≥0

and minimizes over {zt+τ , it+τ}τ≥0 subject to the relevant transition equation.

2.3.1 Observable modes

Under observable modes, the state of the economy in period t is (X̃t, jt), and the Bellman equation

for the recursive saddlepoint problem (the dual optimization problem) with the value function

Ṽ (X̃t, jt) is

Ṽ (X̃t, jt) = max
γt

min
(zt,it)

[L̃(X̃t, zt, it, γt, jt) + EtδṼ (X̃t+1, jt+1)]

≡ max
γt

min
(zt,it)

[
L̃(X̃t, zt, it, γt, jt) + δ

∑
jt+1

Pjtjt+1

∫
Ṽ (X̃t+1, jt+1)ϕ(εt+1)dεt+1

]
, (2.14)
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where ϕ(·) denotes a generic probability density function. The optimization is subject to the

transition equation for Xt+1,

Xt+1 = A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, jt) + B1jt+1it + Cjt+1εt+1, (2.15)

where we have substituted x̃(Xt, zt, it, jt) for xt, and the new dual transition equation for Ξt,

Ξt = γt. (2.16)

With the new states and controls, we then have a relatively standard optimization problem. If

the modes were fixed, this would simply be a standard LQ problem whose well-known solution is a

quadratic value function and a linear policy function. However the switching of the modes adds an

important nonlinearity. Nonetheless, the evolution is linear and preferences are quadratic condi-

tional on the modes, and the evolution of the modes is independent of the predetermined variables

Xt. This leads to the value function being quadratic and the optimal policy linear conditional on

the modes. In particular, as is shown in appendix B, the dual value function Ṽ (X̃t, jt) is quadratic

in X̃t for given jt, taking the form

Ṽ (X̃t, jt) ≡ X̃ ′
tṼX̃X̃jt

X̃t + wjt , jt ∈ Nj , (2.17)

where ṼX̃X̃jt
is an nX̃ × nX̃ matrix and wjt is a scalar. In addition, the optimal policies are linear

in X̃t for given jt ∈ Nj ,

ı̃t ≡
[

zt

it
γt

]
= ı̃(X̃t, jt) ≡




z(X̃t, jt)
i(X̃t, jt)
γ(X̃t, jt)


 = FjtX̃t ≡

[
Fzjt

Fijt

Fγjt

]
X̃t, (2.18)

xt = x(X̃t, jt) ≡ x̃(Xt, z(X̃t, jt), i(X̃t, jt), jt) ≡ FxjtX̃t. (2.19)

This solution is also the solution to the primal optimization problem. The equilibrium transition

equation is then given by

X̃t+1 ≡
[

Xt+1

Ξt

]
=

[
A11jt+1Xt + A12jt+1FxjtX̃t + B1jt+1FijtX̃t

Fγ(jt)X̃t

]
+

[
C1jt+1

0

]
εt+1

≡ Mjtjt+1X̃t + C̃jt+1εt+1, (2.20)

where Mjtjt+1 is an nX̃ × nX̃ matrix and C̃jt+1 is an nX̃ × nX matrix. Details and a convenient

algorithm for computing ṼX̃X̃j and Fj for j ∈ Nj are provided in appendix B.

Consider the composite state (X̃t, jt) in period t, where ı̃t = FjtX̃t. The transition from this

composite state to the composite state (X̃t+1, jt+1) in period t+1 with ı̃t+1 = Fjt+1X̃t+1 will satisfy

(2.20) and will, for given realization of εt+1, occur with probability Pjtjt+1 . This determines the

optimal distribution of future X̃t+τ , jt+τ , and ı̃t+τ (τ ≥ 1) conditional on (X̃t, jt). Such conditional

distributions can be illustrated by plots of future means, medians, and percentiles (fan charts).
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Plots of future means, medians, and percentiles can also be constructed for individual chains of

the modes, for instance, the median or mean chain corresponding to no model uncertainty. The

simplest way to generate such plots is by simulation, which we illustrate in some examples below.

Note that the value function in (2.17) above corresponds to the dual period loss function and

the dual saddlepoint problem. The primal value function V (X̃t, jt) for the original problem of

minimizing (2.4) subject to (2.1), (2.2), and (2.5) under commitment in a timeless perspective

satisfies

V (X̃t, jt) ≡ X̃ ′
tVX̃X̃jt

X̃t +wjt ≡ V (X̃t, jt)− 1
δ
Ξ′t−1HjtFxjtX̃t ≡ X̃ ′

tṼX̃X̃jX̃t +wjt −
1
δ
Ξ′t−1HjtFxjtX̃t,

(2.21)

where we note that the scalar wjt is the same for the dual and primal value functions. Since

1
δ
Ξ′t−1HjFxjX̃t ≡ 1

2δ
(Ξ′t−1HjFxjX̃t+X̃ ′

tF
′
xjH

′
jΞt−1) ≡ X̃ ′

t

[
0 1

2δF ′
xXjH

′
j

1
2δHjFxXj

1
2δ (HjFxΞj + F ′

xΞjH
′
j)

]
X̃t,

where Fxj is partitioned conformably with Xt and Ξt−1 as Fxj ≡ [FxXj FxΞj ], the matrices VX̃X̃j

are given by

VX̃X̃j = ṼX̃X̃j −
[

0 1
2δF ′

xXjH
′
j

1
2δHjFxXj

1
2δ (HjFxΞj + F ′

xΞjH
′
j)

]
(j ∈ Nj). (2.22)

As discussed in CFM [11], mean square stability is an appropriate concept of stability for the

observable-modes case. Appendix E provides some details on the definition of mean square stability

and shows how the necessary and sufficient conditions for mean square stability derived in CFM

[11] can be applied in our case.

2.3.2 Unobservable modes

Under unobservable modes and forgetting the past, let st ≡ (X̃ ′
t, p

′
t)
′ denotes the perceived state of

the economy (“perceived” in the sense that it includes the perceived probability distribution, pt,

but not the true mode). We find it useful to introduce the conditional dual value function V̂ (st, jt),

which gives the dual intertemporal loss conditional on the true state of the economy, (st, jt). This

function satisfies

V̂ (st, j) ≡
∫ [

L̃(X̃t, z(st), i(st), γ(st), j)
+ δ

∑
k PjkV̂ [ḡ(st, j, εt, k, εt+1), k]

]
ϕ(εt+1)dεt+1 (j ∈ Nj).

The true dual value function Ṽ (st) for the problem averages over the conditional value functions

according to the perceived distribution of modes:

Ṽ (st) = EtV̂ (st, jt) =
∑

j
pjtV̂ (st, j).
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Then Ṽ (st) solves the somewhat unusual Bellman equation:

Ṽ (st) = max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt) + δV̂ [g(st, zt, it, γt, jt, jt+1, εt+1), jt+1]}

≡ max
γt

min
(zt,it)

∑
j
pjt

∫ [
L̃(X̃t, zt, it, γt, j)
+ δ

∑
k PjkV̂ [g(st, zt, it, γt, j, k, εt+1), k]

]
ϕ(εt+1)dεt+1, (2.23)

where not only the perceived state of the economy, st, appears, but also the true state of the

economy, (st, jt) (“true” in the sense that it includes the true mode of the economy). For the case

of unobservable modes and forgetting the past, it is necessary to include the mode jt in the state

vector because the beliefs do not satisfy the law of iterated expectations. In the Bellman equation

we require that the solution for zt, it, and γt respect the information constraints and thus depend

on the perceived state st but not directly on the mode jt.

The optimization is subject to (2.15), (2.16), and the transition equation for pt+1, (2.6). This

can be combined into the transition equation for st+1,

st+1 ≡
[

Xt+1

Ξt

pt+1

]
= g(st, zt, it, γt, jt, jt+1, εt+1)

≡
[

A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, jt) + B1jt+1it + C1jt+1εt+1

γt
P ′pt

]
. (2.24)

In the case of observable modes above, the solution to the dual problem was a mode-dependent

quadratic value function and mode-dependent linear policy. These results relied in an important

way on the evolution of the modes being exogenous. Under unobservable modes but forgetting the

past, the belief evolution is also exogenous, and thus a similar argument applies and we obtain a

belief-dependent quadratic value function and a belief-dependent linear policy. In particular, it is

straightforward to see that the solution of the dual optimization problem is linear in X̃t for given st,

ı̃t ≡
[

zt

it
γt

]
= ı̃(st) ≡

[
z(st)
i(st)
γ(st)

]
= F (pt)X̃t ≡

[
Fz(pt)
Fi(pt)
Fγ(pt)

]
X̃t, (2.25)

xt = x(st, jt) ≡ x̃(Xt, z(st), i(st), jt) ≡ Fx(pt, jt)X̃t, (2.26)

where the forward-looking variables also depend on the mode jt.9 This solution is also the solution

to the primal optimization problem. The equilibrium transition equation is then given by

st+1 = ḡ(st, jt, jt+1, εt+1) ≡ g[st, z(st), i(st), γ(st), jt, jt+1, εt+1].

This equilibrium transition equation together with (2.25) and (2.26) can be used to construct

conditional distributions of future states of the economy. The simplest way to generate such plots

is by simulation, which we illustrate in some examples below.
9 We assume that the central bank and private sector do not update the probability distribution over modes from

observation of the forward-looking variables. Updating the probability distribution from observations of Xt and xt

is examined in Svensson and Williams [42].
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Moreover, the (unconditional) dual value function Ṽ (st) is quadratic in X̃t for given pt, taking

the form

Ṽ (st) ≡ X̃ ′
tṼX̃X̃(pt)X̃t + w(pt).

The function V̂ (st, jt) is also quadratic in X̃t for given pt and jt,

V̂ (st, jt) ≡ X̃ ′
tV̂X̃X̃(pt, jt)X̃t + ŵ(pt, jt).

It follows that we have

ṼX̃X̃(pt) ≡
∑

j
pjtV̂X̃X̃(pt, j), w(pt) ≡

∑
j
pjtŵ(pt, j).

The value function for the primal problem, with the period loss function EtL(Xt, xt, it, jt) rather

than EtL̃(X̃t, zt, it, γt, jt), satisfies

V (st) ≡ Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjtHjx(st, j). (2.27)

It is again quadratic in X̃t for given pt,

V (st) ≡ X̃ ′
tVX̃X̃(pt)X̃t + w(pt)

(the scalar w(pt) in the primal value function is obviously identical to that in the dual value

function). This is the value function conditional on X̃t and pt, taking into account that jt is not

observable. Hence, the second term on the right side of (2.27) contains the expectation of Hjtxt

conditional on that information. The matrix VX̃X̃(pt) is related to the matrix ṼX̃X̃(pt) in a way

comparable to (2.22).

