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Most assets clear independently rather than jointly. This paper presents a model
based on the uniform-price double auction which accommodates arbitrary restrictions
on market clearing, including independent clearing across assets (allowed when de-
mand for each asset is contingent only on the price of that asset) and joint market
clearing for all assets (required when demand for each asset is contingent on the prices
of all assets). Additional trading protocols for traded assets—neutral when the market
clears jointly—are generally not redundant innovations, even if all traders participate
in all protocols. Multiple trading protocols that clear independently can be designed to
be at least as efficient as joint market clearing for all assets. The change in price im-
pact brought by independence in market clearing can overcome the loss of information,
and enhance diversification and risk sharing. Except when the market is competitive,
market characteristics should guide innovation in trading technology.

KEYWORDS: Imperfect competition, trading technology, market design, innovation,
decentralized market, liquidity, price impact, uniform-price auction, efficiency.

1. INTRODUCTION

TODAY’S FINANCIAL MARKETS are composed of coexistent trading protocols for the same
or distinct assets. Venues for financial securities clear independently, and typically the
assets traded in each venue do as well: an order submitted for one asset cannot be made
contingent on the prices of other assets. In some markets, such as those for spectrum,
electricity, and electronic trading platforms for financial assets, traders can express their
demand for one asset contingent on the prices of other assets.1 When available, however,
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such contingent orders allow cross-asset conditioning among a limited number of assets.
Feasibility might provide one rationale as to why cross-asset conditioning is relatively
uncommon in practice—with contingent schedules, the market-clearing prices must be
determined jointly for all assets, thus requiring coordination in market clearing among
market makers or trading venues that are private entities. Advances in technology have
increased interest in cross-asset conditioning. Indeed, electronic trading platforms such
as those listed in ft. 1 innovate on such orders.

The objective of this paper is twofold. First, we investigate the implications of indepen-
dent market clearing for the equilibrium and for welfare. Second, we examine the inno-
vations in trading technology—defined by changes in market clearing—that cross-asset
conditioning makes possible. As we will show, regulation that promotes joint clearing for
some assets, if applied in disregard of market characteristics, can lower welfare in the
Pareto sense. Moreover, multiple exchanges that clear independently can be designed to
be at least as efficient as joint clearing of all assets irrespective of the characteristics of
assets and traders. Thus, joint market clearing of all assets is not essential and can be
suboptimal.

We dispense with the assumption that demand schedules are contingent—on which
the standard competitive and imperfectly competitive models of equilibrium and asset
pricing are based—in the canonical uniform-price double auction for I < ∞ strategic
traders and K < ∞ assets (e.g., Wilson (1979), Klemperer and Meyer (1989), Kyle (1989),
Vives (2011)). Our analysis is cast in the quadratic-Gaussian setting. Traders have private
information about their endowments, which are independent across assets and possibly
correlated across traders. The model encompasses contingent schedules qi�c

k (·) : RK → R,
which are standard in theory but less so in practice, specifying the quantities demanded of
each asset for any realization of the price vector (i.e., joint market clearing for all assets).

We first examine markets with uncontingent schedules qi
k(·) : R → R, each specifying

the quantities demanded for any price realization of a given asset (i.e., assets clear inde-
pendently). To accommodate innovation in trading technology and more general market
structures, we then generalize the model in two ways. Specifically, we permit arbitrary re-
strictions on cross-asset demand conditioning “between” uncontingent and contingent
and allow an asset to be traded in multiple venues. A market structure consists of ex-
changes, each defined by the subset of the K assets traded there; all traders participate
in all exchanges (see also ft. 12). Demand schedules condition on the prices of the as-
sets traded in an exchange and not on those in other exchanges, and the market clears
independently across exchanges. It is convenient to identify independent market clearing
(i.e., a uniform-price trading protocol) with an exchange in the model. An exchange can
represent either a trading protocol within a trading platform or the platform itself.

The methodological contribution of this paper is the characterization of the Bayesian
Nash equilibrium in market structures with limited cross-asset conditioning. When a
trader’s demand schedules are not contingent on the prices of all assets, they depend
on the expected (rather than realized) trades of the assets in other exchanges. Due to
cross-asset inference, the coefficients of a trader’s own best-response demand schedules
must be characterized as a fixed point across assets.2 Additionally, the price impact is no

analogous rules do not apply in markets for other asset classes or stock markets abroad (see Budish, Lee, and
Shim (2020)).

2In a multivariate optimization problem, contingent or uncontingent, a trader’s first-order conditions define
a fixed point for the trader’s best-response demand schedules across assets. With demand contingent on the
common price vector, the first-order conditions can be written as a single matrix equation and solved for the

 14680262, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
16537 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline L

ibrary on [31/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EXCHANGE DESIGN AND EFFICIENCY 2889

longer a sufficient statistic for a trader’s residual supply—the joint distribution of other
traders’ initial holdings of all assets matters as well.

We show that the equilibrium fixed point in demand schedules is equivalent to a fixed
point in price impact matrices alone. That is, we endogenize all demand coefficients—
including expected trades and the distributions of residual supplies—as functions of price
impacts (Theorem 1). We prove the existence of a symmetric linear Bayesian Nash equi-
librium in the uniform-price double auction (Theorem 2) and equilibrium uniqueness for
symmetric markets (Proposition S1 in Appendix C of the Supplemental Material (Rostek
and Yoon (2021))).3

The paper’s second contribution is its implications of independence in market clearing
for equilibrium, welfare, and design, which underscore the role of imperfect competition.
Why would trading platforms not allow traders to condition their demands on more infor-
mation from other venues or trading protocols within the platform? In competitive mar-
kets (I → ∞), joint market clearing would be weakly more efficient than any other market
structure regardless of the characteristics of assets and traders, as contingent schedules
prevent inference error across exchanges. We show that in imperfectly competitive mar-
kets (I < ∞), welfare can be improved by moving away from the contingent design, even
if that means that when placing an order for an asset one cannot use all information from
all other assets. The key is that independent market clearing can lower the trading costs
associated with per-unit price impact for a given asset and/or across assets. Respectively,
multi-venue trading changes the traders’ ability to share an asset’s risk and diversify risk
across assets. Price impact is of first-order importance for traders’ incentives in financial
markets (see, e.g., the survey by Rostek and Yoon (2020b)).

Central to the effects of multi-venue trading that have no analogues with joint clear-
ing is that multi-venue trading severs the proportionality between the equilibrium price
impact—and hence cross-asset demand substitution—and the fundamental asset covari-
ance that holds with contingent trading. First, the cross-venue price impact becomes
zero,4 which may or may not be conducive to efficiency (Example 1). Second, with multi-
ple assets per venue, cross-asset price impacts are asymmetric except when asset covari-
ance and market structure are both symmetric across assets. Underlying the asymmetry
are the cross-asset inference effects brought by independence in market clearing. We pro-
vide the comparative statics of price impact, which can be higher or lower than in the con-
tingent market, with respect to the asset correlation and number of traders (Theorem 3,
Proposition S2 in Appendix C.1).

We present three main results. First, once one departs from the assumption that de-
mands are contingent, innovation in trading technology5 which would be neutral for
traders’ equilibrium payoffs with joint clearing (or have no counterparts) is no longer
redundant. We provide a complete characterization of non-neutral innovation. Proposi-
tion 4 identifies nonredundant innovation with a change in per-unit price impact. Intu-

quantity vector pointwise with respect to the price vector. Thus, the best-response demand coefficients need
not be characterized as a fixed point.

3With respect to asset correlations, trading needs, and market structure.
4Nevertheless, equilibrium behavior and outcome (i.e., prices and trades) are not independent across trad-

ing venues—unless the asset payoffs are independent.
5Or in market structure, depending on whether market clearing is interpreted as applying to trading venues

or the trading protocols that they provide—the model accommodates both. Neither alters the traders’ endow-
ments, assets’ net supply (which we assume to be zero, for simplicity), or participation. Thus, invoking the
notion of spanning: in contrast to the contingent model, innovation in market clearing for the traded assets
which does not change their payoff span is no longer redundant with independent market clearing.
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2890 M. ROSTEK AND J. H. YOON

itively, an innovation is not redundant if it alters the trading costs (or inference) across
assets. Not all new trading protocols affect welfare (Theorem 4).

Moreover, there is more nonredundant innovation in imperfectly competitive markets.
Namely, independent market clearing motivates two types of innovations that are nonre-
dundant: innovations that reduce inference error for all assets (e.g., the linking of existing
trading protocols by merging their assets or the listing of an asset in a trading proto-
col where it was not previously traded) and innovations that alter inference across assets
without letting the demand for any asset be contingent on prices of additional assets (e.g.,
opening another venue for a traded asset, Example 3). If the market were competitive,
the latter type of innovation would be redundant irrespective of demand conditioning.

Second, markets with multiple trading protocols that clear independently can be at least
as efficient as a single exchange that clears all assets jointly. We show that one can design
a market with multiple protocols—none of which clears all assets—that can function like
a single exchange. That is, equilibrium is ex post even if demand is not contingent on
the prices of all assets in any exchange. Thus, innovation in trading technology can bound
welfare at the corresponding contingent level—with no knowledge of traders’ preferences
and endowments or asset distribution. Such designs involve sufficiently many trading pro-
tocols for different assets, which enable the conditioning variables to eliminate inference
errors in traders’ expectations.

