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1 Introduction

In previous work, Svensson and Williams [16] and [17], we have developed methods to study optimal

policy in Markov jump-linear-quadratic (MJLQ) models with forward-looking variables: models

with conditionally linear dynamics and conditionally quadratic preferences, where the matrices

in both preferences and dynamics are random. In particular, each model has multiple “modes,”

a finite collection of different possible values for the matrices, whose evolution is governed by a

finite-state Markov chain. In our previous work, we have discussed how these modes could be

structured to capture many different types of uncertainty relevant for policymakers. Here we put

those suggestions into practice. First, we briefly discuss how an MJLQ model can be derived as a

mode-dependent linear-quadratic approximation of an underlying nonlinear model. Then, we apply

our methods to a simple empirical mode-dependent New Keynesian model of the U.S. economy, a

variant of a model by Lindé [11].

In a first paper, Svensson and Williams [16], we studied optimal policy design in MJLQ models

when policymakers can or cannot observe the current mode, but we abstracted from any learning

and inference about the current mode. Although in many cases the optimal policy under no learn-

ing (NL) is not a normatively desirable policy, it serves as a useful benchmark for our later policy

analyses. In a second paper, Svensson and Williams [17], we focused on learning and inference in

the more relevant situation, particularly for the model-uncertainty applications which interest us,

in which the modes are not directly observable. Thus, decision makers must filter their observations

to make inferences about the current mode. As in most Bayesian learning problems, the optimal

policy thus typically includes an experimentation component reflecting the endogeneity of informa-

tion. This class of problems has a long history in economics, and it is well-known that solutions are

difficult to obtain. We developed algorithms to solve numerically for the optimal policy.1 Due to

the curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small

models. Confronted with these difficulties, we also considered adaptive optimal policy (AOP).2 In

this case, the policymaker in each period does update the probability distribution of the current

1 In addition to the classic literature (on such problems as a monopolist learning its demand curve), Wieland
[19]-[20] and Beck and Wieland [1] have recently examined Bayesian optimal policy and optimal experimentation in
a context similar to ours but without forward-looking variables. Tesfaselassie, Schaling, and Eijffinger [18] examine
passive and active learning in a simple model with a forward-looking element in the form of a long interest rate in
the aggregate-demand equation. Ellison and Valla [8] and Cogley, Colacito, and Sargent [4] study situations like
ours but where the expectational component is as in the Lucas-supply curve (Et−1πt, for example) rather than our
forward-looking case (Etπt+1, for example). More closely related to our present paper, Ellison [7] analyzes active and
passive learning in a New Keynesian model with uncertainty about the slope of the Phillips curve.

2 What we call optimal policy under no learning, adaptive optimal policy, and Bayesian optimal policy has in the
literature also been referred to as myopia, passive learning, and active learning, respectively.
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mode in a Bayesian way, but the optimal policy is computed each period under the assumption that

the policymaker will not learn in the future from observations. In our setting, the AOP is signifi-

cantly easier to compute, and in many cases provides a good approximation to the BOP. Moreover,

the AOP analysis is of some interest in its own right, as it is closely related to specifications of

adaptive learning which have been widely studied in macroeconomics (see Evans and Honkapohja

[9] for an overview). Further, the AOP specification rules out the experimentation which some may

view as objectionable in a policy context.3

In this paper, we apply our methodology to study optimal monetary-policy design under uncer-

tainty in dynamic stochastic general equilibrium (DSGE) models. We begin by summarizing the

main findings from our previous work, leading to implementable algorithms for analyzing policy

in MJLQ models. We then turn to analyzing optimal policy in DSGE models. To quantify the

gains from experimentation we focus on a small empirical benchmark New Keynesian model. In

this model we compare and contrast optimal policies under no learning, AOP, and BOP. We ana-

lyze whether learning is beneficial–it is not always so, a fact which at least partially reflects our

assumption of symmetric information between the policymakers and the public–and then quantify

the additional gains from experimentation.4

Since we typically find that the gains from experimentation are small, we focus in the rest of

the paper on our adaptive optimal policy which shuts down the experimentation channel. As the

AOP is much easier to compute, this allows us to work with much larger and more empirically

relevant policy models. In the latter part of the paper, we analyze one such model, an estimated

forward-looking model which is a mode-dependent variant of Lindé [11]. There, we focus on how

optimal policy should respond to uncertainty about the degree to which agents are forward-looking,

and we show that there are substantial gains from learning in this framework.

3 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive
numerical calculations in the BOP case.

4 In addition to our own previous work, MJLQ models have been widely studied in the control-theory literature
for the special case when the model modes are observable and there are no forward-looking variables (see Costa,
Fragoso, and Marques [5] (henceforth CFM) and the references therein).(do Val and Başar [6] provide an application
of an adaptive-control MJLQ problem in economics.) More recently, Zampolli [22] has used such an MJLQ model
to examine monetary policy under shifts between regimes with and without an asset-market bubble. Blake and
Zampolli [3] provide an extension of the MJLQ model with observable modes to include forward-looking variables
and present an algorithm for the solution of an equilibrium resulting from optimization under discretion. Svensson
and Williams [16] provide a more general extension of the MJLQ framework with forward-looking variables and
present algorithms for the solution of an equilibrium resulting from optimization under commitment in a timeless
perspective as well as arbitrary time-varying or time-invariant policy rules, using the recursive saddlepoint method
of Marcet and Marimon [12]. They also provide two concrete examples: an estimated backward-looking model (a
three-mode variant of Rudebusch and Svensson [14]) and an estimated forward-looking model (a three-mode variant
of Lindé [11]). Svensson and Williams [16] also extend the MJLQ framework to the more realistic case of unobservable
modes, although without introducing learning and inference about the probability distribution of modes. Svensson
and Williams [17] focus on learning and experimentation in the MJLQ framework.
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The paper is organized as follows: Section 2 presents the MJLQ framework and summarizes our

earlier work. Section 3 presents our analysis of learning and experimentation in a simple benchmark

New Keynesian model, whereas section 4 presents our analysis in an estimated empirical New

Keynesian model. Section 5 presents some conclusions and suggestions for further work.

2 MJLQ Analysis of Optimal Policy

This section summarizes our earlier work, Svensson and Williams [16] and [17].