Algorithms for determining the solution and the value functions are presented in appendix C.

Computing the functions F (pt), VX̃X̃(pt), and F (pt) for all feasible values of pt requires standard

function-approximation methods, as they are vector- and matrix-valued functions of the proba-

bilities. However, as shown in appendix C, computing the functions for a particular value pt is

straightforward.10

3 Interpretation of model uncertainty in our framework

As we’ve seen, the assumption that the random matrices of coefficients take a finite number of

values corresponding to a finite number of modes allows us to use the convenient and flexible
10 Consider the degenerate distributions, pt = ej where ej is the distribution where pj = 1, pk = 0 (k 6= j). That

is, pt = ej corresponds to the case when the mode j is observed in period t. Note that VX̃X̃(ej) 6= VX̃X̃j and F (ej) 6=
Fj , where VX̃X̃j and Fj (j = 1, ..., n) denote the value function and optimal policy function matrices for observable
modes, when the modes are observed in each period. The reason is that even if pt = ej and the mode is observed in
period t, the distribution of the modes in the next period t+1 will be pt+1 = ejP = (Pj1, Pj2, ..., Pjn) and the modes
will not be observed in the next period. In contrast, VX̃X̃j and Fj are derived under the assumption that the modes
are observed in all periods.
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framework of MJLQ systems. In order to do so, we apply the recursive saddlepoint method of

Marcet and Marimon to reformulate the non-recursive model with forward-looking variables as a

recursive model. The flexibility of the MJLQ approach allows us to consider a wide variety of

applications. By specifying different configurations of modes and transition probabilities, we can

approximate many different kinds of model uncertainty.

• Both i.i.d. and serially correlated random coefficients of the model can be handled. This can

capture either generalized parameter uncertainty or different behavior in different modeled

regimes (such boom/bust states, and so forth). In addition, switches in the underlying pro-

cesses of nonlinear models (such as in the mean growth rate of productivity) can be linearized

to yield MJLQ systems.

• The modes can correspond to different structural models. The models can differ by having

different relevant variables, different number of leads or lags, or the same variable being

predetermined in one model and forward-looking in another. For example, one mode can

represent a model with forward-looking variables such as the New Keynesian model of Lindé

[27], another a backward-looking model such as that of Rudebusch and Svensson [33]. We

consider such an example below.

• The modes can correspond to situations when variables such as inflation and output have more

or less inherent persistence (are more or less autocorrelated), when the exogenous shocks have

more or less persistence (introduce a predetermined variable equal to the serially correlated

shock, letting it be an AR(1) process with a high or low coefficient), or when the uncertainty

about the coefficients or models is higher or lower.

• The modes can be structured such that they correspond to different central-bank judgments

about model coefficients and model uncertainty. Let jt = 1, ..., nj correspond to nj dif-

ferent model modes (different coefficients, different variances or persistence of coefficient

disturbances, or different variances of the εt shocks). Let kt = 1, ..., nk correspond to nk

different central-bank judgment modes, depicting some central-bank information about the

model modes. This can generally be modeled as a situation where the transition matrix

for the model modes depends on the judgment mode. Thus let the transition matrix for

model modes be P̃ (kt), and hence depend on kt. Let P 0 denote the transition matrix for

the judgment modes (assumed independent of the model modes). We can then consider a

composite model-judgment mode (jt, kt) in period t, with the transition probability from

model-judgment mode (h, k) in period t to mode (j, l) in period t+1 given by P̃ (k)hjP
0
kl. For

instance, the judgment modes may correspond to different persistence of the model modes.

• As noted in appendix A, we can combine multiplicative uncertainty about the modes with

the additive uncertainty about future deviations. This way we can simultaneously handle
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central-bank judgment about future additive deviations as in Svensson [39] and central-bank

judgment about model modes as in this paper. For instance, we can handle situations when

there is more or less uncertainty about shocks farther into the future relative to those in the

near future.

Generally, aside from dimensional and computational limitations, it is difficult to conceive of a

relevant situation for a policymaker that cannot be approximated in this framework. Moreover, the

computational constraints are not overly tight. The examples below have up to 9 state variables

and 3 modes and are solvable in seconds. We have also considered examples with up to 50 modes

and 10 state variables which were solvable in a few minutes. For a one-time policy optimization,

such speed and flexibility is useful, but for in-depth policy analysis and estimation (considering

different scenarios, model specifications, and loss functions) it is critical.

4 Examples

In this section we present examples based on two empirical models of the US economy: regime-

switching versions of the backward-looking model of Rudebusch and Svensson [33] and the forward-

looking New Keynesian model of Lindé [27]. These examples can be interpreted as model uncer-

tainty within a given class of structural models, in this case a setting with exogenous switches

in the underlying parameters of the models. We then turn to an example which has more of a

structural model-uncertainty flavor, where we re-estimate the Lindé [27] model constraining one

mode to be backward-looking while the other has both backward- and forward-looking elements.

This corresponds to a situation when there is uncertainty about the importance of forward-looking

behavior.

4.1 An estimated backward-looking model

In this section we consider the effects of model uncertainty in the quarterly model of the US

economy of Rudebusch and Svensson [33], henceforth RS. The key variables in the model are

quarterly annualized inflation πt, the output gap yt, and the annualized instrument rate it. We use

data obtained from the St. Louis Fed FRED website covering 1961:Q1-2006:Q1, taking the chain-

weighted GDP deflator as our price index, the percentage deviation of GDP from the CBO estimate

of potential as our measure of the output gap, and the federal funds rate as the instrument rate.

This same data set is used in our other examples below. In this section, we estimate a three-mode

MJLQ model using Bayesian methods to locate the maximum of the posterior distribution, and we

compare the implications to the constant-coefficient version of RS.
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Parameter Constant Mode 1 Mode 2 Mode 3
α0 0.5697 0.3744 0.6598 0.5437
α1 0.0752 0.1336 0.0329 0.0678
α2 0.1276 0.1524 0.1362 0.0999
α3 0.1451 0.1099 0.1652 0.1029
β1 1.1834 1.2417 1.1551 1.2162
β2 −0.2651 −0.3408 −0.2398 −0.2717
β3 −0.0510 −0.0115 −0.0393 −0.0206
cπ 1.0070 0.7276 1.4008 0.6936
cy 0.7540 0.4748 1.0777 0.7445

Table 4.1: Estimates of the constant-coefficient and three-mode Rudebusch-Svensson model.

The model has a Phillips curve and an aggregate-demand relation of the following form:

πt+1 =
2∑

τ=0
ατjπt−τ + (1−

2∑
τ=0

ατj)πt−3 + α3jyt + cπjεπ,t+1, (4.1)

yt+1 = β1jyt + β2jyt−1 + β3j (̄ıt − π̄t) + cyjεy,t+1,

where j ∈ {1, 2, 3} indexes the mode, ı̄t ≡
∑3

τ=0 it−τ/4 and π̄t ≡
∑3

τ=0 πt−τ/4 are 4-quarter

averages, and the shocks επt and εyt are each independent standard normal random variables.

Table 4.1 reports our estimates of the peak of the posterior, with the OLS estimates of the

constant-coefficient version of the model for comparison. For the MJLQ model, we center our prior

distribution at the OLS estimates and restrict α3 to be positive and β3 to be negative. Details

of the estimation method and prior setting are given in appendix F. Here we see that many of

the coefficients differ substantially across modes. Perhaps most notable is the large difference in

volatility, as the standard deviation of the inflation shocks (cπ) in mode 2 is more than twice as

large as the estimates in the other modes, and the output gap shocks (cy) are largest in this mode

as well. In addition, the slope of the aggregate-demand relation, β3, ranges from a relatively large

negative response in mode 2 to a small negative one in mode 1. The differences in these key model

coefficients lead to some differences in the optimal policy across modes for the observable-modes

case, as we show below.

The estimated probabilities of being in the different modes are shown in figure 4.1. The plots

show both the filtered estimates, in which the distribution in period t is estimated using data only

up to t, as well as the smoothed estimates, in which the distribution in period t is estimated using

data for the whole sample. Clearly, there are more fluctuations in the filtered estimates than in

the smoothed ones, since by looking backward we can better assess the probability of being in a

particular regime. We see that, for the very early part of the sample, the economy was mostly

assessed to be in the relatively calm mode 3. But then throughout the 1970s until the early 1980s

the economy was mostly in the more volatile mode 2. From the early 1980s onward, mode 1 has

been predominant, as the volatility moderated. The estimated transition matrix P and its implied
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Figure 4.1: Estimated probabilities of the different modes. Solid lines: Smoothed (full-sample)

inference. Dashed lines: Filtered (one-sided) inference.

stationary distribution p̄ are

P =

[ 0.9887 0.0056 0.0057
0.0145 0.9711 0.0143
0.0199 0.0201 0.9601

]
, p̄ =

[ 0.5967
0.2340
0.1694

]
.

From the standpoint of these estimates, the data from the 1980s on is the most typical, as mode 1

has the highest weight in the stationary distribution. Similar episodes will thus re-occur in the

model, although balanced with periods of larger volatility.

We let the period loss function be

Lt = π2
t + λy2

t + ν(it − it−1)2. (4.2)

Hence, the vector of target variables is Yt ≡ (πt, yt, it− it−1)′ and the weight matrix Λ is a diagonal

matrix with the diagonal (1, λ, ν)′. We set the weights to λ = 1 and ν = 0.2, and fix set the discount

factor in the intertemporal loss function to δ = 1. Using the methods described above, we then

solve for the optimal policy functions for the case of observable modes and the case of unobservable

modes,

it = FijXt, (j = 1, 2, 3),

it = Fi(p̄)Xt,
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Mode πt πt−1 πt−2 πt−3 yt yt−1 it−1 it−2 it−3

Constant 1.1053 0.5037 0.4160 0.2665 2.1640 −0.5772 0.5120 −0.0549 −0.0278
Mode 1 0.8721 0.5456 0.4308 0.2976 1.6220 −0.5838 0.7821 −0.0106 −0.0051
Mode 2 1.3269 0.4851 0.4333 0.2440 2.4116 −0.5764 0.5625 −0.0456 −0.0232
Mode 3 1.0219 0.4750 0.4037 0.2982 2.2605 −0.6209 0.6786 −0.0240 −0.0119

Unobservable 0.9907 0.5289 0.4321 0.2920 1.9642 −0.6163 0.7001 −0.0209 −0.0102

Table 4.2: Optimal policy functions for the constant-coefficient and three-mode Rudebusch-

Svensson model.

respectively, where Xt ≡ (πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−3)′. For the case of unobservable

modes, we hence compute the optimal policy function for the stationary distribution, p̄.