This equivalence result also characterizes the scope for nonredundant innovation that
can be introduced in a market. For a market structure to implement an equilibrium with
joint clearing, one venue per pair of assets suffices—the maximal number of nonredun-
dant protocols is K(K−1)

2 .
Third, we ask which designs can strictly improve welfare relative to the welfare bound

implemented by the designs equivalent to joint clearing. Hinting at the diversity of the
trading protocols in practice, the market structure in which all assets clear jointly (i.e.,
contingent demands or a payoff-equivalent design) is not generally efficient; nor is the
market structure in which every asset is traded in a separate venue (i.e., uncontingent
demands) efficient regardless of the market characteristics. In symmetric trading envi-
ronments, the extreme uncontingent/contingent market structures are optimal with as-
set payoff substitutabilities/complementarities, respectively. Sufficient heterogeneity in
either assets’ covariances or traders’ trading needs across assets can favor a market struc-
ture which is “intermediate” between contingent or uncontingent. In this case, inducing
asymmetries in trading costs can be beneficial.

Our results recognize that the welfare-enhancing exchange design should respond to
the number of traders, and joint substitution of the asset payoffs and trading needs of mar-
ket participants across assets.6 Even if assets’ payoffs are all either symmetric substitutes
or complements, efficient design depends on whether the market is “one-sided”—that is,
traders want to buy or sell all assets (e.g., the primary market for Treasury securities)—or
some assets are demanded while others are supplied (e.g., inter-dealer markets). In im-
perfectly competitive markets, given the assets and traders, a market structure with mul-
tiple venues is more efficient than joint clearing for some distributions of endowments
(Proposition 3). In fact, any demerger (i.e., breaking up a single exchange for all assets
into multiple venues) can increase welfare.

One might wonder whether the independence in market clearing across trading venues
has any effects, given that, when trading is dynamic, traders can often condition their

6In a market with multiple venues, all innovations are neutral if and only if the payoffs of all assets are either
perfectly correlated (i.e., cross-asset inference is perfect) or independent (i.e., cross-asset inference is absent),
or (by design) equilibrium is ex post.
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EXCHANGE DESIGN AND EFFICIENCY 2891

demands in one trading venue on past outcomes from other venues. Conditioning on
past outcomes allows information from past shocks to be (at least partially) incorporated
into traders’ demands—contingent or not. Our paper investigates how independence in
market clearing affects the way current-round shocks impact behavior and outcomes.7

Our results thus indicate a role for opaqueness in the form of independent market clear-
ing (embodied in restrictions on cross-asset conditioning), which has implications distinct
from transparency requirements (i.e., conditioning on past outcomes).

Other related literature. Our paper contributes to the literature on imperfectly compet-
itive trading.8 To our knowledge, we are the first to examine equilibrium and welfare
outcomes with arbitrary restrictions on cross-asset conditioning and to characterize the
(non)redundant exchange design. In fact, little is known about markets with multiple het-
erogeneous assets outside of settings with ex post equilibria. One precedent is Cespa
(2004), who examined price informativeness in competitive uncontingent markets with
two assets and noise traders. Contemporaneously, in a model with two assets and random
supply, Wittwer (2021) showed that traders trade the same amounts with contingent and
uncontingent demands if and only if traders’ private signals are perfectly correlated and
supplies are either zero or perfectly correlated across assets. In a one-asset model with
strategic traders and noise traders, Chen and Duffie (2021) showed that additional venues
increase welfare relative to one venue and the welfare-maximizing number of exchanges
is finite.

Apart from financial market applications, the techniques we introduce will be useful
to researchers studying games in which agents interact through contracts over multi-
ple goods, actions, or characteristics. One application is to package auctions with large
traders, who have price impact. The literature on package bids has supported package
designs when there are complementarities in traders’ demands. Our results show, how-
ever, that design recommendations should be qualified in markets with price impact and
multi-unit demands, even when traders and assets are symmetric. Moreover, package bids
can be implemented without the requirement that schedules must be contingent.

The problem in which players submit uncontingent demand schedules in different trad-
ing venues is also related to those studied by the literature on “island” models (in com-
petitive markets) and, more generally, the approach based on Nash-in-Nash.9 A typical

7With the gains from trade renewed by shocks (to endowment or information), if demand schedules are
contingent and traders are price-takers (I → ∞), the outcome will be efficient in every round. In a dynamic
model with imperfectly competitive traders (I < ∞), multiple rounds are needed to realize the gains from
trade from a given round’s shock. The effects of limited conditioning that we identify will be present in all
rounds. From the literature on dynamic trading (which is based on contingent demands or one-asset markets;
e.g., Du and Zhu (2017b), Rostek and Yoon (2019), see also the survey by Rostek and Yoon (2020b)), two
results can be extrapolated beyond contingent demands. First, whether the inefficiency of trade that stems
from limited demand conditioning can be eliminated in some limit depends on the relative frequencies of the
shocks renewing the gains from trade, market-clearing, and payoff realization (consumption). With shocks to
traders’ valuations occurring as frequently as trading rounds, the inefficiencies will generally be present even
with continuous trading. Second, apart from its contemporaneous effects (the focus of this paper), limited
conditioning will change temporal effects on price impact (see Lyu, Rostek, and Yoon (2021)).

8For example, Kyle (1989), Vayanos (1999), Vives (2011), Garleanu and Pedersen (2013), Rostek and
Weretka (2015), Sannikov and Skrzypacz (2016), Du and Zhu (2017a, 2017b), Kyle, Obizhaeva, and Wang
(2017), Duffie (2018), Kyle and Lee (2018), Zhu (2018a, 2018b), Antill and Duffie (2021), Bergemann,
Heumann, and Morris (2021), Zhang (2021).

9This solution concept, introduced by Horn and Wolinsky (1988), has become popular in the structural anal-
ysis of decentralized markets. As in this paper’s model, the applications of Nash-in-Nash have typically consid-
ered negotiated contracts, given the set of agreements. See, for example, Collard-Wexler, Gowrisankaran, and
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2892 M. ROSTEK AND J. H. YOON

context where Nash-in-Nash has been applied is surplus division in bargaining or contract-
ing with externalities—across contracts and agents—when negotiations are simultaneous.
Likewise, in this paper, the demand schedules that a player submits simultaneously for
different assets are essentially contracts specifying the quantities demanded as a function
of a subset of prices. There are two differences. In Nash-in-Nash, a player agrees to the
price in one contract while holding fixed (i) the prices in his other contracts10 and (ii) the
prices to which other players agree. By its virtue of treating prices as contingent variables
in traders’ demands, the (noncooperative) game in demand functions allows accounting
for the cross-contract and cross-player externalities in a Bayesian Nash equilibrium—
without employing the Nash-in-Nash counterfactual (which holds prices fixed in other
contracts) or restricting how beliefs can change off equilibrium (e.g., passive beliefs; Hart
and Tirole (1990)).11 Our model complements the Nash-in-Nash approach in applications
where inefficiencies in surplus sharing arise due to limited inference and imperfect com-
petition, and contracts involve multiple assets with cross-asset externalities. Accounting
for imperfect competition along with private information sheds light on how the design of
contracts over which agents bargain can enhance the equilibrium surplus when there are
cross-contract externalities. With price-taking behavior, contingent contracts are efficient.

Our paper also contributes to the literature on decentralized trading. Markets with con-
tingent schedules are centralized because a single market clearing applies to all assets. Ac-
cordingly, a market in which assets are traded in separate venues that clear independently
is decentralized. The assumption that schedules are contingent is the only assumption of
the centralized market model that we relax. In particular, assuming that all traders trade
all assets with all other traders allows us to focus on those effects of decentralized trading
that are due to incomplete conditioning as opposed to incomplete participation.12 The
literature recognizes several arguments as to why decentralized trading might be more ef-
ficient: it may improve traders’ learning about the asset value (Babus and Kondor (2018))
or asset price (Zhu (2014)); it may reduce inefficient screening (Glode and Opp (2016)) or
inefficient information aggregation (Kawakami (2017)); it may redistribute risk towards
less risk-averse traders (Malamud and Rostek (2017)); and it may be more stable than
the centralized market (Peivandi and Vohra (2021)). This paper contributes another ar-
gument: even if risk preferences are the same among all traders, decentralized trading

Lee (2019) and references there. We are grateful to an anonymous referee for suggesting we explore the link
to the literature on “island” models.

10This is typically justified using the “delegated agent” interpretation: a player involved in multiple bilateral
bargains relies on separate agents for each negotiation, and these agents cannot communicate with one another
while bargaining.

11With price-elastic demands, all price realizations occur in equilibrium for some realizations of endow-
ments.

12In the centralized market assumption, two assumptions are implicit. First, demand conditioning is com-
plete (i.e., demands are contingent); then, a single aggregation applies to all assets. Second, trader participation
in the market is complete in the sense that each trader trades all assets with all other traders. A growing lit-
erature on decentralized trading has explored the implications of limited participation modeled as fixed or
random (hyper)graphs (e.g., Gale (1986a, 1986b), Kranton and Minehart (2001), Duffie, Garleanu, and Peder-
sen (2005), Vayanos and Weill (2008), Afonso and Lagos (2015), Gofman (2018), Atkeson, Eisfeldt, and Weill
(2015), Elliott (2015), Choi, Galeotti, and Goyal (2017), Condorelli, Galeotti, and Renou (2017), Hugonnier,
Lester, and Weill (2020), Malamud and Rostek (2017), and Chang and Zhang (2019)). Babus and Kondor
(2018), Babus and Parlatore (2021), and Malamud and Rostek (2017) studied markets with limited participa-
tion and contingent contracts. Interestingly, with decentralized trading in the sense of limited demand condi-
tioning (e.g., this paper) as well as limited participation, the equilibrium price covariance and price impact are
not proportional to the asset covariance (see Malamud and Rostek (2017)). Yet, the effects on price impact, as
well as the underlying mechanisms, are distinct. Indeed, with limited participation and contingent schedules,
equilibrium is ex post.
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EXCHANGE DESIGN AND EFFICIENCY 2893

may improve risk sharing and/or diversification by lowering the trading costs that are due
to price impact.13

2. MODEL

Notation. We use the following notation: (xk)k is a vector in which the kth element is
xk, and (yk�)k�� is a matrix such that the (k��)th element is yk�; sets of the respective ele-
ments are denoted by {xk}k and {yk�}k��. Also, diag(xk)k = diag(x1� � � � � xK) is a diagonal
matrix in RK×K where the kth diagonal element is xk. The (k��)th element of matrix M
is denoted by mk�, and the kth row is denoted by Mk. To distinguish them from scalar
variables, vectors and matrices are denoted in bold, and matrices are capitalized.

