Production Function, Average and Marginal Products, Returns to Scale, Change of Variables

Production Function:

links inputs to amont of output. Assume we have 2 inputs: Labor (L) and Capital (K), and we use Y for output . Then we write:

Y = F(L, K), where F() is the production Function. We make a number of assumptions about this function.

Examples: (1) $Y = L \cdot K$ (2) Y = L + K(3) $Y = L^{1/3} \cdot K^{1/3}$ (4) $Y = L^{1/2} \cdot K^{1/2}$

Average Product and Marginal Product of a Particular Input

Labor:

Average Product of Labor (APL): Y/ L

Marginal Product of Labor (MPL): changes in Y / Changes in L (for small changes) = partial derivative of F(L, K) with respect to L.

Capital:

Average Product of Capital (APK): Y/ K Marginal Product of Capital (MPK): changes in Y/ Changes in K (for small changes) = partial derivative of F(L, K) with respect to K

Returns to Scale:

Percentage of change in Y when we change all inputs in the same proportion.

Increasing Returns to Scale (IRS) : % change in Y > % change in L = % change in K Constant Returns to Scale (CRS) : % change in Y = % change in L = % change in K

Decreasing Returns to Scale (DRS):

% change in Y < % change in L = % change in K

Some production functions exhibit the same type of returns to scale everywhere (like the 4 examples presented here), while others don't.

In our examples it is easy to find the type of returns to scale by looking at a couple of points.

Ex 1: $Y = L$. K		
L	Κ	$Y = L \cdot K$	
1	1	1	
2	2	4	⇒ IRS
3	3	9	
Ex 2: Y= L	L + K		
L	Κ	Y = L + K	
1	1	2	
2	2	4	⇒ CRS
3	3	6	

Ex. 3 : Y =	$= L^{1/3} \cdot K^{1/3}$		
L	Κ	$Y = L^{1/3} \cdot K^{1/3}$	
1	1	1	
8	8	2	⇒ DRS
27	27	9	
Ex. 4: Y =	$L^{1/2}$. $K^{1/2}$		
L	Κ	$\mathbf{Y} = \mathbf{L}^{1/2}$. $\mathbf{K}^{1/2}$	
1	1	1	
4	4	4	⇒ CRS
9	9	9	

Change of Variable

Sometimes it is convenient to make a change of variable in order to reduce the number of variables in our problem by one. When the production function exhibits CRS we can do this very easily.

Ex. 2: Y=L+KLets divide both sides by L, Y/L = 1 + K/Ldefine two new variables : y=Y/L and k=K/L, then y = 1+kand we have only 2 variables in our problem. Ex. 4: $Y = L^{1/2}$. $K^{1/2}$

Lets divide both sides by L (or $L^{1/2} \cdot L^{1/2}$), $Y/L = (L^{1/2} \cdot K^{1/2)} / L = (L^{1/2} / L^{1/2}) \cdot (K^{1/2} / L^{1/2}) = 1 \cdot (K/L)^{1/2}$ define two new variables : y = Y/L and k = K/L, then $y = k^{1/2}$ and we have only 2 variables in our problem. Notice that our new function looks like this:

Since,

L	Κ	k = K/L	$y = k^{1/2}$
2	2	1	1
2	8	4	2
2	18	9	3