The optimal policy functions are given in table 4.2. The first row gives the optimal policy

function for the constant-coefficient case, the next three rows give it for the observable-modes case,

and the last row gives it for the unobservable-modes case. However the coefficients of the policy

functions are in themselves a bit difficult to interpret. Thus we plot the distribution of the impulse

responses of inflation, the output gap, and the instrument rate to the two shocks in the model

in figure 4.2 for the observable-modes case and in figure 4.3 for the unobservable-modes case. In

particular, for each of 10,000 simulation runs, we first draw an initial mode of the Markov chain

from its stationary distribution, then simulate the chain for 50 periods forward, tracing out the

impulse responses. The figure plots the mean and median responses at each date, along with 30%

quantiles of the empirical distribution. More precisely, the dark, medium, and light grey band show

30%, 60%, and 90% probability bands, respectively, with 5% of the distribution above the light

gray band and 5% below. Also shown for comparison are the responses under the optimal policy

for the estimated constant-coefficient model given above.11

The impulse responses for observable and unobservable modes are in this case quite similar.

Both the table and the figures illustrate that the model uncertainty leads to a change in the nature

of policy. Compared to the constant-coefficient model, most of the mass of the distribution of the

impulse responses for the first few quarters lies closer to zero. This is particularly the case for the

instrument-rate responses. Thus our results here are in accord with the common intuition based on

Brainard [6], that model uncertainty should lead to less aggressive (that is, smaller in magnitude)

policy responses.12 Interestingly, the probability distributions of responses are asymmetric, with

the mean impulse responses quite different from the median responses. These results illustrate that

with model uncertainty policy makers must go beyond forecasting the means of target variables

and consider the entire forecast distributions. Our approach makes this process quite manageable.
11 The shocks are επ0 = 1 and εy0 = 1, respectively, for the two different columns in the figure. Thus the effective

shocks to inflation and the output gap in period 0 are mode dependent and equal to cπj and cyj (j = 1, 2, 3),
respectively. As we initialize by drawing from the stationary distribution, the distribution of modes in each period
remains the stationary distribution.

12 Of course, this is only a loose parallel, as the Brainard result need not apply for the type of uncertainty considered
here, especially in the observable-modes case when the policy is allowed to be mode-dependent. In addition, the means
of the MJLQ coefficients do not equal the constant coefficients.
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Figure 4.2: Unconditional impulse responses to shocks under the optimal policy for the mode-

dependent Rudebusch-Svensson model. Solid lines: Mean responses. Dashed lines: Median re-

sponse. Dark/medium/light gray bands: 30/60/90% probability bands. Dashed-dotted lines: Op-

timal responses for the constant-coefficient model.

4.2 An estimated forward-looking model

We now consider the effects of uncertainty in a model with both forward- and backward-looking

variables. The structural model is a mode-dependent simplification of the model of the US economy

of Lindé [27] and is given by

πt = ωfjEtπt+1 + (1− ωfj)πt−1 + γjyt + cπjεπt, (4.3)

yt = βfjEtyt+1 + (1− βfj)
[
βyjyt−1 + (1− βyj)yt−2

]− βrj (it − Etπt+1) + cyjεyt,

it =
(
1− ρ1j − ρ2j

) (
γπjπt + γyjyt

)
+ ρ1jit−1 + ρ2jit−2 + cijεit,

where an instrument rule is added to the Phillips curve and the aggregate-demand relation.13 Again,

j ∈ {1, 2, 3} indexes the mode, and the shocks επt, εyt, and εit are independent standard normal

random variables. We use the same data set as above, and again estimate a three-mode MJLQ

model along with a constant-coefficient model using Bayesian methods. Once again, we explicitly

state our prior settings in appendix F. We use the same prior for the structural coefficients in the
13 Because of the forward-looking expectations in the model, estimation of the model requires that a policy rule

be specified.
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Figure 4.3: Unconditional impulse responses to shocks under the optimal policy for the

unobservable-mode version of the Rudebusch-Svensson model. Solid lines: Mean responses. Dashed

lines: Median responses. Dark/medium/light grey bands: 30/60/90% probability bands. Dashed-

dotted lines: Optimal responses for constant coefficients.

constant-coefficient and MJLQ cases, and the priors for the Markov chain coefficients are the same

as in the RS model.

Table 4.3 reports our estimates, with the estimates from the constant-coefficient version of

the model for comparison. Our constant-coefficient estimates are similar to those in Lindé [27],

with the main difference that we find much smaller estimates of γ and βr. At least some of the

difference may be due to our different data series and sample period. We again see that many of

the key structural coefficients change substantially across modes, particularly the shock standard

deviations. For example, mode 1 has the largest shocks to inflation and interest rates, while mode

2 has the smallest shocks to these variables. The degree of forward-looking behavior also varies

across modes, with mode 2 having the lowest weights on the forward-looking terms in both key

model equations. The slope of the Phillips curve γ and the interest sensitivity of demand βr, which

are key parameters governing how changes in the instrument rate are transmitted to inflation, also

vary markedly across modes.
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Parameter Constant Mode 1 Mode 2 Mode 3
ωf 0.5164 0.3000 0.1496 0.5595
γ 0.0034 0.0643 0.0321 0.0205
βf 0.4484 0.4595 0.0757 0.4139
βr 0.0073 0.0067 0.0278 0.0902
βy 1.1902 1.2943 1.2191 0.9310
ρ1 0.8216 0.7051 1.3038 0.9994
ρ2 0.0560 0.1349 −0.3748 −0.1744
γπ 1.5538 1.6441 1.2982 0.7725
γy 0.9777 0.6967 0.6431 1.0784
cπ 0.5920 1.0378 0.6943 0.8076
cy 0.3753 0.4763 0.5147 0.5740
ci 1.0412 2.1133 0.3712 0.7073

Table 4.3: Estimates of the constant-coefficient and three-mode Lindé model.

Mode πt−1 yt−1 yt−2 it−1 επt εyt Ξπ,t−1 Ξy,t−1

Constant 0.1738 0.9394 −0.2112 0.7623 0.2128 0.7559 0.0011 0.0252
Mode 1 0.9582 0.9171 −0.3461 0.7446 1.4205 1.0362 0.0026 0.0215
Mode 2 1.9812 2.6539 −0.5794 0.6252 1.6176 1.4724 0.0004 0.0039
Mode 3 0.3556 0.8943 0.0639 0.4947 0.6520 0.9071 0.0066 0.0758

Unobservable 1.7877 2.2912 −0.4708 0.5968 1.6633 1.4033 0.0010 0.0142

Table 4.4: Optimal policy functions of the constant-coefficient and three-mode Lindé model.

The estimated transition matrix P and its implied stationary distribution p̄ are given by

P =

[ 0.9411 0.0294 0.0294
0.0053 0.9893 0.0054
0.0271 0.0262 0.9468

]
, p̄ =

[ 0.1322
0.7214
0.1464

]
.

Thus mode 2 is the most persistent and has the largest mass in the invariant distribution. This is

consistent with our estimation of the modes as shown in figure 4.4. Again, the plots show both the

smoothed and filtered estimates. We see that mode 2 was experienced the most throughout much

of the sample, holding for 1961-1968 and then with near certainty continually since 1985. The

volatile mode 1 held for much of the early 1970s and early 1980s, alternating with the intermediate

mode 3.

Using the methods described above, we again solve for the optimal policy functions,

it = FijX̃t,

it = Fi(p̄)X̃t,

for the cases of observable and unobservable modes, respectively, where now X̃t ≡ (πt−1, yt−1, yt−2, it−1,

επt, εyt,Ξπ,t−1,Ξy,t−1)′. We use the same loss function as in the backward-looking model. The op-

timal policy functions are given in table 4.4. For ease of interpretation, as above we plot the

distribution of the impulse responses of inflation, the output gap, and the instrument rate to the

two structural shocks in the model for observable modes in figure 4.5 and unobservable modes
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Figure 4.4: Estimated probabilities of being the different modes. Smoothed (full-sample) inference

is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

in figure 4.6. Again we consider 10,000 simulations of 50 periods, and plot the mean and me-

dian responses along with 30% probability bands and the corresponding optimal responses for the

constant-coefficient model. 14 The distribution of the impulse response for observable and unob-

servable modes are again similar (note that the vertical scale varies from panel to panel), with

generally more diffuse distributions in the unobservable case.

Model uncertainty leads to a change in the nature of policy also for the forward-looking model.

Compared to the constant-coefficient case, most of the mass of the distribution of impulse responses

is further away from zero, consistent with larger effects of the shocks. The effects are also more

persistent. For example, both shocks have a much more persistent effect on inflation. In terms of the

optimal policy responses, the instrument rate responses are more aggressive under our parameter

uncertainty, especially for shocks to inflation. This is counter to the standard Brainard results of

less aggressive response under uncertainty, although again our exercise here is fairly different. At

least part of the difference in policy may be explained by the fact that inflation has more intrinsic

persistence than the constant coefficient case (ωf is lower) in two of the three modes, making policy

14 Again, the shocks are επ0 = 1 and εy0 = 1, respectively, so the shocks to the inflation and output-gap equations
in period 0 are mode-dependent and equal to cπj and cyj (j = 1, 2, 3), respectively. The distribution of modes in
period 0 (and thereby all periods) is again the stationary distribution.
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Figure 4.5: Unconditional impulse responses to shocks under the optimal policy for the mode-

dependent Lindé model. Solid lines: Mean responses. Dark/medium/light grey bands: 30/60/90%

probability bands. Dashed lines: Optimal responses for the constant-coefficient model.

more reactive.

Once again, the distribution of the impulse responses is asymmetric, with the mean responses

quite different from the median responses. As in the backward-looking model above, this is perhaps

most noticeable for the inflation responses, where the center of the distribution lies below the

constant-coefficient case but there is a relatively large right tail showing more significant and

persistent responses. Interestingly, the policy responses do die out much more quickly in the

forward-looking model. The distribution of policy responses is tightly centered on zero after roughly

20 quarters, while in the backward-looking case even after 50 quarters there is still some spread

in the distribution. Thus it appears that expectations may play an important role in stabilizing

the economy under model uncertainty. We next turn to an example which highlights the role of

expectations even more.