Market: traders, assets, and exchanges. Consider a market with I ≥ 3 traders who trade K
risky assets in N exchanges. An exchange is defined by the assets traded (listed) there; all
traders participate in all exchanges. In Section 3, to ease exposition, we focus on markets
with one asset per exchange, N = K; in Sections 4 and 5, we consider exchanges with
multiple assets (Definition 4). We index traders by i, assets by k, and exchanges by n.

The payoffs of the K risky assets are jointly normally distributed r = (rk)k ∼ N (δ��)
with a vector of expected payoffs δ = (δk)k ∈ RK and a positive semi-definite covariance
matrix � ∈ RK×K . There is also a riskless asset with a zero interest rate (a numéraire).

Each trader i has quadratic utility in the quantity of risky assets (mean-variance):

ui
(
qi

) = δ · (qi + qi
0

) − αi

2
(
qi + qi

0

) ·�(
qi + qi

0

)
� (1)

where qi = (qi
k)k ∈ RK is trade, qi

0 = (qi
0�k)k ∈ RK represents the units of risky assets with

which trader i is initially endowed, and αi ∈ R+ is trader i’s risk aversion. Endowments
{qi

0}i are traders’ private information and are independent of asset payoffs r. Gains from
trade come from risk sharing and diversification: endowments are heterogeneous. All
traders are strategic.

In keeping with the literature, to ensure that the per-capita aggregate endowment
(equivalently, price) is random in the limit large market (I → ∞), we allow for the
common value component qcv

0 = (qcv
0�k)k ∈ RK in traders’ endowments. For each asset

k, privately known endowments {qi
0�k}i are correlated among traders through qcv

0�k ∼
N (E[qcv

0�k]�σcv): for each i,

qi
0�k = qcv

0�k + q
i�pv
0�k � q

i�pv
0�k ∼N

(
E

[
q
i�pv
0�k

]
�σpv

)
�

where q
i�pv
0�k are independent across i and k.14 Trader i knows his endowment qi

0 but not its
components qcv

0 or qi�pv
0 = (qi�pv

0�k )k ∈ RK . The endowments {qi
0�k}i and the common value

13Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018, 2019) examined the joint effects of an infor-
mation friction and market power (induced by a search friction) in over-the-counter markets.

14The common value component in {qi
0}i affects the magnitude of inference coefficients but does not affect

any results qualitatively. Assuming (correlated) private values better isolates the effects that are key to nonre-
undancy of innovation, which do not rely on inference related to common values. The approach to characterize
the linear equilibrium would go through with common values.
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2894 M. ROSTEK AND J. H. YOON

qcv
0�k are independent across assets k.15 We let q0 ≡ 1

I

∑
j qj

0 ∈ RK denote the aggregate

endowment and define σ0 ≡ σcv+ 1
I σpv

σcv+σpv
∈R.

Double auction. Each exchange is organized as a uniform-price double auction in which
traders submit strictly downward-sloping16 (net) demand schedules. For qi

k > 0, trader i
is a buyer of asset k; for qi

k < 0, he is a seller. We first consider two types of schedules:
contingent and uncontingent. In Section 4, we analyze arbitrary cross-asset conditioning.

DEFINITION 1—Contingent and Uncontingent Schedules: In a double auction with
contingent schedules, each trader i submits K demand functions qi�c(·) ≡ (qi�c

1 (p)� � � � �
qi�c
K (p)), each qi�c

k (·) : RK → R specifying the quantity of asset k demanded for any price
vector p = (p1� � � � �pK).

In a double auction with uncontingent schedules, each trader i submits K demand func-
tions qi(·) ≡ (qi

1(p1)� � � � � qi
K(pK)), each qi

k(·) : R → R specifying the quantity of asset k
demanded for any price pk.

How the market clears is determined by demand conditioning. With uncontingent
schedules, the market clears independently across assets: the market-clearing price pk

sets the aggregate net demand in each exchange k to zero,
∑

i q
i
k(pk) = 0. With contin-

gent schedules, the K assets clear jointly: the equilibrium price vector is determined by∑
i qi�c(p1� � � � �pK) = 0 ∈ RK . With either type of schedule, trader i trades {qi

k}k, pays∑
k pkq

i
k, and receives a payoff of ui(qi) − p · qi.

Equilibrium. We study the Bayesian Nash equilibrium in linear demand schedules
(hereafter, equilibrium).

DEFINITION 2—Equilibrium: A profile of (net) demand schedules {{qi
k(·)}k}i is a

Bayesian Nash equilibrium if, for each i, {qi
k(·)}k maximizes the expected payoff:

max
{qik(·)}k

E

[
δ · (qi + qi

0

) − αi

2
(
qi + qi

0

) ·�(
qi + qi

0

) − p · qi|qi
0

]
� (2)

given the schedules of other traders {{qj
k(·)}k}j �=i and market clearing

∑
j q

j
k(·) = 0 for all

k.

As is well known, in markets with contingent schedules, equilibrium is invariant to
the distribution of private endowments; that is, the linear Bayesian Nash equilibrium
with (possibly correlated) private endowments has an ex post property.17 The contingent
schedule allows a trader to choose his demand for each asset as a function of all prices

15For simplicity, we assume the symmetry of endowments’ variance across traders and their independence
across assets; the results hold qualitatively without these assumptions. Our equilibrium characterization in
Appendix A allows for correlated endowments across assets that are symmetrically correlated across traders.

16That is, the Jacobian of demand schedules ∂qi (·)
∂p = ( ∂qik (·)

∂p�
)k�� ∈ RK×K is negative semi-definite. This rules

out trivial equilibria with no trade.
17Equilibrium is linear if schedules have the functional form of qi(·) = ai +Biqi

0 +Cip. Equilibrium is ex post
if equilibrium schedules {qi

k(·;qi
0)}k are optimal for all i, given endowment realizations for all traders {qj

0}j :{
qi
k

(·;qi
0

)}
k
= arg max

{qik (·)}k
E

[
δ · (qi + qi

0

) − αi

2
(
qi + qi

0

) ·�(
qi + qi

0

) − p · qi|
{
qj

0

}
j

]
�
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EXCHANGE DESIGN AND EFFICIENCY 2895

to be realized, which map one-to-one to realizations of quantities traded of other assets.
With uncontingent schedules, equilibrium is not generally ex post. Given the quasilinear-
quadratic utility, traders face uncertainty both with respect to the price and payoff; their
expected payoff (2) penalizes the latter, but not the former.

Competitive market. The competitive market will often serve as a benchmark when eval-
uating the effects of incomplete conditioning with imperfectly competitive traders.18

DEFINITION 3—Competitive Market, Competitive Equilibrium: Consider a market
with I < ∞ traders. The competitive market is the limit game as I → ∞, holding fixed
all other primitives. Letting {qi�I (·)}i be the equilibrium in the market with I < ∞ traders,
the competitive equilibrium {qi(·)}i is the limit of equilibria {qi�I (·)}i as I → ∞:

qi(·) = lim
I→∞

qi�I(·) ∀i�

3. EQUILIBRIUM: CONTINGENT VERSUS UNCONTINGENT DEMANDS

In this section, we characterize equilibrium in markets with uncontingent demands
(Proposition 2, Theorem 1, and Corollary 1). For the sake of comparison, we also review
equilibrium with contingent demands.

Although the contingent and uncontingent models are quite different, equilibria in both
models can be characterized through parallel conditions (Propositions 1 and 2). First, a
key argument (Lemma S2 in Appendix B of the Supplemental Material) shows that the
well-known equivalence between individual trader optimization in demand functions (2)
and pointwise optimization with respect to the realizations of p ∈ RK in the contingent
model also holds in the uncontingent model with respect to the realizations of the rele-
vant contingent variable, pk ∈ R. Both pointwise problems are motivated by the observa-
tion that when traders submit demand schedules contingent on price realizations (of any
subset of assets), it is useful to adopt the perspective of an individual trader who optimizes
against a profile of his residual supply functions, which is the sufficient statistic of a resid-
ual market {{qj

k(·)}k}j �=i.19 The residual supply S−i�c
k (·) :RK → R for asset k is a function of

p if demands are contingent ({qi�c
k (·) : RK → R}i), and S−i

k (·) : R → R is a function of pk

if demands are uncontingent ({qi
k(·) : R → R}i). Second, in equilibrium, the residual sup-

ply functions are correct: S−i
k (·) = −∑

j �=i q
j
k(·) for all k by aggregation through market

clearing of the other traders’ submitted schedules.

