M. Muniagurria

Econ 364

Microeconomics Handout (Part 1)

I.

(1) Case of One Input: L (Labor): $q=f(L)$

- Let q equal output so the production function relates L to q . (How much output can be produced with a given amount of labor?)
- Marginal productivity of labor $=$ MPL is defined as

$$
\left(\frac{\Delta q}{\Delta L}\right)_{\text {Small changes }}=\text { Slope of prod. Function }
$$

i.e. The change in output if we change the amount of labor used by a very small amount.

- How to find total output (q) if we only have information about the MPL: "In general" q is equal to the area under the MPL curve when there is only one input.

Examples:
(a) Linear production functions. Possible forms:

$$
\begin{aligned}
& q=10 L \Rightarrow M P L=10 \\
& q=1 / 2 L \Rightarrow M P L=1 / 2 \\
& q=4 L \Rightarrow M P L=4
\end{aligned}
$$

The production function $\mathrm{q}=4 \mathrm{~L}$ is graphed below.

Diagram 2

Notice that if we only have diagram 2, we can calculate output for different amounts of labor as the area under MPL:

Remark: In all the examples in (a) MPL is constant.
(b) Production Functions With Decreasing MPL.

Remark: Often this is thought as the case of one variable input $($ Labor $=L)$ and a fixed factor (land or entrepreneurial ability)
(2) Case of Two Variable Inputs: $q=f(L, K)$

L (Labor), K (Capital)

- Production function relates L \& K to q (total output)
- Isoquant: Combinations of $\mathrm{L} \& \mathrm{~K}$ that can achieve the same q
- Marginal Productivities

$$
\begin{array}{cl}
M P L=\left(\frac{\Delta q}{\Delta L}\right) & \begin{array}{l}
\text { Small changes } \\
\mathrm{K} \text { constant }
\end{array} \\
M P K=\left(\frac{\Delta q}{\Delta K}\right) \quad & \begin{array}{l}
\text { Small changes } \\
\mathrm{L} \text { constant }
\end{array}
\end{array}
$$

- MRTS $=-$ Slope of Isoquant $=$ Absolute value of $\frac{\Delta K}{\Delta L} \quad$ Along Isoquant

Examples

(a) Linear (L \& K are perfect substitutes) Possible forms:

$$
\begin{array}{llll}
\mathrm{q}=10 \mathrm{~L}+5 \mathrm{~K} & \Rightarrow & \mathrm{MPL}=10 & \mathrm{MPK}=5 \\
\mathrm{q}=\mathrm{L}+\mathrm{K} & \Rightarrow & \mathrm{MPL}=1 & \mathrm{MPK}=1 \\
\mathrm{q}=2 \mathrm{~L}+\mathrm{K} & \Rightarrow & \mathrm{MPL}=2 & \mathrm{MPK}=1
\end{array}
$$

- The production function $\mathrm{q}=2 \mathrm{~L}+\mathrm{K}$ is graphed below.

$$
\text { MRTS }=2
$$

(b) "Nice Isoquants"

Possible Forms:

Slope of Isoquants in absolute value \downarrow as $L \uparrow$ (i.e. \downarrow MRTS as $L \uparrow$, as $L \uparrow$ it becomes more and more costly to replace capital.)
II. COST MINIMIZATION

How to choose inputs to minimize cost:
(1) One input: Trivial: Price of labor Total Cost $=\mathrm{w} . \mathrm{L}$, where w is the price of labor
(2) Two variable inputs
(a) Fixed coefficients: No substitution (still easy)

Let r be the price of capital, then the cost of producing one unit of output (Average cost: AC) is:

$$
A C=a_{L} \cdot w+a_{K} \cdot r
$$

Notice that this does not change for different levels of output:
The AC is constant.
If either w or r change, the $A C$ changes but the firm still uses a_{L} units of L and a_{K} units of K to produce one unit of output.
(b) Linear Isoquants (perfect substitutes) (Hard - we will skip this)
(c) "Nice Isoquants"

- Define Isocost lines
- Find tangency between Isoquant and Isocost lines

Isocost $=\overline{\mathbf{c}}=w \cdot L+$ r.k (Combinations of $L \& K$ that cost same amount of money)

Example:

Cost minimizing combination of $\mathrm{K} \& \mathrm{~L}$ to produce $\mathrm{q}=10$

$$
\mid \text { slope } \left\lvert\,=\frac{w}{r}\right.
$$

Effect of changes in prices:

- $\uparrow \mathrm{w}, \mathrm{r}$ constant (i.e. $\uparrow \mathrm{w} / \mathrm{r}$)

$$
\Rightarrow \downarrow \mathrm{L}^{*} \& \uparrow \mathrm{~K}^{*}
$$

New Combination: \hat{K}, \hat{L}

- $\uparrow \mathrm{r} \quad \mathrm{w}$ constant (i.e. $\downarrow \mathrm{w} / \mathrm{r}$)

$$
\Rightarrow \uparrow \mathrm{L}^{*} \& \downarrow \mathrm{~K}^{*}
$$

III.

We assume that each firm maximizes profits

- taking the product price as given (P) and
- taking input prices as given (w, r)

How many units of L \& K should the firm hire?
(1) Case of One Variable Input: Labor (L)

A profit maximizing firm will hire L up to the point at which:
Marginal product x output price $=$ input price
In our case:
MPL . $\mathrm{p}=\mathrm{w}$
Marginal
Marginal cost
benefit for of hiring an extra
the firm unit of labor
\Longrightarrow
Example: Production function with decreasing MPL (Think about a fixed factor).

(2) Case of Two Variable Inputs: L \& K
"Nice Isoquants"