4.3 Uncertainty about whether the model is forward- or backward-looking

While the previous examples can be interpreted as either model or parameter uncertainty within a

given class of structural models, we now turn to an example which more clearly captures uncertainty

between classes of structural models. The degree to which inflation, in particular, is forward-looking
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Figure 4.6: Unconditional impulse responses to shocks under the optimal policy for the

unobservable-mode version of the Lindé model. Solid lines: Mean responses. Dark/medium/light

grey bands: 30/60/90% probability bands. Dashed lines: Optimal responses for constant coeffi-

cients.

is a matter of much interest for policy and is subject to some debate. We also saw above that

uncertainty about forward-looking components is a key element of the uncertainty about the Lindé

model. In this section we focus more attention on this aspect, by considering a restricted version of

that model. In particular, we consider a two-mode MJLQ model where one mode has forward- and

backward-looking elements, while the other is backward-looking only. Thus we specify that mode

1 is unrestricted, while in mode 2 we restrict ωf = βf = 0, so that the mode is backward-looking.

Thus the model in mode 2 is similar to the RS model, albeit with fewer lags. We then re-estimate

the model as in the previous case, using the same data set and the same priors for all unrestricted

parameters.

Table 4.5 reports our estimates, with the estimates from the constant-coefficient version of the

model (as above) for comparison. Here we see that apart from the forward-looking terms (which

of course are restricted) the variation in the other parameters across the modes is relatively minor.

There are some differences in the estimated policy rules, but relatively little change across modes

in the other structural coefficients. The estimated transition matrix P and its implied stationary
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Parameter Constant Mode 1 Mode 2
ωf 0.5164 0.3272 0
γ 0.0034 0.0580 0.0432
βf 0.4484 0.4801 0
βr 0.0073 0.0114 0.0380
βy 1.1902 1.5308 1.2538
ρ1 0.8216 1.2079 1.2314
ρ2 0.0560 0.9228 0.7127
γπ 1.5538 0.7430 1.2845
γy 0.9777 0.1094 −0.3577
cπ 0.5920 1.0621 0.8301
cy 0.3753 0.5080 0.5769
ci 1.0412 1.7187 0.3848

Table 4.5: Estimates of the constant-coefficient and a restricted two-mode Lindé model.

Mode πt−1 yt−1 yt−2 it−1 επt εyt Ξπ,t−1 Ξy,t−1

Constant 0.1738 0.9394 −0.2112 0.7623 0.2128 0.7559 0.0011 0.0252
Mode 1 1.0237 0.8752 −0.2191 0.7159 1.6163 1.0298 0.0034 0.0303
Mode 2 2.0878 2.7114 −0.6116 0.5955 1.7331 1.5247 0.0000 0.0001

Unobservable 1.9893 2.3434 −0.5343 0.6228 1.8991 1.4685 0.0001 0.0031

Table 4.6: Optimal policy functions of the constant-coefficient and constrained two-mode Lindé

model for observable and unobservable modes.

distribution p̄ are given by

P =
[

0.9579 0.0421
0.0169 0.9831

]
, p̄ =

[
0.2869
0.7131

]
.

Thus mode 2 is the most persistent and has the largest mass in the invariant distribution. This is

consistent with our estimation of the modes as shown in figure 4.7. Again, the plots show both the

smoothed and filtered estimates. On the whole, our results here are similar to the unconstrained

3 mode model above. Mode 2, the backward-looking model mode, was experienced the most

throughout much of the sample, holding for 1961-1968 and then with near certainty continually

since 1985. The forward-looking model held in periods of rapid changes in inflation, holding for

both the run-ups in inflation in the early and late 1970s and the disinflationary period of the early

1980s. During periods of relative tranquility, such as the Greenspan era, the backward-looking

model fits the data the best.

We again solve for the optimal policy function, using the same methods and specification as

above. The optimal policy functions for the constant-coefficient, observable-modes, and unobservable-

modes cases are given in table 4.6. In figure 4.8, we plot the distribution of the impulse responses of

inflation, the output gap, and the instrument rate to the two structural shocks in the model for the

unobservable-modes case. Again we consider 10,000 simulations of 50 periods, and plot the mean

responses and the corresponding optimal responses for the constant-coefficient model. However we

do not plot the distribution of responses, as it gives much the same picture as in the unconstrained
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Figure 4.7: Estimated probabilities of being the different modes. Smoothed (full-sample) inference

is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

Lindé model. Instead, we now plot two different realizations of the responses, one in which mode

1 is realized throughout the 50 sample periods and one in which mode 2 is realized throughout.

The effects of model uncertainty on policy are very much as in the unconstrained model above.

Compared to the constant-coefficient case, the mean impulse responses are consistent with larger

effects of the shocks which are also longer lasting. In terms of the optimal policy responses, the

instrument rate responses are again more aggressive with model uncertainty, especially with regard

to the inflation shocks. What is also interesting to compare in this case is the differences in responses

in the two modes. Interestingly, for both shocks the policy responses are very similar in the forward-

and backward-looking modes. However in the forward-looking mode 1, the effects on output and

inflation are somewhat sharper and more immediate, with the effects of the shock dying out more

quickly. In contrast, for the backward-looking mode 2 the shocks have much more persistent effects,

particularly for inflation. This highlights the important role that expectations have in stabilizing

the economy in response to shocks.
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Figure 4.8: Unconditional impulse responses to shocks under the optimal policy for the

unobservable-modes version of the constrained two-mode Lindé model. Solid lines: Mean responses.

Dot-dashed lines: Optimal responses for the constant-coefficient model. Dashed lines: optimal re-

sponses when mode 1 is realized throughout. Dotted lines: optimal responses when mode 2 is

realized throughout.

5 Arbitrary instrument rules and optimal restricted instrument

rules

There is a large literature on restricted or “simple” instrument rules in policy. Here we show how

to implement and optimize over simple rules in our setting. In particular, we derive the dynamics

of the system, including the distribution of forecasts of relevant future variables, for arbitrary time-

invariant instrument rules. We also solve for optimal simple rules in one of our estimated examples

from above. For simplicity, we focus here on the observable modes case only.

5.1 Instrument rules

Consider an arbitrary time-invariant instrument rule of the form

it = FXjtXt + Fxjtxt (jt ∈ Nj), (5.1)
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to be combined with (2.1) and (2.2). If Fxjt ≡ 0, (5.1) is an explicit instrument rule; that is, the

instrument responds to predetermined variables only.15 If Fxjt 6≡ 0 (Fxjt 6= 0 for some mode jt

with positive probability), it is an implicit instrument rule; that is, the instrument depends also on

forward-looking variables. In the latter case, there is a simultaneity problem, in that the instrument

and the forward-looking variables are simultaneously determined. Thus, an implicit instrument rule

can be interpreted as an equilibrium condition. As discussed in Svensson [39] and Svensson and

Woodford [43], the implementation of an implicit instrument rule is problematic, since in practice a

central bank can literally only respond to predetermined variables.16 We disregard these problems

here, and consider (5.1) as just another equilibrium condition added to equations (2.1) and (2.2).

Although we explicitly only deal with instrument rules here, our method generalizes to arbitrary

policy rules, including targeting rules (Svensson and Woodford [43]). Indeed, we could consider

any arbitrary policy rule, including targeting rules, of the form

EtH3jt+1xt+1 = A31jtX̃t + A32jtxt + B3jtit,

where H3j , A31j , A32j , and B3j are potentially mode-dependent matrices of the appropriate dimen-

sion (in particular, having ni rows and giving rise to ni independent equations, which is required

to determine the instruments in each period).

We assume that combining (5.1) with (2.1) and (2.2) results in a unique solution.17 This solution

can be written

xt = GjtXt,

it = (FXjt + FxjtGjt)Xt ≡ FjtXt.

Xt+1 = (A11jt+1 + A12jt+1Gjt + B1jt+1Fjt)Xt + Cjt+1εt+1 ≡ Mjtjt+1Xt + Cjt+1εt+1,

where the matrices Gjt (jt ∈ Nj) are endogenously determined. This solutions will give rise to a

probability distribution of Xt+τ , xt+τ , and it+τ (τ ≥ 0) conditional on Xt and jt. This solution

will be associated with a value function for the original period loss function,

X ′
tVjtXt + wjt .

In appendix G we develop an iterative algorithm to solve for the equilibrium and the value of the

loss.

For a given restricted class F of instrument rules, we can consider the optimal restricted (time-

invariant) instrument rule F̂ , which minimizes an intertemporal loss function. This intertemporal
15 Note that policy functions are explicit instrument rules.
16 In practice, because of a complex and systematic decision process (Brash [7], Sims [34], Svensson [37]), the

information modern central banks respond to is at least a few days old, and most of the information is one or several
months old.

17 Farmer, Waggoner, and Zha [16] provide conditions for uniqueness in models like ours, and develop an algorithm
that solves for indeterminate equilibria as well. They find that our results agree with theirs when the equilibrium is
unique.
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loss function could be the conditional loss in a given period, say period 0,

F̂ ≡ arg min
F∈F

{X̃ ′
0Vj0(F )X̃0 + wj0(F )},

where the notation takes into account that Vj0(F ) and wj0(F ) depend on F ∈ F . This would

make the optimal restricted time-invariant instrument rule depend on X̃0, j0, and the covariance

matrices C̃jC̃
′
j of the shocks C̃jεt+1 to X̃t+1 in mode j ∈ Nj . Alternatively, the intertemporal loss

function could be the unconditional mean of the period loss function:

F̂ = arg min
F∈F

E[Lt].

Note that

E[Lt] = (1− δ)E[X̃ ′
tVjt(F )X̃t + wjt(F )].

Furthermore, the unconditional and conditional intertemporal loss are approximately the same

when the intertemporal loss is scaled by 1− δ and δ is close to one,

lim
δ→1

Et

∞∑

τ=0

(1− δ)δτLt+τ = E[Lt] = lim
δ→1

(1− δ)E[wjt ] = E[tr(VjtC̃jtC̃
′
jt

)] =
∑

j

p̄jtr(VjC̃jC̃
′
j),

where we recall that p̄ = (p̄1, ..., p̄nj )
′ is the stationary distribution of modes.

5.2 Optimal Taylor-type instrument rules in a forward-looking model

We now apply the methods outlined above to derive optimal Taylor-type instrument rules in the

estimated forward-looking model from section 4.2 above. In particular, we consider simple implicit

instrument rules of the general form (disregarding the implementation problems mentioned above):

it = fijtit−1 + fπjtπt + fyjtyt. (5.2)

This is a Taylor rule with interest-rate smoothing, whose coefficients may depend on the mode jt

in period t. As special cases, we consider mode-independent Taylor rules, where the coefficients are

constrained to be the same in all modes, and original Taylor rules without the smoothing coefficient

fi. We use the unconditional mean of the period loss, E[Lt], as the intertemporal loss function.