18The common value component qcv
0 in traders’ endowments {qi

0}i ensures that the price (equivalently, the
per-capita aggregate endowment) is random in the limit large market (I → ∞). To make the price variance
Var[p|qi

0] = �Var[(
∑

j
1
αj

)−1qj
0|qi

0]�′ independent of the number of traders I , the risk aversion αi in utility (1)

can be scaled according to αi�I ≡ αi I
I−1

√
(σcv + 1

I
σpv)−1σcv . As I → ∞, αi�I → αi > 0 for all i. More generally,

one can jointly scale (αi�σcv�σpv).
19The idea of considering the pointwise optimization problem of a single trader, taking as given his residual

market, goes back to Klemperer and Meyer (1989) and Kyle (1989). Rostek and Weretka (2015) introduced
the equilibrium characterization in terms of the fixed point in price impacts (Proposition 1 below), showing
equivalence between the equilibrium conditions in Definition 2 and Proposition 1. The characterization of the
equilibrium with contingent demands for heterogeneous risk aversions (Eq. (8)) is from Malamud and Rostek
(2017).
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2896 M. ROSTEK AND J. H. YOON

3.1. Equilibrium With Contingent Demands

Consider the optimization problem (2) of trader i who submits demand schedules
qi�c(·) : RK → RK contingent on price realizations for all assets p ∈ RK .20 It is well known
that maximizing the expected payoff (2) is the same as maximizing the ex post pay-
off pointwise with respect to realizations of p (e.g., Klemperer and Meyer (1989), Kyle
(1989)): for each asset k,

max
q
i�c
k

∈R

{
δ · (qi�c + qi

0

) − αi

2
(
qi�c + qi

0

) ·�(
qi�c + qi

0

) − p · qi�c

}
∀p ∈ RK�

given the trader’s demands for other assets {qi�c
� (·)}��=k and his residual supply function

S−i�c(·) : RK → RK for all assets. In essence, the equivalence follows because the demand
for each asset is measurable with respect to {p�qi

0} (i.e., the contingent variable p and the
privately known endowment vector qi

0) and, as we will show, price distribution has full
support (see Remark 1).

Coupled with the requirement that the residual supply is correct, that is, S−i�c(·) =
−∑

j �=i q
j�c(·) for all i, pointwise optimization leads to an equilibrium characterization

in terms of two simple conditions (Proposition 1).
Step 1 (Optimization, given price impact). The first-order condition with respect to the

demand for each asset qi�c
k is: for each k,

δk − αi

(
σkk

(
qi�c
k + qi

0�k

) +
∑
��=k

σk�

(
qi�c
� + qi

0��

))
︸ ︷︷ ︸

Marginal utility for asset k

= pk + dpk

dqi�c
k

qi�c
k +

∑
��=k

dp�

dqi�c
k

qi�c
�

︸ ︷︷ ︸
Marginal payment for asset k

∀p ∈ RK� (3)

In a linear equilibrium,21 dp�

dq
i�c
k

≡ λi�c
k� is constant for each k��, and i. Written in matrix form,

the first-order conditions (3) become

δ− αi�
(
qi�c + qi

0

) = p +�i�cqi�c ∀p ∈ RK� (4)

20A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously differen-
tiable functions {
qi

k(·) : RK → R}k so that qi(·) + 
qi(·) is downward-sloping with respect to p ∈ RK , that is,
the Jacobian ∂(qi (·)+
qi (·))

∂p ∈RK×K is negative semi-definite.
21More precisely, assuming that the best-response demands of traders j �= i are linear. If utilities were non-

quadratic or distributions of traders’ initial holdings were non-Gaussian, the equilibrium would not be linear.
While, in a nonlinear equilibrium, some conditions might be required for the one-to-one mapping between the
price realizations for each asset and the residual supply intercepts’ realizations of these assets, the equivalence
with pointwise optimization does not hinge on the linear-quadratic environment. In a nonlinear equilibrium,
additional effects would arise and accordingly amend the welfare analysis; however, the main results would
apply (e.g., nonredundancy, welfare trade-off, alternative implementation of the contingent outcome). These
results do not rely on the linearity, only the monotonicity between conditioning variables and random variables.

 14680262, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
16537 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline L

ibrary on [31/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EXCHANGE DESIGN AND EFFICIENCY 2897

where matrix

�i�c ≡ dp
dqi�c

=
(
dp�

dqi�c
k

)
k��

=

⎡
⎢⎢⎢⎣

dp1

dqi�c
1

· · · dpK

dqi�c
1

���
� � �

���
dp1

dqi�c
K

· · · dpK

dqi�c
K

⎤
⎥⎥⎥⎦ ∈RK×K

is the price impact of trader i. Its (k��)th element λi�c
k� represents the price change in

asset � following a demand change in asset k by trader i. The inverse of price impact is a
common measure of liquidity: the lower the price impact, the smaller the price concession
a trader must accept, and the more liquid the market. From the first-order condition (4),
the best-response demand of trader i is

qi�c(p) = (
αi�+�i�c

)−1(
δ− p − αi�qi

0

) ∀p ∈RK� (5)

given his price impact �i�c , which is a sufficient statistic for trader i’s residual supply func-
tion (see Remark 3) and is endogenized in Step 2.

Step 2 (Correct price impact). In equilibrium, the price impact in the pointwise first-order
condition (4) of trader i must be correct, that is, must equal the transpose of the K × K
Jacobian matrix of the trader’s inverse residual supply function. Applying market clearing
to the best-response demands (5) for traders j �= i yields the residual supply function
S−i�c(·) of trader i:

S−i�c(p) = −
∑
j �=i

(
αj�+�j�c

)−1(
δ− αj�qj

0

) +
∑
j �=i

(
αj�+�j�c

)−1
p ∀p ∈ RK� (6)

The price impact of trader i is �i�c ≡ ( dp�

dq
i�c
k

)k�� = (( ∂S−i�c (·)
∂p )−1)′.

Proposition 1 gives an equivalent characterization of the equilibrium in demand sched-
ules by two conditions: (i) traders optimize, given their assumed price impacts, (ii) which
are correct.

PROPOSITION 1—Equilibrium: Contingent Trading: A profile of (net) demand schedules
{qi�c(·)}i is a linear Bayesian Nash equilibrium if and only if, for each trader i,

(i) (Optimization, given price impact) Demand schedules qi�c(·): RK → RK are deter-
mined by pointwise equalization of marginal utility and marginal payment in Eq. (5),
given his price impact �i�c , such that:

(ii) (Correct price impact) The price impact of trader i equals the transpose of the Jaco-
bian of his inverse residual supply function:

�i�c =
((∑

j �=i

(
αj�+�j�c

)−1
)−1)′

� (7)

The fixed point for price impact matrices defined by the system of I equations (7) can
be solved in closed form when demands are contingent: for each i,

�i�c = βi�cαi�� (8)
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2898 M. ROSTEK AND J. H. YOON

where βi�c = 2−αib+
√

(αib)2+4
2αib ∈ R+ and b ∈ R+ is the unique solution to

∑
j(α

jb + 2 +√
(αjb)2 + 4)−1 = 1/2. If risk aversions are symmetric (i.e., αi = α for all i), then the price

impact is �i�c = α
I−2�.

Analyzing the price impact directly offers insights into the role of imperfectly compet-
itive behavior. As I → ∞, then �i�c → 0 for all i,22 and the competitive limit demand
coincides with the inverse marginal utility, given the quasilinearity of the payoff function.
When the price impact is positive, �i�c > 0, trader i demands (or sells) less than if he had
submitted his competitive schedule.

Remarks. We note four properties, which—with the exception of the second—do not
hold when demands are not contingent.

1. By Eq. (8), the price impact of trader i derives from the utility concavity of the resid-
ual market {αj�}j �=i

23 and, with contingent trading, the equilibrium price impact of every
trader is proportional to the fundamental covariance matrix �. This proportionality be-
tween incentives (�) and fundamental risk (�) has important implications for how the
contingent market functions and, as we will show, does not hold in more general designs
because of cross-asset inference (cf. Theorem 3, Proposition S2 in Appendix C.1).

2. All price realizations p ∈ RK occur in equilibrium for some realizations of endow-
ments, given the traders’ downward-sloping demands (i.e., the Jacobian ∂qi�c (·)

∂p = −(αi�+
�i)−1 < 0).24 The market-clearing condition (Definition 2) is accounted for by condition
(ii) for price impacts (Eq. (7)). Hence, the first-order conditions must hold for all prices,
and the price impact of each trader is determined by the requirement that optimization,
Bayesian inference, and market clearing hold in equilibrium and following a unilateral
demand change. This makes precise the difference with Nash-in-Nash (see Introduction).

3. A trader’s own price impact �i�c is a sufficient statistic for the residual supply function
in the best-response problem. This holds due to the one-to-one mapping between the
contingent variable (i.e., price vector p) and the residual supply’s intercept (i.e., the vector
s−i�c ≡ −∑

j �=i(α
j�+�j�c)−1(δ− αj�qj

0) ∈ RK in Eq. (6)) for all assets.
4. Equilibrium is ex post, given the one-to-one mapping.

3.2. Equilibrium With Uncontingent Demands

Consider the optimization problem (2) of trader i in a market with K exchanges, each
for one asset, who submits demand schedules {qi

k(·) : R → R}k.25 The trader’s objective
function is the same as with contingent trading; in particular, his information set (i.e., qi

0)
is. However, the choice variable differs: the demand in the exchange for asset k is contin-
gent on, and hence measurable with respect to, price pk only. Consequently, maximizing
expected payoff (2) is not the same as maximizing ex post payoff.