2.1 An MJLQ model

We consider an MJLQ model of an economy with forward-looking variables. The economy has

a private sector and a policymaker. We let Xt denote an nX-vector of predetermined variables

in period t, xt an nx-vector of forward-looking variables, and it an ni-vector of (policymaker)

instruments (control variables).5 We let model uncertainty be represented by nj possible modes

and let jt ∈ Nj ≡ {1, 2, ..., nj} denote the mode in period t. The model of the economy can then

be written

Xt+1 = A11jt+1Xt +A12jt+1xt +B1jt+1it + C1jt+1εt+1, (2.1)

EtHjt+1xt+1 = A21jtXt +A22jtxt +B2jtit + C2jtεt, (2.2)

where εt is a multivariate normally distributed random i.i.d. nε-vector of shocks with mean zero

and contemporaneous covariance matrix Inε . The matrices A11j , A12j , ..., C2j have the appropriate

dimensions and depend on the mode j. As a structural model here is simply a collection of matrices,

each mode can represent a different model of the economy. Thus, uncertainty about the prevailing

mode is model uncertainty.6

Note that the matrices on the right side of (2.1) depend on the mode jt+1 in period t + 1,

whereas the matrices on the right side of (2.2) depend on the mode jt in period t. Equation (2.1)

then determines the predetermined variables in period t+1 as a function of the mode and shocks in

period t+1 and the predetermined variables, forward-looking variables, and instruments in period

t. Equation (2.2) determines the forward-looking variables in period t as a function of the mode and

shocks in period t, the expectations in period t of next period’s mode and forward-looking variables,

5 The first component of Xt may be unity, in order to allow for mode-dependent intercepts in the model equations.
6 See also Svensson and Williams [16], where we show how many different types of uncertainty can be mapped

into our MJLQ framework.
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and the predetermined variables and instruments in period t. The matrix A22j is non-singular for

each j ∈ Nj .

The mode jt follows a Markov process with the transition matrix P ≡ [Pjk].7 The shocks εt
are mean zero and i.i.d. with probability density ϕ, and without loss of generality we assume that

εt is independent of jt.8 We also assume that C1jεt and C2kεt are independent for all j, k ∈ Nj .

These shocks, along with the modes, are the driving forces in the model. They are not directly

observed. For technical reasons, it is convenient but not necessary that they are independent. We

let pt = (p1t, ..., pnjt)
0 denote the true probability distribution of jt in period t. We let pt+τ |t denote

the policymaker’s and private sector’s estimate in the beginning of period t of the probability

distribution in period t+ τ . The prediction equation for the probability distribution is

pt+1|t = P 0pt|t. (2.3)

We let the operator Et[·] in the expression EtHjt+1xt+1 on the left side of (2.2) denote expec-

tations in period t conditional on policymaker and private-sector information in the beginning of

period t, including Xt, it, and pt|t, but excluding jt and εt. Thus, the maintained assumption is

symmetric information between the policymaker and the (aggregate) private sector. Since forward-

looking variables will be allowed to depend on jt, parts of the private sector, but not the aggregate

private sector, may be able to observe jt and parts of εt. Note that although we focus on the

determination of the optimal policy instrument it, our results also show how private sector choices

as embodied in xt are affected by uncertainty and learning. The precise informational assumptions

and the determination of pt|t will be specified below.

We let the policymaker’s intertemporal loss function in period t be

Et

∞X
τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ) (2.4)

where δ is a discount factor satisfying 0 < δ < 1, and the period loss, L(Xt, xt, it, jt), satisfies

L(Xt, xt, it, jt) ≡

⎡⎣ Xt

xt
it

⎤⎦0Wjt

⎡⎣ Xt

xt
it

⎤⎦ , (2.5)

where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume that the policymaker optimizes

under commitment in a timeless perspective. As explained below, we will then add the term

Ξt−1
1

δ
EtHjtxt (2.6)

7 Obvious special cases are P = Inj , when the modes are completely persistent, and Pj. = p̄0 (j ∈ Nj), when the
modes are serially i.i.d. with probability distribution p̄.

8 Because mode-dependent intercepts (as well as mode-dependent standard deviations) are allowed in the model,
we can still incorporate additive mode-dependent shocks.
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to the intertemporal loss function in period t. As we shall see below, the nx-vector Ξt−1 is the

vector of Lagrange multipliers for equation (2.2) from the optimization problem in period t − 1.

For the special case when there are no forward-looking variables (nx = 0), the model consists of

(2.1) only, without the term A12jt+1xt; the period loss function depends on Xt, it, and jt only; and

there is no role for the Lagrange multipliers Ξt−1 or the term (2.6).

2.2 Approximate MJLQ models

While in this paper we start with an MJLQ model, it is natural to ask where such a model comes

from, as usual formulations of economic models are not of this type. However the same type of

approximation methods that are widely used to convert nonlinear models into their linear counter-

parts can also convert nonlinear models into MJLQ models. We analyze this issue in Svensson and

Williams [16], and present an illustration as well. Here we briefly discuss the main ideas. Rather

than analyzing local deviations from a single steady state as in conventional linearizations, for an

MJLQ approximation we analyze the local deviations from (potentially) separate, mode-dependent

steady states. Standard linearizations are justified as asymptotically valid for small shocks, as an

increasing time is spent in the vicinity of the steady state. Our MJLQ approximations are asymp-

totically valid for small shocks and persistent modes, as an increasing time is spent in the vicinity

of each mode-dependent steady state. Thus, for slowly-varying Markov chains, our MJLQ provide

accurate approximations of nonlinear models with Markov switching.