The results are summarized in table 5.1, where we report the optimal response coefficients of the

different forms of the instrument rules for the constant-coefficient and MJLQ versions of the model.

We find that the optimal Taylor-type rules that are constrained to have the same responses in all

modes are more aggressive in the MJLQ model than in the constant-coefficient model. This is in line

with the impulse responses for the optimal policy shown in figure 4.5 above, where we found that the

optimal policy in the MJLQ model had on average a substantially more aggressive inflation response

and a slightly more aggressive output-gap response than in the constant-coefficient model. Similar

conclusions apply for both the original and smoothed Taylor rules. This increased aggressiveness
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Mode it−1 πt yt Loss
Constant-coefficient model

Optimal policy function 8.27
- - 1.88 1.68 11.06
- 0.90 0.44 0.75 9.34

MJLQ model
Optimal policy function 17.39

All modes - 3.87 3.35 20.89
Mode 1 - 3.20 −0.30
Mode 2 - 4.16 3.83 20.01
Mode 3 - 1.96 1.10

All modes 0.73 1.90 1.93 17.96
Mode 1 0.86 1.49 1.04
Mode 2 0.65 2.24 2.29 17.52
Mode 3 0.76 0.78 0.99

Table 5.1: Optimal Taylor-type instrument rules for the estimated three-mode Lindé model.

is further illustrated in figure 5.1. The figure shows the loss in the constant-coefficient and MJLQ

models for mode-independent original and smoothed Taylor rules (with the smoothing coefficient

fixed at fi = 0.8). For both smoothed and original Taylor rules, the loss function is more sensitive

to variations in the inflation response coefficient of the policy rule than the output gap response.

For both kinds of rules, performance in the MJLQ model is enhanced by more aggressive responses.

These results suggest that constraining the rules to react in the same way in all modes may

push the optimal simple rules towards more aggressive responses. To see whether this overall

aggressiveness is affected by averaging across modes, we also consider mode-dependent original

and smoothed Taylor rules, which are reported in table 5.1. There we see that there is significant

variation in the responses across modes. For example, the most aggressive policy responses are in

mode 2, which recall is the most backward-looking mode. However, as the table shows, tailoring

the coefficients of either an original or smoothed rule to the different modes reduces losses by

relatively little. In contrast, smoothing the policy response has significant effects, driving the

losses in the MJLQ model down to nearly the optimal level. Above we saw that the effects of

uncertainty, captured by comparison of the constant coefficient model to the MJLQ model, led

to more aggressive optimal policy. Those results are reinforced here using a different metric: the

coefficients of an instrument rule rather than the magnitude of the policy responses to shocks.

6 Conclusions

This paper demonstrates that the Markov jump-linear-quadratic (MJLQ) framework is a very flexi-

ble and powerful tool for the analysis and determination of optimal policy under model uncertainty.

It provides a very tractable way of handling the absence of certainty equivalence that is an impor-

tant aspect of model uncertainty. Our approach builds on the control-theory literature, for instance,
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Figure 5.1: Contours of the loss function for the Lindé model under mode-independent Taylor-type

instrument rules. Left column: Constant-coefficient model. Right column: MJLQ model. Top row:

Original Taylor rules. Bottom row: Smoothed Taylor rules with fi = 0.8.

Costa, Fragoso, and Marques [11], which has explored many properties of the MJLQ framework.

That literature uses recursive methods and does not consider forward-looking variables. However

the forward-looking variables characteristic of rational expectations make the models nonrecursive.

We show that the recursive saddlepoint method of Marcet and Marimon [29] can be applied to this

problem which allows us to use recursive methods, and hence to solve relatively general models.

We show that our framework can incorporate a large variety of different configurations of un-

certainty. We provide algorithms to derive the optimal policy and value functions. We apply the

framework to regime-switching variants of two empirical models of the US economy, the backward-

looking model of Rudebusch and Svensson [33] and the forward-looking New Keynesian model of

Lindé [27]. We also show how the dynamics of the model can be specified for arbitrary instrument

rules, and how to optimize over restricted instrument rules. Finally, we show how the framework

can be adapted to a situation with unobservable modes, arguably the most realistic situation for

policy. In the examples we study, we find some substantial deviations from certainty equivalence.

In some cases, we find support for the common intuition that uncertainty should make policy more

cautious. But this is not a general result, and depends on the nature of the uncertainty

The MJLQ framework makes it possible to provide advice on optimal monetary policy for a large
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variety of different configurations of model uncertainty. While the particular examples we study in

this paper are informative, they are only a small sample of the applications which can be analyzed

with our approach. The framework also makes it possible to incorporate different kinds of central-

bank judgment—information, knowledge, and views outside the scope of a particular model—about

the kind and degree of model uncertainty. Furthermore, the framework can incorporate the kind of

central-bank judgment about additive future deviations—add factors—that is discussed in Svensson

[39] and Svensson and Tetlow [41]. Some additional natural applications would embed the different

specifications of fully specified dynamic stochastic general equilibrium models as modes in the

MJLQ setting. We could thus incorporate uncertainty about the structure of the economy, such as

different forms of price or wage setting (as discussed in Levin, Onatski, Williams, and Williams [26]).

Alternative specifications could also capture uncertainty about the low-frequency behavior of the

key driving processes, which could describe potential productivity slowdowns (as in, for example,

Kahn and Rich [23]) or moderations in overall volatility (as in McConnell and Perez-Quiros [30]

and Stock and Watson [36]). Our approach clearly can capture a wide variety of different types of

uncertainty which are relevant for policy.

Overall, our results point to some important changes from approaches considering additive

uncertainty. In the “mean forecast targeting” applications in Svensson [39] and Svensson and

Tetlow [41], certainty equivalence is preserved, since the uncertainty is restricted to additive future

stochastic deviations in the model’s equations. With certainty equivalence, only the means of

future variables matter for policy, and optimal policy can be derived as if there were no uncertainty

about those means. Furthermore, the optimal mean projection of future target variables and

the instrument can be calculated in one step, and those projections—including the optimal mean

instrument path— are the natural objects for policy discussion. There is no need to use recursive

methods, and there is no need to specify the optimal policy function for the policy makers (the

explicit policy function is also a high-dimensional vector that is not easy to interpret). Instead, the

policy discussion can be conducted with the help of computer-generated graphs of projections of the

target variables and the instrument under alternative assumptions, weights in the monetary-policy

loss function, and central-bank judgments.

In the absence of certainty equivalence, mean forecast targeting is in principle no longer suffi-

cient. The whole distribution of future target variables matters for policy, and the optimal instru-

ment decision should in principle take this into account. The optimal policy plan should be chosen

such that the whole distribution, rather than the mean, of the future target variables “looks good.”

The central bank should engage in “distribution forecast targeting” rather than mean forecast tar-

geting. The application of the MJLQ framework in this paper to model uncertainty and certainty

non-equivalence indicates that recursive methods and the explicit policy function are relatively

more useful for the derivation of the optimal policy than under certainty equivalence, perhaps even

necessary. Still, the resulting distributions of future target variables and instruments under alter-
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native assumptions can conveniently be illustrated and presented to policy makers in the form of

graphs, albeit graphs of distributions rather than of means.

Appendix

A Incorporating central-bank judgment

In order to incorporate (additive) central-bank judgment as in Svensson [39], consider the model

Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + Ct+1z̃t+1, (A.1)

EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit, (A.2)

where z̃t, the (additive) deviation, is a an exogenous nz̃-vector stochastic process. Assume that z̃t

satisfies

z̃t+1 = εt+1 +
T∑

s=1

εt+1,t+1−s

for given T ≥ 0, where (ε′t, εt ′)′ ≡ (ε′t, ε′t+1,t, ..., ε
′
t+T,t)

′ is a zero-mean i.i.d. random (T +1)nz̃-vector

realized in the beginning of period t and called the innovation in period t. For T = 0, z̃t+1 = εt+1

is a simple i.i.d. disturbance. For T > 0, the deviation is a version of a moving-average process.

The dynamics of the deviation can be written
[

z̃t+1

z̃t+1

]
= Az̃

[
z̃t

z̃t

]
+

[
εt+1

εt+1

]
,

where z̃t ≡ (Etz̃
′
t+1, Etz̃

′
t+2, ...,Etz̃t+T )′ can be interpreted as the central bank’s (additive) judgment

in period t and the (T + 1)nz̃ × (T + 1)nz̃ matrix Az̃ is defined as

Az̃ ≡



0nz̃×nz̃ Inz̃ 0nz̃×(T−1)nz̃

0(T−1)nz̃×nz̃
0(T−1)nz̃×nz̃

I(T−1)nz̃

0nz̃×nz̃ 0nz̃×nz̃ 0nz̃×(T−1)nz̃


 ≡

[
0 Az̃21

0 Az̃22

]
;

in the second identity Az̃ is partitioned conformably with z̃t and z̃t. Hence z̃t is the central bank’s

mean projection of future deviations, and εt can be interpreted as the new information the central

bank receives in period t about those future deviations.18

It follows that the model can be written in the state-space form (2.1) and (2.2) as

[
Xt+1

z̃t+1

z̃t+1

]
= Â11jt+1

[
Xt

z̃t

z̃t

]
+ Â12jt+1xt + B̂1jt+1it + Ĉjt+1

[
εt+1

εt+1

]
,

EtHjt+1xt+1 = Â21jt

[
Xt

z̃t

z̃t

]
+ A22jtxt + B2jtit,

18 The graphs in Svensson [39] can be seen as impulse responses to εt.
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where

Â11jt+1 ≡
[

A11jt+1 0 Cjt+1Az̃21

0 0 Az̃21

0 0 Az̃22

]
, Â21jt+1 ≡

[
A21jt+1

0
0

]
,

B̂1jt+1 ≡
[

B1jt+1

0
0

]
, Ĉjt+1 ≡

[
Cjt+1 0
Inz̃ 0
0 Inz̃

]
,

and the new predetermined variables are (X ′
t, z̃

′
t, z̃

t ′)′.

B An algorithm for the case of observable modes

Consider the dual saddlepoint problem of (2.13) in period t, subject to (2.11), (2.15), (2.16) and

X̃t given. Let us use the notation Zt = Zjt for any matrix Z that is a function of the mode jt, and

let the matrix W̃t = W̃jt in (2.12) be partitioned conformably with X̃t and ı̃t as

W̃t ≡
[

Qt Nt

N ′
t Rt

]
.