22The price impact converges to zero as I → ∞ so long as the risk aversion αi�I increases slower than
linearly, αi�I = αiγI where γI ∼ o(I1−ε) for some ε ∈ (0�1) (Lemma S3 in Appendix B). Aggregate endowment
is random in the limit, provided that traders’ endowments are correlated via qcv

0 (σcv > 0); see ft. 18.
23The riskier the assets traded and the more risk averse trader i’s counterparties, the less elastic their

marginal utilities, the less elastic the residual supply of trader i, and the larger the price concessions that i
has to accept.

24If M is not invertible, M−1 is the Moore–Penrose pseudoinverse of M.
25A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously differ-

entiable functions {
qi
k(·) : R → R}k so that qi

k(·) + 
qi
k(·) is downward-sloping, that is, ∂(qik (·)+
qik (·))

∂pk
< 0 for

all k.
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EXCHANGE DESIGN AND EFFICIENCY 2899

Proposition 2 establishes that, analogously to the contingent market (Proposition 1), a
trader’s pointwise optimization for each asset k, now with respect to pk ∈ R, is necessary
and sufficient for optimization in demand functions (i.e., {qi

k(·)}k): for each asset k,

max
qi
k
∈R

E

[
δ · (qi + qi

0

) − αi

2
(
qi + qi

0

) ·�(
qi + qi

0

) − p · qi|pk�qi
0

]
∀pk ∈ R� (9)

given his demands for other assets {qi
�(·)}��=k and a profile of residual supply functions

{S−i
� (·) :R →R}� for all assets.
Compared to contingent trading (Eq. (3)), the first-order condition differs in two ways:

δk − αi

(
σkk

(
qi
k + qi

0�k

) +
∑
��=k

σk�

(
E

[
qi
�|pk�qi

0

]︸ ︷︷ ︸
Expected trade

of asset �

+qi
0��

))

︸ ︷︷ ︸
Expected marginal utility for asset k

= pk + λi
k︸︷︷︸

Zero cross-exchange

price impact

qi
k

︸ ︷︷ ︸
Marginal payment for asset k

∀pk ∈ R� (10)

where λi
k ≡ dpk

dqi
k

∈ R+ is the price impact of trader i in the exchange for asset k; in a linear

equilibrium, λi
k is constant. First, a trader’s demand for asset k depends on expected rather

than realized trades of other assets � �= k, E[qi
�|pk�qi

0]. Equilibrium is generally not ex post.
Second, the cross-exchange price impact is zero: λi

k� ≡ dp�

dqi
k

= 0 for all k and � �= k, since the

residual supply function S−i
k (·;{qj

0}j �=i) : R → R is contingent on pk but not {p�}��=k. It
follows that, in contrast to the contingent market, where the price impact matrices of all
traders are proportional to the covariance matrix � (Eq. (8) and Remark 1), the price
impacts of all traders are diagonal matrices: for each i,

�i ≡
(
dp�

dqi
k

)
k��

= diag
(
λi
k

)
k
∈ RK×K�

Although the cross-exchange price impact is eliminated, equilibrium behavior and out-
come (i.e., prices and allocations) are not independent across exchanges—unless all as-
sets’ payoffs are independent (i.e., σk� = 0 for all � �= k), in which case traders’ utility
Hessian is separable.

Proposition 2 takes the intercept of trader i’s residual supply s−i
k rather than price pk

as a contingent variable—s−i
k is exogenous in the best-response problem of trader i. This

allows us to separate the best-response and equilibrium problems analogously to Propo-
sition 1: (i) optimization by trader i, given i’s residual supply (Step 1); (ii) which is correct
(Step 2).

For each trader i, let F ((qj
0)j �=i|qi

0) be the joint distribution of other traders’ endow-
ments and let F (s−i|qi

0) be the joint distribution of the intercepts s−i ≡ (s−i
k )k of the resid-

ual supplies of trader i—both conditional on trader i’s privately known endowment. The
former distribution is a primitive object; the latter is not, but it is taken as given in trader
i’s best-response problem. Given the linear demands {qj(·)}j �=i, F (s−i|qi

0) is jointly Nor-
mal.

PROPOSITION 2—Equilibrium: Uncontingent Trading: A profile of (net) demand sched-
ules {{qi

k(·)}k}i is a linear Bayesian Nash equilibrium if and only if, for each trader i,
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2900 M. ROSTEK AND J. H. YOON

(i) (Optimization, given residual supply) Demand schedules qi
k(·) : R → R are deter-

mined by equalization of expected marginal utility and marginal payment for each asset
k pointwise to pk ∈ R:

δk − αi�kE
[
qi + qi

0|s
−i
k �qi

0

] = pk + λi
kq

i
k ∀pk ∈ R� (11)

given the trader’s own demands for other assets {qi
�(·)}��=k, the distribution F (s−i|qi

0),
and price impact �i = diag(λi

k)k.
(ii) (Correct residual supply) The residual supply function S−i

k (·) : R → R of trader i is
determined by applying market clearing to the best responses of traders j �= i {qj

k(·)}j �=i

that satisfy condition (i): for each k,

S−i
k (·) = −

∑
j �=i

q
j
k(·)�

The price impact λi
k of trader i is characterized by the slope of (S−i

k (·))−1. The distribu-
tion F (s−i|qi

0) is characterized by the intercept of S−i
k (·), given F ((qj

0)j �=i|qi
0).

Remarks.
5. Because the demand for asset k is not measurable with respect to prices of other as-

sets, asset by asset optimization and the equivalence with the pointwise problem is more
subtle than in the contingent model. Lemma S2 in Appendix B shows that asset by asset
optimization is without loss of generality by the Fréchet differentiability of expected pay-
off (2) with respect to the profile of demand schedules {qi

k(·)}k. Proposition 2 shows that
the first-order condition computed pointwise to its contingent variables in each exchange
is necessary and sufficient, subject to the second-order conditions.

6. Because of inference across assets as well as across traders, the equilibrium charac-
terization is more challenging in two ways.

First, the price impact �i is not by itself a sufficient statistic for the residual supply
of trader i (cf. Remark 3)—the joint distribution of the conditioning variable s−i (equiv-
alently, p) matters. Second, in a trader’s best response (10) for asset k, expected trades
E[qi

�|pk�qi
0] depend on the distribution of his endogenous quantity traded of other assets,

{qi
�}��=k. Therefore, characterizing a trader’s own best-response demands requires solving

a fixed point for the trader’s own demand coefficients across assets.
To elaborate on the latter point, in a trader’s multivariate optimization problem (2)—

contingent or uncontingent—the system of first-order conditions defines a fixed point
problem among the trader’s best-response schedules. With contingent demands, the sys-
tem can be written as a single matrix equation, δ − αi�(qi�c + qi

0) = p + �i�cqi�c for all
p ∈RK (Eq. (4)) for a quantity vector qi�c = (qi�c

k )k as a function of the common condition-
ing variable p, and can be solved for qi�c pointwise with respect to p. (Equation (5) gives
the closed-form solution.) Thus, the coefficients of the best-response functions need not
be characterized as a fixed point across assets.

Theorem 1 in Section 3.2.1 endogenizes all demand coefficients (Step 1)—including
expected trades {{E[qi

�|pk�qi
0]}��=k}k—and the distribution of the residual supply (Step 2)

as functions of price impacts {�i}i. It thus shows that a fixed point in uncontingent demand
schedules {{qi

k(·)}k}i is equivalent to a fixed point in price impact matrices.

3.2.1. Equilibrium as a Fixed Point in Price Impacts

This section presents our main characterization result, Theorem 1. To tackle the charac-
terization of the fixed point problem for a trader’s best-response schedules {qi

k(·)}k across
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EXCHANGE DESIGN AND EFFICIENCY 2901

assets, we first transform the system of first-order conditions (10) into a fixed point among
the trader’s demand coefficients, given the residual supplies, that is, �i and F (s−i|qi

0)
(Step 1). We then endogenize the distribution of the residual supply—and thus all demand
coefficients, including expected trades E[qi

�|pk�qi
0] for all � �= k and k—as a function of

price impacts {�i}i and characterize equilibrium as the fixed point for {�i}i (Step 2).
Best-response problem (Step 1). In each exchange k, we parameterize a trader’s conjec-

tured best responses for other assets � �= k as linear functions of p� and qi
0:

qi
�(p�) ≡ ai

� − bi
�q

i
0 − ci�p� ∀p� ∈ R� (12)

with the demand intercept ai
� ∈ R, the demand coefficients bi

� ∈ R1×K on qi
0, and the de-

mand slope ci� ∈R+ on p�.
The parameterization of demands (12) allows us to change the conditioning variables

in expected trades (from pk to s−i
k ) and endogenize expected trades in terms of variables

that are exogenous in the trader’s best-response problem for asset k. By market clearing,
given the residual supply S−i

� (·) = s−i
� + (λi

�)
−1p�, we have ai

� −bi
�q

i
0 − ci�p� = s−i

� + (λi
�)

−1p�

for all s−i
� ∈R, which gives p� as a linear function of s−i

� and

E
[
qi
�|pk�qi

0

] =E

[
ai
� − bi

�q
i
0 − ci�

ci� + (
λi
�

)−1

(
ai
� − bi

�q
i
0 − s−i

�

)
|s−i

k �qi
0

]
∀s−i

k ∈ R�

Theorem 1 shows that when traders’ risk aversions are the same, the fixed point problem
for the coefficients of best-response schedules {qi

k(·)}k in Eqs. (13)–(15) has a unique
solution.