2.3 Types of optimal policies

We will distinguish three cases: (1) Optimal policy when there is no learning (NL), (2) Adaptive

optimal policy (AOP), and (3) Bayesian optimal policy (BOP). By NL, we refer to a situation

when the policymaker and the aggregate private sector have a probability distribution pt|t over the

modes in period t and updates the probability distribution in future periods using the transition

matrix only, so the updating equation is

pt+1|t+1 = P 0pt|t. (2.7)

That is, the policymaker and the private sector do not use observations of the variables in the

economy to update the probability distribution. The policymaker then determines optimal policy

in period t conditional on pt|t and (2.7). This is a variant of a case examined in Svensson and

Williams [16].
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By AOP, we refer to a situation when the policymaker in period t determines optimal policy

as in the NL case, but then uses observations of the realization of the variables in the economy to

update its probability distribution according to Bayes Theorem. In this case, the instruments will

generally have an effect on the updating of future probability distributions, and through this channel

separately affect the intertemporal loss. However, the policymaker does not exploit that channel in

determining optimal policy. That is, the policymaker does not do any conscious experimentation.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments

will affect future inference and updating of the probability distribution, and calculates optimal

policy taking this separate channel into account. Therefore, BOP includes optimal experimentation,

where for instance the policymaker may pursue policy that increases losses in the short run but

improves the inference of the probability distribution and therefore lowers losses in the longer run.

2.4 Optimal policy with no learning

We first consider the NL case. Svensson and Williams [16] derive the equilibrium under commit-

ment in a timeless perspective for the case when Xt, xt, and it are observable in period t, jt is

unobservable, and the updating equation for pt|t is given by (2.7). Observations of Xt, xt, and it

are then not used to update pt|t.

It will be useful to replace equation (2.2) by the two equivalent equations,

EtHjt+1xt+1 = zt, (2.8)

0 = A21jtXt +A22jtxt − zt +B2jtit + C2jtεt, (2.9)

where we introduce the nx-vector of additional forward-looking variables, zt. Introducing this vector

is a practical way of keeping track of the expectations term on the left side of (2.2). Furthermore,

it will be practical to use (2.9) and solve xt as a function of Xt, zt, it, jt, and εt

xt = x̃(Xt, zt, it, jt, εt) ≡ A−122jt(zt −A21jtXt −B2jtit − C2jtεt). (2.10)

We note that, for given jt, this function is linear in Xt, zt, it, and εt.

In order to solve for the optimal decisions, we use the recursive saddlepoint method (see Marcet

and Marimon [12], Svensson and Williams [16], and Svensson [15] for details of the recursive sad-

dlepoint method). Thus, we introduce Lagrange multipliers for each forward-looking equation, the

lagged values of which become state variables and reflect costs of commitment, while the current
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values become control variables. The dual period loss function can be written

EtL̃(X̃t, zt, it, γt, jt, εt) ≡
X
j

pjt|t

Z
L̃(X̃t, zt, it, γt, j, εt)ϕ(εt)dεt,

where X̃t ≡ (X 0
t,Ξ

0
t−1)

0 is the (nX + nx)-vector of extended predetermined variables (that is,

including the nx-vector Ξt−1), γt is an nx-vector of Lagrange multipliers, and ϕ(·) denotes a generic

probability density function (for εt, the standard normal density function), and where

L̃(X̃t, zt, it, γt, jt, εt) ≡ L[Xt, x̃(Xt, zt, it, jt, εt), it, jt]− γ0tzt + Ξ
0
t−1
1

δ
Hjt x̃(Xt, zt, it, jt, εt). (2.11)

As discussed in Svensson and Williams [16], the failure of the law of iterated expectations

leads us to introduce the collection of value functions V̂ (st, j) which condition on the mode, while

the value function Ṽ (st) averages over these and represents the solution of the dual optimization

problem. The somewhat unusual Bellman equation for the dual problem can be written

Ṽ (st) ≡ EtV̂ (st, jt) ≡
X

j
pjt|tV̂ (st, j)

= max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δV̂ [g(st, zt, it, γt, jt, εt, jt+1, εt+1), jt+1]}

≡ max
γt

min
(zt,it)

X
j
pjt|t

Z ∙
L̃(X̃t, zt, it, γt, j, εt)

+ δ
P

k PjkV̂ [g(st, zt, it, γt, j, εt, k, εt+1), k]

¸
ϕ(εt)ϕ(εt+1)dεtdεt+1.

(2.12)

where st ≡ (X̃ 0
t, p

0
t|t)

0 denotes the perceived state of the economy (it includes the perceived proba-

bility distribution, pt|t, but not the true mode) and (st, jt) denotes the true state of the economy

(it includes the true mode of the economy). As we discuss in more detail below, it is necessary

to include the mode jt in the state vector because the beliefs do not satisfy the law of iterated

expectations. In the BOP case beliefs do satisfy this property, so the state vector is simply st. Also

note that in the Bellman equation we require that all the choice variables respect the information

constraints, and thus depend on the perceived state st but not the mode j directly.

The optimization is subject to the transition equation for Xt,

Xt+1 = A11jt+1Xt +A12jt+1 x̃(Xt, zt, it, jt, εt) +B1jt+1it + C1jt+1εt+1, (2.13)

where we have substituted x̃(Xt, zt, it, jt, εt) for xt; the new dual transition equation for Ξt,

Ξt = γt, (2.14)
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and the transition equation (2.7) for pt|t. Combining equations, we have the transition for st,

st+1 ≡

⎡⎣ Xt+1

Ξt
pt+1|t+1

⎤⎦ = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡

⎡⎣ A11jt+1Xt +A12jt+1 x̃(Xt, zt, it, j, εt) +B1jt+1it + C1jt+1εt+1
γt

P 0pt|t

⎤⎦ . (2.15)

It is straightforward to see that the solution of the dual optimization problem (2.12) is linear

in X̃t for given pt|t, jt, ⎡⎣ zt
it
γt

⎤⎦ =
⎡⎣ z(st)

i(st)
γ(st)

⎤⎦ = F (pt|t)X̃t ≡

⎡⎣ Fz(pt|t)
Fi(pt|t)
Fγ(pt|t)

⎤⎦ X̃t, (2.16)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ FxX̃(pt|t, jt)X̃t + Fxε(pt|t, jt)εt. (2.17)

This solution is also the solution to the original primal optimization problem. We note that xt is

linear in εt for given pt|t and jt. The equilibrium transition equation is then given by

st+1 = ĝ(st, jt, εt, jt+1, εt+1) ≡ g[st, z(st), i(st), γ(st), jt, εt, jt+1, εt+1]. (2.18)

As can be easily verified, the (unconditional) dual value function Ṽ (st) is quadratic in X̃t for

given pt|t, taking the form

Ṽ (st) ≡ X̃ 0
tṼX̃X̃(pt|t)X̃t + w(pt|t).