We use that the value function for the dual problem will be quadratic and can be written

X̃ ′
tṼtX̃t + w̃t,

where Ṽt is a matrix and w̃t a scalar. It will satisfy the Bellman equation

X̃ ′
tṼtX̃t + w̃t = max

γt

min
(xt,it)

{
X̃ ′

tQtX̃t + 2X̃ ′
tNtı̃t + ı̃′tRtı̃t + δEt(X̃ ′

t+1Ṽt+1X̃t+1 + w̃t+1)
}

,

where X̃t+1 ≡ (X ′
t, Ξ

′
t−1)

′ and Et refers to the expectations conditional on X̃t and jt.

The first-order condition with respect to ı̃t is

X̃ ′
tNt + ı̃′tRt + δX̃ ′

tEtÃ
′
t+1Ṽt+1B̃t+1 + δı̃′tEtB̃

′
t+1Ṽt+1B̃t+1 = 0,

which can be written

Jtı̃t + KtX̃t = 0,

where

Jt ≡ Rt + δEtB̃
′
t+1Ṽt+1B̃t+1, (B.1)

Kt ≡ N ′
t + δEtB̃

′
t+1Ṽt+1Ãt+1. (B.2)

This leads to the optimal policy function

ı̃t = FtX̃t, (B.3)

where

Ft ≡ −J−1
t Kt. (B.4)
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Furthermore, the value function satisfies

X̃ ′
tṼtX̃t ≡ X̃ ′

tQtX̃t + 2X̃ ′
tNtFtX̃t + X̃ ′

tF
′
tRtFtX̃t + δX̃ ′

tEt[(Ã′t+1 + F ′
t B̃

′
t+1)Ṽt+1(Ãt+1 + B̃t+1Ft)]X̃t.

This implies

Ṽt = Qt + NtFt + F ′
tN

′
t + F ′

tRtFt + δEt[(Ã′t+1 + F ′
t B̃

′
t+1)Ṽt+1(Ãt+1 + B̃t+1Ft)],

which can be simplified to the Riccati equation

Ṽt = Qt + δEtÃ
′
t+1Ṽt+1Ãt+1 −K ′

tJ
−1
t Kt. (B.5)

Equations (B.1), (B.2), and (B.5) show how Ṽt+1 = Ṽjt+1 for jt+1 = 1, ..., nj is mapped into Ṽt = Ṽjt

for jt = 1, ..., nj .

Iteration backwards of (B.4) and (B.5) from any constant positive semidefinite matrix Ṽ should

converge to stationary matrices functions Fj and Ṽj (j ∈ Nj), where Ṽj satisfies the Riccati equation

(B.5) with (B.1) and (B.2).

Taking account of the finite number of modes, we have

Fj ≡ −J−1
j Kj

Jj ≡ Rj + δ

nj∑

k=1

PjkB̃
′
kṼkB̃k

Kj ≡ N ′
j + δ

nj∑

k=1

PjkB̃
′
kṼkÃk,

Ṽj = Qj + δ

nj∑

k=1

PjkÃ
′
kṼkÃk −K ′

jJ
−1
j Kj (j ∈ Nj), (B.6)

where Pjk is the transition probability from jt = j to jt+1 = k.

The scalars w̃j solve the equations

w̃j = δ
∑

k

Pjk[tr(ṼkC̃kC̃
′
k) + w̃k].

Thus determining the optimal policy function (B.3) reduces to solving a system of coupled

algebraic Riccati equations (B.6). In order to solve this system numerically, we adapt the algorithm

of do Val, Geromel, and Costa [15]. In a very similar problem, they show how the coupled Riccati

equations can be uncoupled for numerical solution.19

The algorithm consists of the following steps:

1. Define Âj =
√

PjjÃj , B̂j =
√

PjjB̃j and initialize Ṽ 0
j = 0, j = 1, . . . , nj .

19 In their problem, the matrices A and B next period are known in the current period, so the averaging in the
Riccati equation is only over the Vj matrices.
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2. Then at each iteration l = 0, 1, . . . , for each j define:

Q̂j = Qj + δ
∑

k 6=j

PjkÃ
′
kṼ

l
kÃk

R̂j = Rj + δ
∑

k 6=j

PjkB̃
′
kṼ

l
kB̃k

N̂j = Nj + δ
∑

k 6=j

PjkÃ
′
kṼ

l
kB̃k.

Then for each j solve the standard Riccati equation for the problem with matrices (Âj , B̂j , Q̂j ,

R̂j , N̂j). Note that these are uncoupled since Ṽ l
k is known. Call the solution Ṽ l+1

j .

3. Check
∑nj

j=1 ‖Ṽ l+1
j − Ṽ l

j ‖. If this is lower then a tolerance, stop. Otherwise, return to step 2.

do Val, Geromel, and Costa [15] show that the sequence of matrices Ṽ l
j converges to the solution

of (B.6) as l → ∞. In order to understand the algorithm, recall that, in the standard linear-

quadratic regulator (LQR) problem (Anderson, Hansen, McGrattan, and Sargent [1] and Ljungqvist

and Sargent [28]), we have

F ≡ −J−1K

J ≡ R + δB′V B

K ≡ N ′ + δB′V A,

V = Q + δA′V A−K ′J−1K.

If we can redefine the matrices so the equations conform to the standard case, we can use the

standard algorithm for the LQR problem to find Fj and Vj . The above definitions allow us to write

Fj ≡ −J−1
j Kj ,

Jj ≡ R̂j + δB̂′
j ṼjB̂j ,

Kj ≡ N̂ ′
j + δB̂′

j ṼjÂj ,

Ṽj = Q̂j + δÂ′j ṼjÂj −K ′
jJ
−1
j Kj (j ∈ Nj),

so we can indeed use the standard algorithm.

C An algorithm for the case of unobservable modes

Our first task is to write the extended MJLQ system for the saddlepoint problem with unobservable

modes. We suppose that we start with an initial period loss function (2.5) which has the form

L(Xt, xt, it, jt) ≡
[

Xt

xt

it

]′
Wjt

[
Xt

xt

it

]
≡

[
Xt

xt

it

]′ 


Q11jt Q12jt N1jt

Q′
12jt

Q22jt N2jt

N ′
1jt

N ′
2jt

Rjt




[
Xt

xt

it

]
.
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The dual loss is

L(Xt, xt, it, jt)− γ′tzt + Ξ′t−1

1
δ
Hjtxt.

We now substitute in for xt using

xt = x̃(Xt, zt, it, jt) ≡ −A−1
22,jA21,jXt + A−1

22,jzt −A−1
22,jB2,jit

≡ AxX,jXt + Axz,jzt + Axi,jit. (C.1)

After this substitution, we want to express the laws of motion and dual loss in terms of the

expanded predetermined variables, X̃t = (X ′
t, Ξ

′
t−1)

′, and the expanded control variables, ı̃t =

(z′t, i′t, γ′t)′. Suppressing time and mode subscripts on the right side for the time being (all are t

and jt, respectively, except t− 1 on Ξt−1), we see that the dual loss can be written explicitly as

L̃(X̃t, zt, γt, it, jt) ≡

X ′ (Q11 + A′xXQ22AxX + 2A′xXQ′
12

)
X + 2X ′ (N1 + Q12Axi + A′xXQ22Axi + A′xXN2

)
i

+ 2z′(A′xzQ
′
12 + A′xzQ22AxX)X + Ξ′

1
δ
HAxXX + Ξ′

1
δ
HAxzz + Ξ′

1
δ
HAxii

− γ′z + z′(A′xzQ22Axz)z + i′(R + A′xiQ22Axi + 2A′xiN2)i + 2z′(A′xzN2 + A′xzQ22Axi)i.

Thus we can write the dual loss

L̃(X̃t, zt, γt, it, jt) ≡
[

X̃t

ı̃t

]′ [
Q̃j Ñj

Ñ ′
j R̃j

] [
X̃t

ı̃t

]
,

where (again suppressing the jt index)

Q̃ ≡
[

Q̃11 Q̃12

Q̃′
12 0

]
,

Q̃11 ≡ Q11 + A′xXQ22AxX + 2A′xXQ′
12,

Q̃12 ≡ 1
2δ

A′xXH ′,

Ñ ≡
[

Ñ11 Ñ12 0
Ñ21 Ñ22 0

]
,

Ñ11 ≡ Q12Axz + A′xXQ22Axz,

Ñ12 ≡ N1 + Q12Axi + A′xXQ22Axi + A′xXN2,

Ñ21 ≡ 1
2δ

HAxz,

Ñ22 ≡ 1
2δ

HAxi,
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R̃ ≡



R̃11 R̃12 R̃13

R̃′
12 R̃22 0

R̃′
13 0 0


 ,

R̃11 ≡ A′xzQ22Axz,

R̃12 ≡ A′xzN2 + A′xxQ22Axi,

R̃13 ≡ − I/2,

R̃22 ≡ R + A′xiQ22Axi + 2A′xiN2.

Similarly, the law of motion for X̃t can then be written

X̃t+1 = Ãjtjt+1X̃t + B̃jtjt+1 ı̃t + C̃jtjt+1εt+1,

where

Ãjk =
[

A11k + A12kAxXj 0
0 0

]
,

B̃jk =
[

A12kAxzj B1k + A12kAxij 0
0 0 I

]
, C̃jk =

[
Ck

0

]
.

C.1 Unobservable modes and forward-looking variables

The value function for the dual problem, Ṽ (X̃t, pt), will be quadratic in X̃t for given pt and can be

written

Ṽ (X̃t, pt) ≡ X̃ ′
tṼ (pt)X̃t + w(pt),

where

Ṽ (pt) ≡
∑

j
pjtV̂ (pt)j , w(pt) ≡

∑
j
pjtŵ(pt)j .

Here, Ṽ (pt) and V̂ (pt)j are symmetric (nX + nx) × (nX + nx) matrices and w(pt) and ŵ(pt)j are

scalars that are functions of pt. (Thus, we simplify the notation and let Ṽ (pt) and V̂ (pt)j (j ∈ Nj)

denote the matrices ṼX̃X̃(pt) and V̂XX(pt, jt) in section 2.3.2.) They will satisfy the Bellman

equation for the dual saddlepoint problem,

X̃ ′
tṼ (pt)X̃t + w(pt) = max

γt

min
zt,it

∑

j

pjt

{
X̃ ′

tQ̃jX̃t + 2X̃ ′
tÑj ı̃t + ı̃′tR̃j ı̃t

+ δ
∑

k Pjk[X̃ ′
t+1,jkV̂ (P ′pt)kX̃t+1,jk + ŵ(P ′pt)k]

}
,

where

X̃t+1,jk ≡ ÃjkX̃t + B̃jk ı̃t + C̃jkεt+1.