Equilibrium as a fixed point in price impacts (Step 2). With best-response coefficients
{ai

k�bi
k� c

i
k}k endogenized as functions of �i and F (s−i|qi

0), the equilibrium fixed point
problem becomes one among the traders’ residual supply functions {�i� F (s−i|qi

0)}i. The
latter fixed point problem across traders is still complex and has a larger dimensionality.26

Nevertheless, the equilibrium distributions of the residual supply {F (s−i|qi
0)}i can them-

selves be characterized as functions of only price impacts {�i}i, given the primitive distri-
bution of endowments: Applying market clearing to the best-response schedules {qj

k(·)}j �=i

gives the residual supply functions of trader i (i.e., condition (ii) in Proposition 2): for
each k,

S−i
k (pk) = −

∑
j �=i

(
a
j
k − bj

kqj
0

)
︸ ︷︷ ︸

=s−i
k

+
∑
j �=i

c
j
k︸ ︷︷ ︸

=(λi
k

)−1

pk ∀pk ∈ R�

26In the contingent market, the equilibrium fixed point equations (i.e., price impact equations) reduce to
scalar equations, given the proportionality of the price impact matrix in the covariance; hence, the fixed point
problem involves I scalar variables {βi�c}i (Eq. (8)). When schedules are not contingent, since the price impact
�i is not by itself a sufficient statistic for the residual supply, the additional fixed point problem among the
distributions of the residual supplies’ intercepts of all assets involves (K+ K(K+1)

2 )I variables—K first moments
{E[s−i

k |qi
0]}k and K(K+1)

2 second moments {Cov[s−i
k � s−i

� |qi
0]}k�� for each i. Theorem 1 shows that equilibrium can

be characterized by IK price impacts {{λi
k}k}i .
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2902 M. ROSTEK AND J. H. YOON

Finally, in each exchange, the equilibrium price impact λi
k ≡ dpk

dqi
k

∈ R+ must equal the

slope of the inverse residual supply function: λi
k = −(

∑
j �=i

∂q
j
k

(·)
∂pk

)−1 = (
∑

j �=i c
j
k)−1 for all i

and k.
Theorem 1 characterizes the equilibrium demand coefficients ai ≡ (ai

k)k ∈ RK , Bi ≡
(bi

k)k ∈ RK×K , and Ci ≡ diag(cik)k ∈ RK×K as functions of price impact—in matrix closed
form—and characterizes the equilibrium price impact in terms of primitives. In the main
text, we assume symmetric risk preferences and present the characterization of the sym-
metric equilibrium27 for simplicity of notation. In Appendix A, we state and prove the
result for an asymmetric equilibrium.

Assumption (Symmetric Risk Preferences). Let αi = α for all i.
Notation. Let [·]d : RK×K → RK×K be an operator such that, for any matrix M, [M]d is a

diagonal matrix with the (k��)th element equal to zero for k �= � and the (k�k)th element
equal to mkk for any k.

THEOREM 1—Equilibrium: Fixed Point in Demand Schedules: In a symmetric equilib-
rium, the (net) demand schedules, defined by matrix coefficients {ai}i�B, and C, and price
impact � are characterized by the following conditions: for each trader i,

(i) (Demand coefficients, given price impact) Given price impact matrix �, the coeffi-
cients of (net) demands ai�B, and C are characterized by

ai = C
(
δ− (

α�− C−1B
)
E[q0]

)
︸ ︷︷ ︸

=p−C−1Bq0

+ (
(α�+�)−1α�− B

)(
E[q0] −E

[
qi

0

])
�︸ ︷︷ ︸

Adjustment due to cross-asset inference

(13)

B = ((
1 − σ2

0

)
(α�+�) + σ2

0 C−1︸ ︷︷ ︸
Adjustment due to

cross-asset inference

)−1
α�� (14)

C = [
(α�+�) (BB′)[BB′]−1

d︸ ︷︷ ︸
Inference coefficient

Var[s−i|qi0][Var[s−i|qi0]]−1
d

]−1

d
� (15)

(ii) (Correct price impact) Price impact � equals the transpose of the Jacobian of the
trader’s inverse residual supply function:

�= 1
I − 1

(
C−1

)′ = α

I − 2
[
�(BB′)[BB′]−1

d

]
d
� (16)

27Equilibrium is symmetric if, for all k, price impacts satisfy λi
k ≡ λk for all i, demand coefficients satisfy

cik ≡ ck and bi
k ≡ bk for all i, and ai

k is a symmetric function of {{E[qj
0]}j �=i�E[qi

0]} across traders. We will
suppress the superscript i except where it is helpful.
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EXCHANGE DESIGN AND EFFICIENCY 2903

Note that the price slope C is a diagonal matrix in the uncontingent market and
(BB′)[BB′]−1

d = Var[s−i|qi
0][Var[s−i|qi

0]]−1
d is the inference coefficient. Appendix C.2 de-

rives demand coefficients for K = 2.
Equilibrium outcome. Theorem 1 enables a direct comparison between the imperfectly

competitive (I < ∞) and competitive (I → ∞) outcomes. The competitive case is char-
acterized by �i → 0 for all i.

By Theorem 1, the implications of independence in market clearing that we will sub-
sequently characterize can be understood through the structure of the endogenous price
impact matrix. To begin, Corollary 1 shows how independence in market clearing affects
the equilibrium outcome. To ease the comparison, if the market clears jointly, then by
Eqs. (5) and (8),

Bc = (
α�+�c

)−1
α�= I − 2

I − 1
Id� Cc = (

α�+�c
)−1

� �c = α

I − 2
��

where Id ∈ RK×K is the identity matrix. By contrast, in the uncontingent market, traders’
demand coefficients depend on the distribution of traders’ endowments through cross-
asset inference, as do price impacts.

COROLLARY 1—Equilibrium Prices and Allocations: Given the equilibrium demand co-
efficients {ai}i�B�C, and price impact � in Theorem 1, equilibrium prices and allocations
are

p = δ− (
α�− C−1B

)
E[q0] − C−1Bq0� (17)

qi + qi
0 = (

(α�+�)−1α�− B
)(
E[q0] −E

[
qi

0

]) + Bq0 + (Id − B)qi
0� (18)

We highlight two implications of the outcome’s dependence on inference. In contrast
to the contingent market, where pc = δ − α�q0, the second moment Var[p] of the dis-
tribution of equilibrium prices depends on the distribution of endowments—through the
endogenous demand coefficient C−1B—rather than only the exogenous asset covariance
�. In particular, the price covariance of any asset pair depends on the second moment of
the joint distribution of all assets and not merely the covariance of the pair. (We explore
the implications of this property in Section 3.2.3 and Example 3.) Additionally, the allo-
cations’ weights on the idiosyncratic and market risk (i.e., Id − B and B) now depend on
the asset covariance and the distribution of endowments. Thus, asset payoff substitution
(�) itself factors in which assets’ allocation is more efficient.

Intuitively, cross-asset inference changes how traders’ incentives (�) are shaped by the
fundamental risk (�). More precisely, independence in market clearing breaks the pro-
portionality between price impact, and thus cross-asset demand substitution (i.e., the in-
verse of Jacobian C), and asset covariance (cf. Remark 1). The nonproportionality of C
to �

−1 continues to hold in the limit as I → ∞.

THEOREM 2—Existence of Symmetric Equilibrium: There exists a symmetric linear
Bayesian Nash equilibrium. When K = 2, equilibrium is unique.

In the contingent market, the proportionality of price impact to asset covariance re-
duces the fixed point problem for {�i�c}i to one for scalars {βi�c ∈ R}i (Eq. (8)). In the
uncontingent market, the argument differs in two ways, due to cross-asset inference (i.e.,
inference coefficient (BB′)[BB′]−1

d ). First, price impact matrices are not proportional to
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2904 M. ROSTEK AND J. H. YOON

the covariance, and ought to be found jointly for all assets and traders. Second, the map-
ping for price impact �i—defined by the fixed point Eqs. (14) and (16)—is not monotone
in price impacts {�j}j �=i.

Given Theorem 1’s result that a fixed point in demand schedules can equivalently (for
I < ∞) be represented as a fixed point in price impact matrices, the existence of equilib-
rium follows from the Brouwer fixed point theorem (Theorem 2) with the bounds on the
price impact being matrices (rather than scalars).28

3.2.2. Preview

Example 1 provides a preview of the results that follow.

EXAMPLE 1—Price Impact With Uncontingent Demands: Consider a market with two
imperfectly correlated assets, 0 <|ρ12|< 1, ρ12 = σ12√

σ11σ22
:

� =
[
σ11 σ12

σ21 σ22

]
� �i�c =

[
λi�c

1 λi�c
12

λi�c
21 λi�c

2

]
� �i =

[
λi

1 0
0 λi

2

]
�

In the contingent market, the cross-asset price impact inherits the covariance’s sign, by the
proportionality of the price impact �i�c in the covariance � (Eq. (8) and Remark 1). When
the assets are payoff substitutes, σ12 > 0, for the traders who take the same (buying or
selling) position in both assets, the cross-asset price impacts λi�c

12 > 0 and λi�c
21 > 0 increase

the marginal trading cost of each asset:

p1 + λi�c
1 qi�c

1 + λi�c
12q

i�c
2 � p2 + λi�c

2 qi�c
2 + λi�c

21q
i�c
1 �

thereby exacerbating the demand reduction relative to the competitive demand. When the
assets are payoff complements, σ12 < 0, the negative cross-asset price impacts λi�c

12 < 0 and
λi�c

21 < 0 lower the trading costs. These effects are absent with uncontingent demands—the
cross-asset price impacts λi

12 and λi
21 are zero. Moreover, as we will show, the within-

exchange price impacts λi
1 and λi

2 change due to cross-asset inference (Theorem 3).