The conditional dual value function V̂ (st, jt) gives the dual intertemporal loss conditional on the

true state of the economy, (st, jt). It follows that this function satisfies

V̂ (st, j) ≡
Z ∙

L̃(X̃t, z(st), i(st), γ(st), j, εt)

+ δ
P

k PjkV̂ [ĝ(st, j, εt, k, εt+1), k]

¸
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj).

The function V̂ (st, jt) is also quadratic in X̃t for given pt|t and jt,

V̂ (st, jt) ≡ X̃ 0
tV̂X̃X̃(pt|t, jt)X̃t + ŵ(pt|t, jt).

It follows that we have

ṼX̃X̃(pt|t) ≡
X

j
pjt|tV̂X̃X̃(pt|t, j), w(pt|t) ≡

X
j
pjt|tŵ(pt|t, j).

Although we find the optimal policies from the dual problem, in order to measure true expected

losses we are interested in the value function for the primal problem (with the original, unmodified
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loss function). This value function, with the period loss function EtL(Xt, xt, it, jt) rather than

EtL̃(X̃t, zt, it, γt, jt, εt), satisfies

V (st) ≡ Ṽ (st)− Ξ0t−1
1

δ

X
j

pjt|tHj

Z
x(st, j, εt)ϕ(εt)dεt

= Ṽ (st)− Ξ0t−1
1

δ

X
j

pjt|tHjx(st, j, 0) (2.19)

(where the second equality follows since x(st, jt, εt) is linear in εt for given st and jt). It is quadratic

in X̃t for given pt|t,

V (st) ≡ X̃ 0
tVX̃X̃(pt|t)X̃t + w(pt|t)

(the scalar w(pt|t) in the primal value function is obviously identical to that in the dual value

function). This is the value function conditional on X̃t and pt|t after Xt has been observed but

before xt has been observed, taking into account that jt and εt are not observed. Hence, the second

term on the right side of (2.19) contains the expectation of Hjtxt conditional on that information.
9

Svensson and Williams [16] and [17] present algorithms to compute the solution and the primal

and dual value functions for the no-learning case. For future reference, we note that the value

function for the primal problem also satisfies

V (st) ≡
X

j
pjt|tV̌ (st, j),

where the conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =

Z ½
L[Xt, x(st, j, εt), i(st), j]
+ δ

P
k PjkV̌ [ĝ(st, j, εt, k, εt+1), k]

¾
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (2.20)

2.5 Adaptive optimal policy

Consider now the case of adaptive optimal policy, where the policymaker uses the same policy

function as in the no-learning case, but each period updates the probabilities that this policy is

conditioned on. This case is thus simple to implement recursively, as we have already discussed how

to solve for the optimal decisions and below we show how to update probabilities. However, the

ex-ante evaluation of expected loss is more complex, as we show below. In particular, we assume

that C2jt 6≡ 0 and that both εt and jt are unobservable. The estimate pt|t is the result of Bayesian

updating, using all information available, but the optimal policy in period t is computed under

9 To be precise, the observation of Xt, which depends on C1jtεt, allows some inference of εt, εt|t. xt will depend on
jt and on εt, but on εt only through C2jtεt. By assumption C1jεt and C2kεt are independent. Hence, any observation
of Xt and C1jεt does not convey any information about C2jεt, so EtC2jtεt = 0.
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the perceived updating equation (2.7). That is, the fact that the policy choice will affect future

pt+τ |t+τ and that future expected loss will change when pt+τ |t+τ changes is disregarded. Under the

assumption that the expectations on the left side of (2.2) are conditional on (2.7), the variables zt,

it, γt, and xt in period t are still determined by (2.16) and (2.17).

In order to determine the updating equation for pt|t, we specify an explicit sequence of infor-

mation revelation as follows, in no less than nine steps. The timing assumptions are necessary in

order to spell out the appropriate conditioning for decisions and updating of beliefs.

First, the policymaker and the private sector enters period t with the prior pt|t−1. They know

Xt−1, xt−1 = x(st−1, jt−1, εt−1), zt−1 = z(st−1), it−1 = i(st−1), and Ξt−1 = γ(st−1) from the

previous period.

Second, in the beginning of period t, the mode jt and the vector of shocks εt are realized. Then

the vector of predetermined variables Xt is realized according to (2.1).

Third, the policymaker and the private sector observe Xt. They then know X̃t ≡ (X 0
t,Ξ

0
t−1)

0.

They do not observe jt or εt

Fourth, the policymaker and the private sector update the prior pt|t−1 to the posterior pt|t

according to Bayes Theorem and the updating equation

pjt|t =
ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1)

ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1)
pjt|t−1 (j ∈ Nj), (2.21)

where again ϕ(·) denotes a generic density function.10 Then the policymaker and the private sector

know st ≡ (X̃ 0
t, p

0
t|t)

0.

Fifth, the policymaker solves the dual optimization problem, determines it = i(st), and imple-

ments/announces the instrument setting it.

Sixth, the private-sector (and policymaker) expectations,

zt = EtHjt+1xt+1 ≡ E[Hjt+1xt+1 | st],

are formed. In equilibrium, these expectations will be determined by (2.16). In order to understand

their determination better, we look at this in some detail.

These expectations are by assumption formed before xt is observed. The private sector and the

policymaker know that xt will in equilibrium be determined in the next step according to (2.17).

10 The policymaker and private sector can also estimate the shocks εt|t as εt|t = j pjt|tεjt|t, where εjt|t ≡
Xt −A11jXt−1 −A12jxt−1 −B1jit−1 (j ∈ Nj). However, because of the assumed independence of C1jεt and C2kεt,
j, k ∈ Nj , we do not need to keep track of εjt|t.
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Hence, they can form expectations of the soon-to-be determined xt conditional on jt = j,11

xjt|t = x(st, j, 0). (2.22)

The private sector and the policymaker can also infer Ξt from

Ξt = γ(st). (2.23)

This allows the private sector and the policymaker to form the expectations

zt = z(st) = Et[Hjt+1xt+1 | st] =
X

j,k
Pjkpjt|tHkxk,t+1|jt, (2.24)

where

xk,t+1|jt =

Z
x

⎛⎝⎡⎣ A11kXt +A12kx(st, j, εt) +B1ki(st)
Ξt

P 0pt|t

⎤⎦ , k, εt+1
⎞⎠ϕ(εt)ϕ(εt+1)dεtdεt+1

= x

⎛⎝⎡⎣ A11kXt +A12kx(st, j, 0) +B1ki(st)
Ξt

P 0pt|t

⎤⎦ , k, 0
⎞⎠ ,

where we have exploited the linearity of xt = x(st, jt, εt) and xt+1 = x(st+1, jt+1, εt+1) in εt and

εt+1. Note that zt is, under AOP, formed conditional on the belief that the probability distribution

in period t + 1 will be given by pt+1|t+1 = P 0pt|t, not by the true updating equation that we are

about to specify.