The first-order condition with respect to ı̃t is thus

∑

j

pjt

[
X̃ ′

tÑj + ı̃′tR̃j + δ
∑

k

Pjk(X̃ ′
tÃ
′
jk + ı̃′tB̃

′
jk)V̂ (P ′pt)kB̃jk

]
= 0,
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which can be rewritten as

∑

j

pjt

[
Ñ ′

jX̃t + R̃j ı̃t + δ
∑

k

PjkB̃
′
jkV̂ (P ′pt)k(ÃjkX̃t + B̃jk ı̃t)

]
= 0.

It is then apparent that the first-order conditions can be written compactly as

J(pt)̃ıt + K(pt)X̃t = 0, (C.2)

where

J(pt) ≡
∑

j

pjt

[
R̃j + δ

∑

k

PjkB̃
′
jkV̂ (P ′pt)kB̃jk

]
,

K(pt) ≡
∑

j

pjt

[
Ñ ′

j + δ
∑

k

PjkB̃
′
jkV̂ (P ′pt)kÃjk

]

This leads to the optimal policy function,

ı̃t = F̃ (pt)X̃t,

where

F̃ (pt) ≡ − J(pt)−1K(pt).

Furthermore, the value-function matrix Ṽ (pt) for the dual saddlepoint problem satisfies

X̃ ′
tṼ (pt)X̃t ≡

∑

j

pjt

{
X̃ ′

tQ̃jX̃t + 2X̃ ′
tÑjF̃ (pt)X̃t + X̃ ′

tF̃ (pt)′R̃jF̃ (pt)X̃t

+ δ
∑

k PjkX̃
′
t[Ã

′
jk + F̃ (pt)′B̃′

jk]V̂ (P ′pt)k[Ãjk + B̂jkF̃ (pt)]X̃t

}
.

This implies the following Riccati equations for the matrix functions V̂ (pt)j ,

V̂ (pt)j = Q̃j + ÑjF̃ (pt) + F̃ (pt)′Ñ ′
j + F̃ (pt)′R̃jF̃ (pt)

+ δ
∑

k

Pjk[Ã′jk + F̃ (pt)′B̃′
jk]V̂ (P ′pt)k[Ãjk + B̃jkF̃ (pt)].

The scalar functions ŵ(pt)j will satisfy the equations

ŵ(pt)j = δ
∑

k

Pjk[tr(V̂ (P ′pt)kC̃jkC̃
′
jk) + ŵ(P ′pt)k].

The value function for the primal problem satisfies

X̃ ′
tV (pt)X̃t + w(pt) ≡ X̃ ′

tṼ (pt)X̃t + w(pt)− Ξ′t−1

1
δ

∑
j
pjtHjFx(pt)jX̃t,

where we use that by (C.1) the equilibrium solution for xt can be written

xt = Fx(pt)jX̃t.

We may also define the conditional value function for the primal problem as

X̃ ′
tV (pt)jX̃t + w(pt)j ≡ X̃ ′

tV̂ (pt)jX̃t + w(pt)j − Ξ′t−1

1
δ
HjFx(pt)jX̃t (j ∈ Nj).
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C.2 An algorithm for unobservable modes with forward-looking variables

Consider an algorithm for determining F̃ (pt), Ṽ (pt), w(pt), V̂ (pt)j and ŵ(pt)j for a given distribu-

tion of the modes in period t, pt. In order to get a starting point for the iteration, we assume that

the modes become observable T + 1 periods ahead, that is, in period t + T + 1. Hence, from that

period on, the relevant solution is given by the matrices F̃j and Ṽj and scalars wj for j ∈ Nj , where

F̃j is the optimal policy function, Ṽj is the value-function matrix, and wj is the scalar in the value

function for the dual saddlepoint problem with observable modes determined by the algorithm in

appendix B.

We consider these matrices Ṽj and scalars wj and the horizon T as known, and we will consider

an iteration for τ = T, T − 1, ..., 0 that determines F̃ (pt), Ṽ (pt), and w(pt) as a function of T . The

horizon T will then be increased until F̃ (pt), Ṽ (pt), and w(pt) have converged.

Let pt+τ ,t for τ = 0, ..., T and given pt be determined by the prediction equation,

pt+τ ,t = (P ′)τpt,

and let V̂ T+1
k = Ṽk and ŵT+1

k = wk (k ∈ Nj). Then, for τ = T, T − 1, ..., 0, let the mode-dependent

matrices V̂ τ
j and the mode-independent matrices Ṽ τ and F τ be determined recursively by

Jτ ≡
∑

j

pj,t+τ ,t

[
R̃j + δ

∑

k

PjkB̃
′
jkV̂

τ+1
k B̃jk

]
, (C.3)

Kτ ≡
∑

j

pj,t+τ ,t

[
Ñ ′

j + δ
∑

k

PjkB̃
′
jkV̂

τ+1
k Ãjk

]
, (C.4)

F̃ τ = − (Jτ )−1Kτ , (C.5)

V̂ τ
j = Q̃j + ÑjF̃

τ + F̃ τ ′Ñ ′
j + F̃ τ ′R̃jF̃

τ

+ δ
∑

k

Pjk[Ã′jk + F̃ τ ′B̃′
jk]V̂

τ+1
k [Ãjk + B̃kF̃

τ )], (C.6)

ŵτ
j = δ

∑

k

Pjk[tr(V̂ τ+1
k C̃jkC̃

′
jk) + ŵτ+1

k ], (C.7)

Ṽ τ =
∑

j

pj,t+τ ,tV̂
τ
j , (C.8)

wτ
j =

∑

j

pj,t+τ ,tŵ
τ
j . (C.9)

This iteration will give F̃ 0, Ṽ 0 and w0 as functions of T . We let T increase until F̃ 0 and Ṽ 0

have converged. Then, F̃ (pt) = F̃ 0, Ṽ (pt) = Ṽ 0, and w(pt) = w0. The value-function matrix V (pt)

(denoted VX̃X̃(pt) in section 2.3.2) for the primal problem will be given by

V (pt) ≡ Ṽ (pt)−
[

0 1
2ΓX(pt)′

1
2ΓX(pt) 1

2 [ΓΞ(pt) + ΓΞ(pt)′]

]
,
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where the matrix function

[ΓX(pt) ΓΞ(pt)] ≡ 1
δ

∑
j
pjtHj [FxX(pt)j FxΞ(pt)j ]

is partitioned conformably with Xt and Ξt−1. The conditional value function matrix V (pt)j for the

primal problem will be given by

V (pt)j ≡ V̂ (pt)j −
[

0 1
2ΓX(pt)′j

1
2ΓX(pt)j

1
2 [ΓΞ(pt)j + ΓΞ(pt)′j ]

]
(j ∈ Nj),

where V̂ (pt)j = V̂ 0
j and the matrix function

[ΓX(pt)j ΓΞ(pt)j ] ≡ 1
δ
Hj [FxX(pt)j FxΞ(pt)j ]

is partitioned conformably with Xt and Ξt−1.

C.3 An algorithm for unobservable modes without forward-looking variables

When there are no forward-looking variables, the primal loss function can be written

L̃t =
[

Xt

it

]′ [
Qj Nj

N ′
j Rj

] [
Xt

it

]
,

with X̃t = Xt and ı̃t = it. There is no need for the dual optimization problem, and the algorithm

simply applies (C.3)-(C.9) for the determination of F τ = F̃ τ and V τ = Ṽ τ with the matrices

Ãjk = Ak, B̃jk = Bk, C̃jk = Ck, Q̃j = Qj , Ñj = Nj , and R̃j = Rj , in which case the optimal policy

function on period t is it = F (pt)Xt with F (pt) = F 0 and the value function is X ′
tV (pt)Xt + w(pt)

with V (pt) = V 0 = Ṽ 0 and w(pt) = w0.

D A unit discount factor

The expected discounted losses (2.4) and (2.13) are normally bounded only for δ < 1. More

precisely, wj (j ∈ Nj) in (2.21) is normally bounded only for δ < 1. The case δ = 1 can be handled

by scaling the intertemporal loss function by 1−δ for δ < 1 and then consider the limit when δ → 1,

as mentioned in footnote 7. That is, we can replace the intertemporal loss function in (2.4) and

(2.13) by Et(1 − δ)
∞∑

τ=0
δτLt+τ and Et(1 − δ)

∞∑
τ=0

δτ L̃t+τ , respectively. In particular, we can write

(2.21) as

(1− δ)X̃ ′
tVjtX̃t + δwj ≡ minEt(1− δ)

∞∑

τ=0

δτLt+τ . (D.1)

Then, Vj (j ∈ Nj) is still determined as before, whereas wj now satisfies

wj(δ) =
∑

k

Pjk{(1− δ)tr[Vk(δ)C̃kC̃
′
k] + δwk(δ)} (j ∈ Nj), (D.2)
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where our notation emphasizes that wj and Vj depend on δ.

From (D.1), we see that

lim
δ→1−

minEt(1− δ)
∞∑

τ=0

δτLt+τ = wj(1) (j ∈ Nj).

Furthermore, from (D.2), we see that

wj(1) =
∑

k

Pjkwk(1) (j ∈ Nj),

so the vector (w1(1), ..., wnj (1))′ is an eigenvector for the eigenvalue 1 of the transition matrix P .

By our assumptions on the Markov chain in footnote 5, the Markov chain is fully regular, so the

only such eigenvector is (1, ..., 1) (and scalar multiples thereof) (Gantmacher [18]). Therefore, wj(1)

is independent of j:

wj(1) = w (j ∈ Nj)

for some scalar w.

For δ < 1, we multiply (D.2) by p̄j and sum over j. This gives

∑

j

p̄jwj(δ) =
∑

j

∑

k

p̄jPjk{(1−δ)tr[Vk(δ)C̃kC̃
′
k]+δwk} = (1−δ)

∑

k

p̄ktr[Vk(δ)C̃kC̃
′
k]+δ

∑

k

p̄kwk(δ).

Letting w̄(δ) ≡ ∑
j p̄jwj(δ), we see that

w̄(δ) =
∑

k

p̄ktr[Vk(δ)C̃kC̃
′
k].