As Example 1 indicates (and Proposition 3 and Corollary 4 will demonstrate), letting
assets clear independently can increase welfare in some trading environments. Unlike the
competitive market, the characteristics of traders (i.e., trading needs across assets) and
assets (i.e., the asset covariance) matter for which design is efficient. In particular, when
traders have an impact on prices, neither the market structure in which all assets clear
jointly nor that in which each asset is traded in a separate exchange is always efficient.

28Proposition S1 in Appendix C provides a uniqueness result for K ≥ 2 in symmetric markets. In more gen-
eral markets, the numerical iteration that solves the equilibrium fixed point equation (Theorem 1) converges
to the same equilibrium in extensive simulations including random initial values, different forms of the fixed
point equation, and fixed points with respect to � and C. In the contingent model, the equilibrium uniqueness
can be shown outside the symmetric-market environments by applying the argument from a one-asset market,
using the proportionality of the price impact in the covariance matrix (Eq. (8)) (see Malamud and Rostek
(2017)). Lambert, Ostrovsky, and Panov (2018) considered a game in which strategies are quantities (market
orders) with one asset and one liquidity provider; the scalar price impact solves a quadratic equation that has
a unique positive solution, which gives equilibrium uniqueness. We analyze games in demand and supply func-
tions with multiple assets and price impacts characterized by a system of nonlinear (non-polynomial) matrix
equations.
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EXCHANGE DESIGN AND EFFICIENCY 2905

We will show that one can design a market with multiple venues that clear indepen-
dently which for any characteristics of traders and assets is as efficient as a single exchange
that clears all assets jointly (Section 4). Thus, a suitable design can implement a lower
bound on welfare with no knowledge of traders’ preferences or endowments. In fact,
multi-venue design can be strictly more efficient than joint clearing (Section 5). Under-
lying these results is that innovation that would be neutral for traders’ payoffs with joint
clearing (if well-defined at all) is no longer redundant—another consequence of the non-
proportionality between the price impact matrix �i and the covariance matrix �.

3.2.3. Comparative Statics of Price Impact

As anticipated by Example 1, Theorem 1, and Corollary 1, the price impact will be
the key to understanding the design and welfare implications of independence in market
clearing in Sections 4 and 5. Thus far we have noted that, in contrast to when markets
clear jointly, the cross-exchange price impacts are zero (by definition of uncontingent de-
mands) and the within-exchange price impacts change due to cross-asset inference (The-
orem 1). One expects that these inference effects depend on the complementarities and
substitutabilities in asset payoffs, which can be essentially arbitrary (subject to � being
a covariance matrix). Theorem 3 provides a sufficient condition for independent market
clearing to increase the within-exchange price impacts {λk}k.

Price impact and cross-asset inference. Consider the counterfactual that defines trader
i’s price impact in exchange k: what is the effect of increasing the demand by trader i for
asset k at a margin? Price pk increases so that other traders are willing to sell the extra
units and the market clears. This direct effect is present in the contingent market as well.
When the market is uncontingent, the change in price pk has also an indirect inference
effect. Implicitly differentiating the first-order condition (10) of trader j �= i for asset k
with respect to pk characterizes the direct and inference effects on the marginal utility
and the marginal payment:

−αjσkk

∂q
j
k(·)

∂pk

−
∑
��=k

αjσk�

∂q
j
�(·)

∂p�

∂E
[
p�|pk�qj

0

]
∂pk︸ ︷︷ ︸

Inference effect

on the marginal utility

= 1

︸︷︷︸
Direct effect

on the marginal payment

+λ
j
k

∂q
j
k(·)

∂pk

� (19)

Rewriting Eq. (19) decomposes the demand slope ∂q
j
k

(·)
∂pk

into the direct and indirect infer-

ence effects. Using ∂q
j
k

∂p�
≡ αjσk�

αjσkk+λ
j
k

(− ∂q
j
�(·)

∂p�
) = αjσk�

αjσkk+λ
j
k

c
j
�, we have

λi
k = −

(∑
j �=i

∂q
j
k(·)

∂pk︸ ︷︷ ︸
= −c

j
k

)−1

= −
(∑

j �=i

(
− 1

αjσkk + λ
j
k︸ ︷︷ ︸

≡ ∂q
j
k

∂pk︸ ︷︷ ︸
≡ Direct effect (−)

+
∑
��=k

∂q
j
k

∂p�︸︷︷︸
sign(σk�)

∂E
[
p�|pk�qj

0

]
∂pk︸ ︷︷ ︸

sign(Cov[pk�p�])︸ ︷︷ ︸
≡ Inference effect

))−1

� (20)

To explain the inference effect in Eq. (20), in the counterfactual following the demand
increase by trader i, consider traders’ j �= i posterior conditioned on the higher price pk.
When asset payoffs are symmetric substitutes (i.e., σkk = σ for all k and σk� = σρ > 0
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2906 M. ROSTEK AND J. H. YOON

for all k and � �= k), then other traders, who assume that all others—including trader
i—play equilibrium, would instead attribute the higher price pk to a lower on average
realization of endowments for all correlated assets, and expect higher prices and lower
trades of those assets.29 This further increases the price at which they are willing to sell
units of the substitute asset k to trader i.30

Theorem 3 shows that when payoff correlations are symmetric, uncontingent trading
increases the within-exchange price impact—the inference effect in Eq. (20) is positive.
Let ρk� ≡ Corr[rk� r�] = σk�√

σkkσ��
.

THEOREM 3—Price Impact: Comparative Statics: Suppose that asset covariances are
symmetric: σ�� = σ for all � and σ�m = σρ for all � and m �= �. The within-exchange price
impact λk satisfies the following properties for each k:

(1) (Magnitude) With K assets, price impact λk maximally increases K-fold relative to
λc
k = α

I−2σkk:

α

I − 2
σkk ≤ λk ≤ α

I − 2

∑
�

σ���

The upper bound of the K-fold increase is attained if and only if |ρ|= 1.
(2) (Comparative statics) Relative to the contingent market:

(i) ∂(λk−λc
k

)

∂I
< 0, that is, the inference effect is decreasing in the number of traders I;

(ii) ∂(λk−λc
k

)

∂|ρ| > 0, that is, the inference effect is increasing in asset correlation |ρ|.

As a corollary, in two-asset markets, uncontingent trading always increases the within-
exchange price impact.31 Price impact λk increases less relative to λc

k = α
I−2σkk when the

inference effect is weaker—that is, with a larger number of traders I or smaller correla-

29Price pk contains information about endowments of other traders for all assets and thus affects the condi-
tional expectation separately from endowments qj

0 in expected trades E[qj
�|pk�qj

0] (equivalently, E[p�|pk�qj
0])

provided that asset payoffs are not independent.
30The decomposition of the equilibrium price impact—which, by definition, represents an off-equilibrium

counterfactual—captures how the cross-agent and cross-asset externalities are accounted for. This makes pre-
cise the difference with Nash-in-Nash (see Introduction).

31When K = 2, Appendix C.2 characterizes ∂E[p�|pk�q
j
0]

∂pk
as a closed-form function of the price impact λ and

simplifies Eq. (20) into Eq. (S92):

λk = α

I − 2

︸ ︷︷ ︸
=λck

+ αρ

I − 2︸ ︷︷ ︸
sign(ρ)

2xy
x2 + y2︸ ︷︷ ︸

sign(ρ)︸ ︷︷ ︸
Inference (+)

�

where x≡ (1 − σ0)(1 − ρ2)α+ (1 + (I − 2)σ0)λ and y ≡ ρ(1 + (I − 2)σ0)λ.

 14680262, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
16537 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline L

ibrary on [31/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EXCHANGE DESIGN AND EFFICIENCY 2907

FIGURE 1.—Within-exchange price impact: inference effect. Notes: Panel A: (K = 2) Price impact differ-
ence λk − λc

k is determined by the inference effect (Eq. (20))—the direct effect is the same in contingent and
uncontingent markets. The inference effect is larger (in absolute value) when assets are more strongly corre-
lated (i.e., |ρ| is larger) and the number of traders I is smaller. The solid, dashed, and dotted curves assume,
respectively, I = 5, I ′ = 10, and I ′′ = 100. Panel B: (K > 2) With heterogeneous correlations, the price impact
λk can be lower than λc

k. Assets 1 and 2 are heterogeneously correlated with other assets: ρ13 = ρ14, ρ23 = ρ24,
ρ12 = −0�1, ρ15 = ρ16 = −0�5, and ρ25 = ρ26 = 0�3; I = 10. In both panels, σcv = 0�σpv = 1�α = 1.

tions |ρ| (Figure 1(A)).32 As I → ∞, then �i → 0 for all i (Lemma S3 in Appendix B).33

When asset correlations are heterogeneous (K > 2), uncontingent trading can lower the
price impact λk for some assets relative to contingent trading (Figure 1(B)). In the coun-
terfactual below Eq. (20), when correlations are symmetric, the inferred price changes of
all assets induced by a demand change for one asset have the same sign. With heteroge-
neous correlations, however, the inferred price changes may differ in sign across assets,
resulting in a negative “net” inference effect for asset k. This is because in traders’ j �= i
inference following trader i’s demand increase, the expectation of a higher average real-
ization of endowments for correlated assets—and hence lower prices and higher trades
of those assets—dominates. This decreases the price at which they are willing to sell units
of asset k to trader i.