Seventh, after the expectations zt have been formed, xt is determined as a function of Xt, zt,

it, jt, and εt by (2.10).

Eight, the policymaker and the private sector then use the observed xt to update pt|t to the new

posterior p+t|t according to Bayes Theorem, via the updating equation

p+jt|t =
ϕ(xt|jt = j,Xt, zt, it, pt|t)

ϕ(xt|Xt, zt, it, pt|t)
pjt|t (j ∈ Nj). (2.25)

Ninth, the policymaker and the private sector then leave period t and enter period t + 1 with

the prior pt+1|t given by the prediction equation

pt+1|t = P 0p+t|t. (2.26)

In the beginning of period t+ 1, the mode jt+1 and the vector of shocks εt+1 are realized, and

Xt+1 is determined by (2.1) and observed by the policymaker and private sector. The sequence of

11 Note that 0 instead of εjt|t enters above. This is because the inference εjt|t above is inference about C1jεt,
whereas xt depends on εt through C2jεt. Since we assume that C1jεt and C2jεt are independent, there is no inference
of C2jεt from observing Xt. Hence, EtC2jtεt ≡ 0. Because of the linearity of xt in εt, the integration of xt over εt
results in x(st, jt, 0t).
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the nine steps above then repeats itself. For more detail on the explicit densities in the updating

equations (2.21) and (2.25) see Svensson and Williams [17].

The transition equation for pt+1|t+1 can be written

pt+1|t+1 = Q(st, zt, it, jt, εt, jt+1, εt+1), (2.27)

where Q(st, zt, it, jt, εt, jt+1, εt+1) is defined by the combination of (2.21) for period t+1 with (2.13)

and (2.26). The equilibrium transition equation for the full state vector is then given by

st+1 ≡

⎡⎣ Xt+1

Ξt
pt+1|t+1

⎤⎦ = ḡ(st, jt, εt, jt+1, εt+1)

≡

⎡⎣ A11jt+1Xt +A12jt+1x(st, jt, εt) +B1jt+1i(st) + C1jt+1εt+1
γ(st)

Q(st, z(st), i(st), jt, εt, jt+1, εt+1)

⎤⎦ , (2.28)

where the third row is given by the true updating equation (2.27) together with the policy function

(2.16). Thus, we note that, in this AOP case, there is a distinction between the “perceived”

transition and equilibrium transition equations, (2.15) and (2.18), which in the bottom block include

the perceived updating equation (2.7), and the “true” equilibrium transition equation, (2.28), which

replaces the perceived updating equation (2.7) with the true updating equation (2.27).

Note that V (st) in (2.19), which is subject to the perceived transition equation, (2.15), does

not give the true (unconditional) value function for the AOP case. This is instead given by

V̄ (st) ≡
X

j
pjt|tV̌ (st, j),

where the true conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =

Z ½
L[Xt, x(st, j, εt), i(st), j]
+ δ

P
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]

¾
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (2.29)

That is, the true value function V̄ (st) takes into account the true updating equation for pt|t, (2.27),

whereas the optimal policy, (2.16), and the perceived value function, V (st) in (2.19), are conditional

on the perceived updating equation (2.7) and thereby the perceived transition equation (2.15). Note

also that V̄ (st) is the value function after X̃t has been observed but before xt is observed, so it

is conditional on pt|t rather than p+t|t. Since the full transition equation (2.28) is no longer linear

due to the belief updating (2.27), the true value function V̄ (st) is no longer quadratic in X̃t for

given pt|t. Thus, more complex numerical methods are required to evaluate losses in the AOP case,

although policy is still determined simply as in the NL case.
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As we discuss in Svensson and Williams [17], the difference between the true updating equation

for pt+1|t+1, (2.27), and the perceived updating equation (2.7) is that, in the true updating equation,

pt+1|t+1 becomes a random variable from the point of view of period t, with mean equal to pt+1|t.

This is because pt+1|t+1 depends on the realization of jt+1 and εt+1. Thus Bayesian updating

induces a mean-preserving spread over beliefs, which in turn sheds light on the gains from learning.

If the conditional value function V̌ (st, jt) under NL is concave in pt|t for given X̃t and jt, then by

Jensen’s inequality the true expected future loss under AOP will be lower than the true expected

future loss under NL. That is, the concavity of the value function in beliefs means that learning

leads to lower losses. While it likely that V̌ is indeed concave, as we show in applications, it need

not be globally so and thus learning need not always reduce losses. In some cases the losses incurred

by increased variability of beliefs may offset the expected precision gains. Furthermore, under BOP,

it may be possible to adjust policy so as to further increase the variance of pt|t, that is, achieve a

mean-preserving spread which might further reduce the expected future loss.12 This amounts to

optimal experimentation.

2.6 Bayesian optimal policy

Finally, we consider the BOP case, when optimal policy is determined while taking the updating

equation (2.27) into account. That is, we now allow the policymaker to choose it taking into account

that his actions will affect pt+1|t+1, which in turn will affect future expected losses. In particular,

experimentation is allowed and is optimally chosen. For the BOP case, there is hence no distinction

between the “perceived” and “true” transition equation.

