Production Function, Average and Marginal Products, Returns to Scale, Change of Variables

Production Function:

links inputs to amont of output. Assume we have 2 inputs: Labor (L) and Capital (K), and we use Y for output. Then we write:
$\mathrm{Y}=\mathrm{F}(\mathrm{L}, \mathrm{K})$, where F() is the production Function. We make a number of assumptions about this function.

Examples:
(1) $\quad \mathrm{Y}=\mathrm{L} . \mathrm{K}$
(2) $\mathrm{Y}=\mathrm{L}+\mathrm{K}$
(3) $\mathrm{Y}=\mathrm{L}^{1 / 3} \cdot \mathrm{~K}^{1 / 3}$
(4) $\mathrm{Y}=\mathrm{L}^{1 / 2} \cdot \mathrm{~K}^{1 / 2}$

Average Product and Marginal Product of a Particular Input

Labor:

Average Product of Labor (APL): Y/ L
Marginal Product of Labor (MPL): changes in Y / Changes in L (for small changes) $=$ partial derivative of $\mathrm{F}(\mathrm{L}, \mathrm{K})$ with respect to L .
Capital:
Average Product of Capital (APK): Y/ K
Marginal Product of Capital (MPK): changes in Y/ Changes in K (for small changes) $=$ partial derivative of $\mathrm{F}(\mathrm{L}, \mathrm{K})$ with respect to K

Returns to Scale:

Percentage of change in Y when we change all inputs in the same proportion.
Increasing Returns to Scale (IRS) :
$\%$ change in $\mathrm{Y}>\%$ change in $\mathrm{L}=\%$ change in K
Constant Returns to Scale (CRS) :
$\%$ change in $\mathrm{Y}=\%$ change in $\mathrm{L}=\%$ change in K
Decreasing Returns to Scale (DRS):
$\%$ change in $\mathrm{Y}<\%$ change in $\mathrm{L}=\%$ change in K
Some production functions exhibit the same type of returns to scale everywhere (like the 4 examples presented here), while others don't.
In our examples it is easy to find the type of returns to scale by looking at a couple of points.
Ex 1: Y=L. K

L	K	Y= L. K	
1	1	1	
2	2	4	\Rightarrow IRS
3	3	9	

Ex 2: $\mathrm{Y}=\mathrm{L}+\mathrm{K}$

L	K
1	1
2	2
3	3

$$
\begin{gathered}
\mathrm{Y}=\mathrm{L}+\mathrm{K} \\
2
\end{gathered}
$$

$$
\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}
$$

$$
4 \quad \Rightarrow \mathrm{CRS}
$$

Ex. 3 : $\mathrm{Y}=\mathrm{L}^{1 / 3} \cdot \mathrm{~K}^{1 / 3}$

L	K
1	1
8	8
27	27

$\mathrm{Y}=\mathrm{L}^{1 / 3} \cdot \mathrm{~K}^{1 / 3}$ 1 $2 \quad \Rightarrow$ DRS

Ex. 4: $\mathrm{Y}=\mathrm{L}^{1 / 2} . \mathrm{K}^{1 / 2}$
$\mathrm{L} \quad \mathrm{K}$
$1 \quad 1$
$4 \quad 4$
$9 \quad 9$
$\mathrm{Y}=\mathrm{L}^{1 / 2} \cdot \mathrm{~K}^{1 / 2}$
1
$4 \quad \Rightarrow$ CRS

Change of Variable

Sometimes it is convenient to make a change of variable in order to reduce the number of variables in our problem by one. When the production function exhibits CRS we can do this very easily.

Ex. 2: $\quad \mathrm{Y}=\mathrm{L}+\mathrm{K}$
Lets divide both sides by L ,

$$
\mathrm{Y} / \mathrm{L}=1+\mathrm{K} / \mathrm{L}
$$

define two new variables : $y=Y / L$ and $k=K / L$, then

$$
y=1+k
$$

and we have only 2 variables in our problem.
Ex. 4: $\mathrm{Y}=\mathrm{L}^{1 / 2} \cdot \mathrm{~K}^{1 / 2}$
Lets divide both sides by L (or $\mathrm{L}^{1 / 2} . \mathrm{L}^{1 / 2}$), $\mathrm{Y} / \mathrm{L}=\left(\mathrm{L}^{1 / 2} \cdot \mathrm{~K}^{1 / 2} / \mathrm{L}=\left(\mathrm{L}^{1 / 2} / \mathrm{L}^{1 / 2}\right) \cdot\left(\mathrm{K}^{1 / 2} / \mathrm{L}^{1 / 2}\right)=1 .(\mathrm{K} / \mathrm{L})^{1 / 2}\right.$
define two new variables : $y=Y / L$ and $k=K / L$, then

$$
\mathrm{y}=\mathrm{k}^{1 / 2}
$$

and we have only 2 variables in our problem.
Notice that our new function looks like this:

Since,
L

$$
\mathrm{K} \quad \mathrm{k}=\mathrm{K} / \mathrm{L} \quad \mathrm{y}=\mathrm{k}^{1 / 2}
$$

2
2
21
1
$8 \quad 4$
2
2
189
3