We conclude that in the limit, when δ → 1, the expected minimum loss is given by

wj(1) = w̄(1) =
∑

k

p̄ktr[Vk(1)C̃kC̃
′
k] (j ∈ Nj)

and is independent of X̃t and jt. Intuitively, for δ → 1, current losses become insignificant relative

to expected losses far into the future, and then the stationary distribution p̄ applies. Therefore, the

expected discounted loss becomes independent of both the current predetermined variables and the

current mode, even though the optimal policy function depends on the current mode (when the

modes are observable) or the distribution of the current modes (when the modes are unobservable).

E Mean square stability

Costa, Fragoso, and Marques [11, chapter 3] (CFM) provide a discussion of stability for MJLQ

systems. An appropriate concept of stability for our purpose is mean square stability, which is

defined as follows:
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Consider the system

Xt+1 = ΓθtXt,

for t = 0, 1, ..., where Xt ∈ RnX , θt ∈ Θ ≡ {1, ..., N} is a Markov process with transition probabil-

ities Pjk = Pr{θt+1 = k | θt = j} (j, k ∈ Θ), transition matrix P = [Pjk], and Γθ is an nX × nX

matrix that depends on θ ∈ Θ, and X0 ∈ RnX and θ0 ∈ Θ are given. The system is mean square

stable (MSS) if, for any initial X0 ∈ RnX and θ0 ∈ Θ, there exist a vector µ ∈ RnX and an nX ×nX

matrix Q independent of X0 and θ0 such that ||E[Xt]− µ|| → 0 and ||E[XtX
′
t]−Q|| → 0 when

t →∞.

CFM [11, theorem 3.9] provide six equivalent necessary and sufficient conditions for mean square

stability. The following necessary and sufficient condition is appropriate for our purpose:

Define the matrices C and N by

C ≡ P ′ ⊗ In2
X

,

N ≡ diag(Γθ ⊗ Γθ) ≡




Γ1 ⊗ Γ1 0 · · · 0

0 Γ2 ⊗ Γ2
. . .

...
...

. . . . . . 0
0 · · · 0 ΓN ⊗ ΓN


 .

The system above is MSS if and only if the spectral radius (the supremum of the modulus of the

eigenvalues) of the matrix CN is less than unity.

Applying CFM’s definition of and conditions for mean square stability requires a simple redef-

inition of the modes in our framework. Start from the system

Xt+1 = Mjtjt+1Xt,

where t = 0, 1, ..., Xt ∈ RnX , jt ∈ {1, ..., nj}, P = [Pjk], Pjk = Pr{jt+1 = k | jt = j}, and X0 and

j0 are given. This system differs from CFM’s system in that the matrix Mjtjt+1 depends on the

realization of the modes in both period t and period t + 1.

Define the new composite mode θt ≡ (jt, jt+1), which can take N = n2
j values, and consider a

Markov chain for θt with transition probabilities Pθκ ≡ Pr{θt+1 = κ ≡ (k, l) | θt = θ ≡ (j, k)}. We

note that the transition probability from θt = (j, k) to θt+1 = (k, l) does not depend on j but only

on k and l. Furthermore, it is simply Pkl, so

P(j,k),(k,l) = Pkl (j, k, l = 1, ..., nj).

Thus, we can consider the new system

Xt+1 = MθtXt,

where θt is a Markov chain that can take n2
j different values and has a transition matrix P with the

transition probabilities Pθtθt+1 defined above. Then the results of CFM on MSS apply directly, and

we only need to define Γθ, P, C, andN using the n2
j -mode composite Markov chain for θt ≡ (jt, jt+1)

instead of just the nj-mode chain for jt.
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F Details of the estimation

Here we lay out the details of the priors we use in our Bayesian estimation.

For the RS model in section 4.1, we base our prior for the MJLQ case on our OLS estimates.

The priors are identical across modes. In particular, the priors for the vectors of coefficients αi

and βi are, except for α3 and β3, each multivariate normal distributions, with mean given by

the OLS point estimates and a covariance matrix given by the covariance matrix of the estimates

scaled up by a factor of 4. The coefficient α3 is restricted to be positive and the coefficient β3

is restricted to be negative, and the priors for α3 and −β3 are lognormal with means that match

the constant-coefficient case and variances that are four times the estimated variance from the

constant-coefficient case. For the parameters of the transition matrix P of the Markov chain, we

take independent beta distributions (subject to the constraint that the rows sum to one). We let

the diagonal elements have mean 0.9 and standard deviation 0.08, while the off-diagonals have

means 0.05 and standard deviations 0.05. For the variances of the shocks, we assume an inverse

gamma prior distribution with two degrees of freedom.

For the Lindé model in section 4.2, we take independent priors for the different structural co-

efficients, again with the priors being identical across modes. For the coefficients ωf and βf , we

assume a beta distribution with mean 0.5 and standard deviation 0.25. The other structural coef-

ficients have normal distributions, with γ ∼ N(0.1, 0.052), βr ∼ N(0.15, 0.0752), βy ∼ N(1.5, 0.52),

ρ1 ∼ N(0.9, 0.22), ρ2 ∼ N(0.2, 0.22), γπ ∼ N(1.5, 0.52), and γy ∼ N(0.5, 0.52). Again for the vari-

ances of the shocks, we assume an inverse gamma prior distribution with two degrees of freedom.

The prior over the Markov chain transition matrix is the same as in the RS model.

G An algorithm for an arbitrary instrument rule

Consider the case when the time-invariant instrument rule can be written

it = FXjtXt + Fxjtxt (jt = 1, ..., nj). (G.1)

If there is a unique solution associated with a specified instrument rule, it will determine the

forward-looking variables as a linear function of the predetermined variables,

xt = GjtXt.

Given a quadratic intertemporal loss function, this will also determine a value of the loss function

of the form

X ′
tVjtXt + wjt .

In order to specify an algorithm for finding Gj , Vj , and wj , suppose the instrument rule can be

written as (G.1). Consider period t + 1, and assume that G
(t+1)
jt+1

in

xt+1 = G
(t+1)
jt+1

Xt+1 (jt+1 = 1, ..., nj),
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is known in period t. This will imply

EtHjt+1xt+1 = EtHjt+1G
(t+1)
jt+1

Xt+1

=
∑

k

PjkHkG
(t+1)
k [(A11k + B1kFXj)Xt + (A12k + B1kFxj)xt]

= (A21j + B2jFXj)Xt + (A22j + B2jFxj)xt.

We can then solve for xt in period t,

xt = G
(t)
j Xt,

where

G
(t)
j ≡

[
A22j + B2jFxj −

∑

k

PjkHkG
(t+1)
k (A12k + B1kFxj)

]−1

·
[∑

k

PjkHkG
(t+1)
k (A11k + B1kFXj)− (A21j + B2jFXj)

]
.

It follows that, starting with a guess G0
j , the iteration for l = 0, 1, ..., according to

Gl+1
j =

[
A22j + B2jFxj −

∑

k

PjkHkG
l
k(A12k + B1kFxj)

]−1

·
[∑

k

PjkHkG
l
k(A11k + B1kFXj)− (A21j + B2jFXj)

]
,

will hopefully make Gl
j converge to the correct Gj ,

xt = GjXt. (G.2)

This then implies

Xt+1 = MjkXt + Ckεt+1,

where

Mjk ≡ A11k + A12kGj + B1k(FXj + FxjGj).

Clearly, G ≡ {Gj} and M ≡ {Mjk} will be functions of F ≡ {(FXj , Fxj)}.
Let the period loss function be

Lt =




[
Xt

xt

]

it



′ [

Q N
N ′ R

]


[
Xt

xt

]

it


 . (G.3)

Given (G.1), (G.2), and (G.3), we can define the matrix

W̄j ≡



[
I

Gj

]

FXj + FxjGj



′ [

Q N
N ′ R

]


[
I

Gj

]

FXj + FxjGj


 ,
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in which case the period loss satisfies

Lt = X ′
tW̄jXt.

It follows that the value function corresponding to the intertemporal loss function

Et

∞∑

τ=0

δτLt+τ

will satisfy

X ′
tVjXt + wj = X ′

tW̄jXt + δ
∑

k

Pjk[X ′
tM

′
jkVkMjkXt + tr(VkCkC

′
k) + wk].

Hence, the matrix Vj will satisfy the Lyapunov equation

Vj = W̄j + δ
∑

k

PjkM
′
jkVkMjk (j ∈ Nj),

and wj will satisfy

wj = δ
∑

k

Pjk[tr(VkCkC
′
k) + wk] (j ∈ Nj).

Note that we can, for each j, define

Ŵj ≡ W̄j + δ
∑

k 6=j

PjkM
′
jkVkMjk

M̂jj =
√

δPjjMjj ,

and then solve the more standard Lyapunov equation

Vj = Ŵj + M̂ ′
jjVjM̂jj (j ∈ Nj).

Clearly, V ≡ {Vj} and w ≡ {wj} will be functions of F and δ.

Let p̄j (j ∈ Nj) denote the stationary distribution of the states, and let V̄ ≡ ∑
j p̄jVj and

w̄ ≡ ∑
j p̄jwj denote the unconditional means of Vj and wj . We note that

w̄ =
δ

1− δ

∑

k

p̄ktr(VkCkC
′
k).

Suppose that the intertemporal loss function is 1− δ times the one above,

Et

∞∑

τ=0

(1− δ)δτLt+τ ,

and suppose that we consider the limit when δ → 1,

lim
δ→1

Et

∞∑

τ=0

(1− δ)δτLt+τ = E[Lt].
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In that case, the intertemporal loss function is just the unconditional mean of the period loss

function, E[Lt]. Furthermore, the unconditional mean of 1− δ times the value function above will

be

(1− δ){E[X ′
tVjtXt] + w̄} = (1− δ)E[X ′

tVtXt] + δ
∑

k

p̄ktr(VkCkC
′
k).

We see that, when δ → 1, the first term on the right side goes to zero, and we conclude that, in

the limit,

E[Lt] =
∑

k

p̄ktr[Vk(F, 1)CkC
′
k],

where we also explicitly note that Vk depends on F and δ.

Suppose the instrument rule is restricted to a given class F of instrument rules

F ∈ F .

The optimal instrument rule in this class, F̂ , can now be defined as

F̂ ≡ arg min
F∈F

∑

k

p̄ktr[Vk(F, 1)CkC
′
k].

It will obviously depend on CkC
′
k, the covariance matrix of the shock Ckεt+1. Hence, certainty

equivalence does generally not hold for optimal restricted instrument rules.
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