The transition equation for the BOP case is:

st+1 ≡

⎡⎣ Xt+1

Ξt
pt+1|t+1

⎤⎦ = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡

⎡⎣ A11jt+1Xt +A12jt+1 x̃(st, zt, it, jt, εt) +B1jt+1it +C1jt+1εt+1
γt

Q(st, zt, it, jt, εt, jt+1, εt+1)

⎤⎦ . (2.30)

Then the dual optimization problem can be written as (2.12) subject to the above transition

equation (2.30). However, in the Bayesian case, matters simplify somewhat, as we do not need to

compute the conditional value functions V̂ (st, jt), which we recall were required due to the failure

of the law of iterated expectations in the AOP case. We note now that the second term on the
12 Kiefer [10] examines the properties of a value function, including concavity, under Bayesian learning for a simpler

model without forward looking variables.
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right side of (2.12) can be written as

EtV̂ (st+1, jt+1) ≡ E
h
V̂ (st+1, jt+1)

¯̄̄
st

i
.

Since, in the Bayesian case, the beliefs do satisfy the law of iterated expectations, this is then the

same as

E
h
V̂ (st+1, jt+1)

¯̄̄
st

i
= E

h
Ṽ (st+1)

¯̄̄
st

i
.

See Svensson and Williams [17] for a proof.

Thus, the dual Bellman equation for the Bayesian optimal policy is

Ṽ (st) = max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δṼ [g(st, zt, it, γt, jt, εt, jt+1, εt+1)]}

≡ max
γt

min
(zt,it)

X
j
pjt|t

Z ∙
L̃(X̃t, zt, it, γt, j, εt)

+ δ
P

k PjkṼ [g(st, zt, it, γt, j, εt, k, εt+1)]

¸
ϕ(εt)ϕ(εt+1)dεtdεt+1,

(2.31)

where the transition equation is given by (2.30).

The solution to the optimization problem can be written

ı̃t ≡

⎡⎣ zt
it
γt

⎤⎦ = ı̃(st) ≡

⎡⎣ z(st)
i(st)
γ(st)

⎤⎦ = F (X̃t, pt|t) ≡

⎡⎣ Fz(X̃t, pt|t)
Fi(X̃t, pt|t)
Fγ(X̃t, pt|t)

⎤⎦ , (2.32)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ Fx(X̃t, pt|t, jt, εt). (2.33)

Because of the nonlinearity of (2.27) and (2.30), the solution is no longer linear in X̃t for given pt|t.

The dual value function, Ṽ (st), is no longer quadratic in X̃t for given pt|t. The value function of

the primal problem, V (st), is given by, equivalently, (2.19), (2.29) (with the equilibrium transition

equation (2.28) with the solution (2.32)), or

V (st) =
X
j

pjt|t

Z ½
L[Xt, x(st, j, εt), i(st), j]
+ δ

P
k PjkV [ḡ(st, j, εt, k, εt+1)]

¾
ϕ(εt)ϕ(εt+1)dεtdεt+1. (2.34)

It it is also no longer quadratic in X̃t for given pt|t. Thus, more complex and detailed numerical

methods are necessary in this case to find the optimal policy and the value function. Therefore

little can be said in general about the solution of the problem. Nonetheless, in numerical analysis

it is very useful to have a good starting guess at a solution, which in our case comes from the AOP

case. In our examples below we explain in more detail how the BOP and AOP cases differ, and

what drives the differences.
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3 Learning and experimentation in a simple NewKeynesianmodel

3.1 The model

We consider the benchmark standard New Keynesian model, consisting of a New Keynesian Phillips

curve and a consumption Euler equation (see Woodford [21] for an exposition):

πt = δEtπt+1 + γjtyt + cπεπt, (3.1)

yt = Etyt+1 − σjt (it −Etπt+1) + cyεyt + cggt, (3.2)

gt+1 = ρgt + εg,t+1. (3.3)

Here πt is the inflation rate, yt is the output gap, δ is the subjective discount factor (as above),

γjt is a composite parameter reflecting the elasticity of demand and frequency of price adjustment,

and σjt is the intertemporal elasticity of substitution. There are three shocks in the model, two

unobservable shocks επt and εyt, which are independent standard normal random variables, and

the observable serially correlated shock gt. This last shock is interpretable as a “demand” shock

either coming from variation in preferences, government spending, or the underlying efficient level of

output. Woodford [21] combines and renormalizes these shocks into a composite shock representing

variation in the natural rate of interest.

In the standard formulations of this model, the shocks are observable and policy responds

directly to the shocks. However, in order for there to be a nontrivial inference problem for agents,

we need some components of the shocks to be unobservable. Note that we’ve assumed that both

the slope of the Phillips curve γjt and the interest sensitivity σjt vary with the mode jt. For the

former, this could reflect changes in the degree of monopolistic competition (which also lead to

varying markups) and/or changes in the degree of price stickiness. The interest sensitivity shift is

purely a change in the preferences of the agents in the economy, although it could also result from

non-homothetic preferences coupled with shifts in output (in which case there would be no shift in

the preferences themselves, but the intertemporal elasticity would vary with the level of output).

Unlike our illustration above, there are no switches in the steady state levels of the variables of

interest here, as we consider the usual approximations around a zero inflation rate and an efficient

level of output.
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3.2 Optimal policy: NL, AOP, and BOP

Here we examine value functions and optimal policies for this simple New Keynesian model under

no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal policy (BOP). We use the

following loss function,

Lt = π2t + λjy
2
t + μi2t , (3.4)

We set the following parameters, mostly followingWoodford’s [21] calibration as follows: γ1 = 0.024,

γ2 = 0.075, σ1 = 1/.157 = 6.37, σ2 = 1, cπ = cy = cg = 0.5, and ρ = 0.5. We set the loss function

parameters as: δ = 0.99, λj = 2γj , and μ = 0.236. Most of the structural parameters are taken

from Woodford [21], while the two modes represent reasonable alternatives. Mode 1 is Woodford’s

benchmark case, while mode 2 has a substantially smaller interest rate sensitivity (one consistent

with logarithmic preferences) and a larger response γ of inflation to output. We set the transition

matrix to

P =

∙
0.98 0.02
0.02 0.98

¸
.

We have two forward-looking variables (xt ≡ (πt, yt)0) and consequently two Lagrange multi-

pliers (Ξt−1 ≡ (Ξπ,t−1,Ξy,t−1)0). We have one predetermined variable (Xt ≡ gt) and the estimated

mode probabilities (pt|t ≡ (p1t|t, p2t|t)0) (of which we only need keep track of one, p1t|t). Thus, the

value and policy functions, V (st) and i(st), are all four dimensional (st = (gt,Ξ0t−1, p1|t)
0). Thus we

are forced for computational reasons to restrict attention to relatively sparse grids with few points.

The following plots show two-dimensional slices of the value and policy functions, focusing on the

dependence on gt and p1t|t (which we for simplicity denote by p1t in the figures). In particular, all

of the plots are for Ξt−1 = (0, 0)0.

Figure 3.1 shows losses under NL and BOP as functions of p1t and gt. Figure 3.2 shows the

difference between losses under NL, AOP, and BOP. Figures 3.3 and 3.4 show the corresponding

policy functions and their differences.

In Svensson and Williams [17] we show that learning implies a mean-preserving spread of the

random variable pt+1|t+1 (which is under learning a random variable from the vantage point of

period t). Hence, concavity of the value function under NL in p1t implies that learning is beneficial,

since then a mean-preserving spread reduces the expected future loss. However, we see in figure 3.1

that the value function is actually slightly convex in p1t, so learning is not beneficial here. In

contrast, for a backward-looking example in Svensson and Williams [17], the value function is

concave and learning is beneficial.
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Figure 3.1: Losses from no learning (NL) and Bayesian optimal policy (BOP)
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Consequently, we see in figure 3.2 that AOP gives higher losses than NL. Furthermore, somewhat

surprisingly, we see that BOP gives higher losses than AOP (although the difference is very small).

This is all counter to an example with a backward-looking model in Svensson and Williams [17].

Why is this different in a model with forward-looking variables? It may at least partially

be a remnant of our assumption of symmetric beliefs and information between the private sector

and the policymaker. With backward-looking models, we have generally found that learning is

beneficial. Moreover, with backward-looking models, the BOP is always weakly better than the

AOP, as acknowledging the endogeneity of information in the BOP case need not mean that policy

must change. (That is, the AOP policy is always feasible in the BOP problem.) However, with

forward-looking models, neither of these conclusions holds. Under our assumption of symmetric

information and beliefs between the private sector and the policymaker, both the private sector

and the policymaker learns. The difference then comes from the way that private sector beliefs

also respond to learning and to the experimentation motive. Having more reactive private sector

beliefs may add volatility and make it more difficult for the policymaker to stabilize the economy.

Acknowledging the endogeneity of information in the BOP case then need not be beneficial either,
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Figure 3.2: Differences in losses from no learning (NL), adaptive optimal policy (AOP) and Bayesian

optimal policy (BOP)
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as it may induce further volatility in agents’ beliefs. (Note that, in the forward-looking case, we

solve saddlepoint problems, and in going from AOP to BOP we are expanding the feasible set for

both the minimizing and maximizing choices.)

4 Learning in an estimated empirical New Keynesian model

In the previous section we focused on a simple small model in order to consider the impacts of

learning and experimentation. As computing BOP is computationally intensive, there are limits

to the degree of empirical realism of the models we can address in that framework. In this section

we focus on a more empirically plausible model, a version of the model of Lindé [11] that we

estimated in Svensson and Williams [16]. This model includes richer dynamics for inflation and the

output gap, which both have backward and forward-looking components. However, these additional

dynamics increase the dimension of the state space, which implies that it is not very feasible to

consider the BOP. Thus we focus here on the impact of learning on policy and compare NL and

AOP. In Svensson and Williams [16] we computed the optimal policy under no-learning, and here
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Figure 3.3: Optimal policies under no learning (NL) and Bayesian optimal policy (BOP)
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we see how inference on the mode affects the dynamics of output, inflation, and interest rates.

4.1 The model

The structural model is a mode-dependent simplification of the model of the US economy of Lindé

[11] and is given by

πt = ωfjEtπt+1 + (1− ωfj)πt−1 + γjyt + cπjεπt, (4.1)

yt = βfjEtyt+1 + (1− βfj)
£
βyjyt−1 + (1− βyj)yt−2

¤
− βrj (it −Etπt+1) + cyjεyt.

Here j ∈ {1, 2} indexes the mode, and the shocks επt, εyt, and εit are independent standard normal

random variables. In particular, we consider a two-mode MJLQ model where one mode has forward-

and backward-looking elements, while the other is backward-looking only. Thus we specify that

mode 1 is unrestricted, while in mode 2 we restrict ωf = βf = 0, so that the mode is backward-

looking. For estimation, we also impose a particular instrument rule for it, but as we focus on

optimal policy we do not include that here.

In Svensson and Williams [16] we estimate the model on US data using Bayesian methods,

with the maximum posterior estimates given in table 4.1, with the unconditional expectation of
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Figure 3.4: Differences in policies under no learning (NL) and Bayesian optimal policy (BOP)
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Table 4.1: Estimates of the constant-coefficient and a restricted two-mode Lindé model.

Parameter Mean Mode 1 Mode 2
ωf 0.0938 0.3272 0
γ 0.0474 0.0580 0.0432
βf 0.1375 0.4801 0
βr 0.0304 0.0114 0.0380
βy 1.3331 1.5308 1.2538
cπ 0.8966 1.0621 0.8301
cy 0.5572 0.5080 0.5769

the coefficients for comparison. Here we see that apart from the forward-looking terms (which of

course are restricted) the variation in the other parameters across the modes is relatively minor.

There are some differences in the estimated policy functions (not reported here), but relatively

little change across modes in the other structural coefficients. The estimated transition matrix P

and its implied stationary distribution p̄ are given by

P =

∙
0.9579 0.0421
0.0169 0.9831

¸
, p̄ =

∙
0.2869
0.7131

¸
.

Thus mode 2 is the most persistent and has the largest mass in the invariant distribution. This

is consistent with our estimation of the modes as shown in figure 4.1. Again, the plots show both

the smoothed and filtered estimates. Mode 2, the backward-looking model mode, was experienced

the most throughout much of the sample, holding for 1961—1968 and then with near certainty

continually since 1985. The forward-looking model held in periods of rapid changes in inflation,

holding for both the run-ups in inflation in the early and late 1970s and the disinflationary period
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Figure 4.1: Estimated probabilities of being the different modes. Solid lines: smoothed (full-sample)

inference. Dashed lines: filtered (one-sided) inference.
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of the early 1980s. During periods of relative tranquility, such as the Greenspan era, the backward-

looking model fits the data the best.

4.2 Optimal policy: NL and AOP

Using the methods described above, we solve for the optimal policy functions

it = Fi(pt|t)X̃t,

where now X̃t ≡ (πt−1, yt−1, yt−2, it−1,Ξπ,t−1,Ξy,t−1)0. In Svensson and Williams [16] we focused

on the observable and no-learning cases, and assumed that the shocks επt and εyt were observable.

Thus we set C2 ≡ 0 and treated the shocks as additional predetermined variables. However, to focus

on the role of learning, we now assume that those shocks are unobservable. If they were observable,

then agents would be able to infer the mode from their observations of the forward-looking variables.

We use the following loss function:

Lt = π2t + λy2t + ν(it − it−1)
2, (4.2)
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Figure 4.2: Unconditional impulse responses to shocks under the optimal policy for the two-mode

version of the Lindé model. Solid lines: median responses under AOP. Dashed lines: median

responses under NL. Dot-dashed lines: constant-coefficient responses.
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which is a common central-bank loss function. We set the weights to λ = 1 and ν = 0.2, and fix

the discount factor in the intertemporal loss function to δ = 1.

For ease of interpretation, we plot the distribution of the impulse responses of inflation, the

output gap, and the instrument rate to the two structural shocks in figure 4.2. We consider 10,000

simulations of 50 periods, and plot the median responses for the optimal policy under NL and AOP,

and the corresponding optimal responses for the constant-coefficient model.13

Compared to the constant-coefficient case, the mean impulse responses are consistent with larger

effects of the shocks that are also longer lasting. In terms of the optimal policy responses, the AOP

and NL cases are quite similar, and in both cases the peak response to shocks is nearly the same

as in the constant-coefficient case, but it comes with a delay. Again compared to the constant-

coefficient case, the responses of inflation and the output gap are larger and more sustained when

there is model uncertainty.

13 The shocks are επ0 = 1 and εy0 = 1, respectively, so the shocks to the inflation and output-gap equations in
period 0 are mode-dependent and equal to cπj and cyj (j = 1, 2, 3), respectively. The distribution of modes in period 0
(and thereby all periods) is again the stationary distribution.
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Figure 4.3: Distribution (across samples) of various statistics under the optimal policy for the

two-mode version of the Lindé model. Solid lines: AOP. Dashed lines: NL.

0 20 40 60 80 100
0

0.05

0.1

0.15

Distribution of Eπ2
t

 

 
AOP
NL

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Distribution of Ey2
t

50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

Distribution of Ei2t

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

Distribution of ELt

Table 4.2: Average of different statistics from 1000 simulations of 1000 periods each of our estimated

model under the no-learning (NL) and adaptive (AOP) optimal policies.

Policy Eπt Stdπt E yt Std yt E it Std it ELt

NL −0.1165 5.2057 0.1303 5.6003 0.0073 10.0239 88.4867
AOP −0.0300 3.1696 0.0299 2.7698 0.0011 9.9989 38.8710

However, here we see that learning can be beneficial, as the optimal policy under AOP dampens

the responses to shocks, particularly for shocks to inflation. As the optimal policy responses are

nearly identical, this seems to be largely due to more accurate forecasts by the public, which lead

to more rapid stabilization.

While these impulse responses are revealing, they do not capture the full benefits from learning,

as by definition they simply provide the responses to a single shock. To gain a better understanding

of the role of learning, we now simulate our model under the NL and AOP policies to compare

the realized economic performance. Table 4.2 summarizes various statistics resulting from 1000

simulations of 1000 periods each. Thus for example, the entry there under “Eπt” is the average
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Figure 4.4: Simulated time series under the optimal policy for the two-mode version of the Lindé

model. Top three panels: Solid lines: AOP. Dashed lines: NL. Bottom panel : Solid line: probability

of mode 1. Dotted line: true mode. Dashed line: unconditional probability of mode 1.
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across the 1000 simulations of the sample average (over the 1000 periods) of inflation, while “Std

πt” is the average across simulations of the standard deviation (in each time series) of inflation.

In particular, we see from the entry under “ELt” that the average period loss is less than half

under AOP compared to NL. In addition to these averages, figure 4.3 plots the distribution across

samples of the key components of the loss function. There we plot a kernel smoothed estimate of

the distribution from the 1000 simulations. We see that the distribution of sample losses is much

more favorable under AOP than under NL.

In figure 4.4 we show one representative simulation to illustrate the differences. The more

effective stabilization of inflation and the output gap under AOP for very similar instrument-rate

settings as under NL is apparent.
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5 Conclusions

In this paper, we have presented a relatively general framework for analyzing model uncertainty and

the interactions between learning and optimization. While this is a classic issue, very little to date

has been done for systems with forward-looking variables, which are essential elements of modern

models for policy analysis. Our specification is general enough to cover many practical cases of

interest, but yet remains relatively tractable in implementation. This is definitely true for cases

when decision makers do not learn from the data they observe (our case of no learning, NL) or when

they do learn but do not account for learning in optimization (our case of adaptive optimal policy,

AOP). In both of these cases, we have developed efficient algorithms for solving for the optimal

policy, which can handle relatively large models with multiple modes and many state variables.

However, in the case of the Bayesian optimal policy (BOP), where the experimentation motive is

taken into account, we must solve more complex numerical dynamic programming problems. Thus

to fully examine optimal experimentation we are haunted by the curse of dimensionality, forcing us

to study relatively small and simple models.

Thus, an issue of much practical importance is the size of the experimentation component of

policy, and the losses entailed by abstracting from it. While our results in this paper are far from

comprehensive, they suggest that in practical settings the experimentation motive may not be a

concern. The above and similar examples that we have considered indicate that the benefits of

learning (moving from NL to AOP) may be substantial, whereas the benefits from experimentation

(moving from AOP to BOP) are modest or even insignificant. If this preliminary finding stands

up to scrutiny, experimentation in economic policy in general and monetary policy in particular

may not be very beneficial, in which case there is little need to face the difficult ethical and other

issues involved in conscious experimentation in economic policy. Furthermore, the AOP is much

easier to compute and implement than the BOP. To have this truly be a robust implication, more

simulations and cases need to be examined.
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