This result can also be seen in Corollary 1: λk� and Cov[pk�p�] depend on the covari-
ance of all assets and need not match the sign of asset correlation (i.e., σk�); for example,
the prices of complementary assets (σk� < 0) can be positively correlated (Cov[pk�p�] >
0). As a result, λk < λc

k is possible (see Eq. (20) and Figure 1(B)). (We provide additional
discussion below the proof of Corollary S1 in Appendix B.)

32As discussed in Example 1, the welfare effects of independence in market clearing depend on cross-asset
and within-exchange price impacts. The welfare effects of changes in {λk}k (which increase K-fold when assets
are perfectly correlated) and {λk�}��=k (which equal zero) cancel out if and only if all assets are perfectly corre-
lated (Corollary S2 in Appendix B). In symmetric-correlation markets of Theorem 3, Figure 1(A) shows that
price impact λk is convex in asset correlation |ρ|.

33The conditions from ft. 22 apply to contingent, uncontingent, and general markets in the next sec-

tion. When schedules are not contingent, the cross-asset inference is present in the limit (i.e., ∂E[p�|pk�q
j
0]

∂pk
=

Cov[p��pk|qj0]

Var[pk|qj0]
�= 0 for � �= k) even when the price impact becomes zero (i.e., λi

k → 0).
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2908 M. ROSTEK AND J. H. YOON

4. CHANGES IN MARKET STRUCTURE

The endogenous—with limited conditioning—price covariance creates incentives for
innovation in trading technology, defined by changes in market clearing. We first discuss
a particular example of such innovation.

EXAMPLE 2—Innovation in Trading Technology: Suppose a new exchange for one of
the K traded assets is created to operate alongside the existing exchanges without altering
traders’ endowments of any asset. In the contingent market, the corresponding innovation
of duplicating a traded asset would be neutral for traders’ equilibrium payoffs. This can
be seen from the first-order condition (4) for contingent demands qi�c(p1� � � � �pK�pK+1) :
RK+1 → RK+1, (

αi�
+ +�i�c

)
qi�c = δ+ − p − αi�

+qi�+
0 ∀p ∈RK+1� (21)

where the payoffs of K+1 assets are jointly Normally distributed according to N (δ+��+)
with δ+ ∈ RK+1 and �

+ ∈ R(K+1)×(K+1), and endowments for the duplicated asset can be
arbitrarily split, provided that qi�+

0�k + qi�+
0�K+1 = qi

0�k. Using the fact that the price impact
�i�c = βi�cαi�

+ ∈ R(K+1)×(K+1) is proportional to the covariance matrix for all i in the con-
tingent market (Eq. (8)) and that the covariance matrix �

+ is singular with the new asset,
condition (21) has a continuum of solutions qi�c ∈RK+1 pointwise with respect to the price
vector p ∈ RK+1 including zero trade of the new asset qi�c

K+1(·) = 0. Even if the asset in the
new venue is traded, traders’ equilibrium payoffs are the same as in the market with K
assets.

With independent market clearing, innovation in trading technology that would be
neutral for traders’ payoffs with joint clearing is generally no longer redundant, that is,
traders’ equilibrium payoffs change. In regard to innovation, we present two results: first,
we characterize when innovation is not redundant (Proposition 4, Theorem 4); second,
we show that markets with multiple exchanges that clear independently can be designed
to function like a single exchange for all assets (Corollary 2). In Section 5, we examine
how innovation affects welfare.

To accommodate various forms of innovation and a more general class of market struc-
tures, we extend the uncontingent model from Section 3.2. We allow arbitrary restrictions
on cross-asset demand conditioning “between” uncontingent and contingent—this per-
mits multiple assets per exchange—and we allow an asset to be traded in multiple venues.
Given that all traders participate in all exchanges, we can identify an exchange with a
subset of assets traded.

DEFINITION 4—Exchanges, Market Structure: Consider a market with I traders and
K assets. An exchange n is defined by the subset of assets traded K(n) ⊆ K. The market
structure is described by a set of N exchanges; that is, N ={K(n)}n.

Exchanges clear independently: in each exchange n, trader i submits a demand sched-
ule qi

k�n(·) : RK(n) → R for each asset k ∈ K(n) contingent on the prices of assets traded
there, pK(n) ≡ (p��n)�∈K(n) ∈ RK(n) . The market-clearing price vector pK(n) in exchange n is
determined by

∑
j q

j
k�n(pK(n)) = 0 jointly for all assets k ∈ K(n) traded in this exchange.

Like in previous sections, the market clears independently across exchanges (but not
necessarily across assets). The uncontingent market corresponds to K exchanges N =
{{k}}k, and the contingent market corresponds to a single exchange N ={K}.
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EXCHANGE DESIGN AND EFFICIENCY 2909

We treat the same asset traded in different exchanges as distinct assets with per-
fectly correlated payoffs. For the fundamentals δ ∈ RK�� ∈ RK×K , and {qi

0 ∈ RK}i, the
superscript ‘+’ indicates their counterparts in R

∑
n K(n) . Accordingly, the asset payoffs

in N exchanges are jointly Normally distributed N (δ+��+), where δ+ ∈ R
∑

n K(n) and
�

+ ∈ R(
∑

n K(n))×(
∑

n K(n)) . An asset’s endowment can be split arbitrarily across exchanges.34

This is because the trader’s demand for each asset depends on his total endowment of
all assets (Eq. (22)), and hence so do prices. Generalizing from the first-order condition
(11) for one asset per exchange, the best-response demand schedule for asset k ∈K(n) in
exchange n is determined by

δ+
k − αi�kqi

0 − αi�
+
kE

[
qi|pK(n)�qi

0

] = pk�n + (
�i

K(n)

)
k
qi
K(n) ∀pK(n) ∈RK(n)� (22)

given {qi
��n(·)}��=k��∈K(n) , {{qi

��n′ (·)}�∈K(n′)}n′ �=n, F (s−i|qi
0), and {�i

K(n)}n, where �i
K(n) ∈

RK(n)×K(n) is trader i’s price impact in exchange n and (�i
K(n))k ∈ R1×K(n) is the kth row

of �i
K(n) .

To analyze the equilibrium in markets with arbitrary demand conditioning across as-
sets (Definition 4), we must extend Theorem 1. As with the simpler market structures
characterized in Theorem 1, the fixed point in demand schedules is equivalent to a
fixed point in traders’ price impacts—now, block-diagonal matrices �i ≡ diag(�i

K(n))n ∈
R(

∑
n K(n))×(

∑
n K(n)) for all i. Theorem 5 in Appendix A characterizes the equilibrium; Propo-

sition S2 in Appendix C.1 provides the comparative statics of equilibrium price impact.
The proofs of Proposition 2 and Theorem 2 in Appendix B encompass general market
structures.

4.1. Nonredundant Changes in Market Structure

Price impacts per se are not useful in comparing payoffs across arbitrary market struc-
tures, as they are defined for different exchanges and may have different dimensionality.
Proposition 4 in Appendix A simplifies and illuminates the analysis of nonredundancy
and welfare, relating the payoffs across market structures with different conditioning vari-
ables, and hence a different price impact �, through a single-exchange counterfactual.

We define two statistics, �̂ ∈ RK×K and B̂ ∈ RK×K , that match the moments of to-
tal equilibrium trade of each asset k across exchanges in a market structure {K(n)}n,
q̂i
k ≡ ∑

{n|k∈K(n)}q
i
k�n. The per-unit price impact �̂ corresponds to the unique positive semi-

definite matrix, such that if the price impact in a market structure with a single exchange
for K assets were �̂, the expected trade of each asset k ∈ K in the counterfactual ex-
change would equal the expected equilibrium total trade in the market structure {K(n)}n.
For all i and k,

E
[̂
qi
k

] ≡
∑

{n|k∈K(n)}

E
[
qi
k�n

] = (α�+ �̂)−1
k α�

(
E[q0] −E

[
qi

0

])
� (23)

In turn, the cross-asset inference B̂ is the coefficient on the privately known endowment
qi

0 in a trader’s total demand that matches the variance of the equilibrium total trade (cf.

34Given trader i’s endowment qi
0 = (qi

0�k)k ∈RK , his endowment in R
∑

n K(n) can be an arbitrary vector qi�+
0 ≡

((qi�+
0�k�n)k)n ∈ R

∑
n K(n) such that qi

0�k = ∑
{n|k∈K(n)}q

i�+
0�k�n for all k. The parts of the split endowment in different

exchanges are perfectly correlated: Corr[qi�+
0�k�n� q

i�+
0�k�n′ ] = 1 for any n�n′ such that k ∈K(n) ∩K(n′).
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2910 M. ROSTEK AND J. H. YOON

Eq. (14)). For all i and k,

Var
[
q̂i
k

] ≡ Var
[ ∑

{n|k∈K(n)}

qi
k�n

]
= B̂ Var

[
q0 − qi

0

]
B̂′ = I − 1

I
σpvB̂B̂′; (24)

(B̂B̂′)k�(B̂B̂′)−1
kk is the cross-asset inference coefficient in the expected total trade E[̂qi

�|̂q
i
k�

qi
0]. Proposition 4 (Appendix A) shows that one can compare equilibrium payoffs across

market structures through (�̂� B̂) ∈ RK×K × RK×K .35 Moreover, one can identify nonre-
dundant innovation with the change in either statistic.

Which innovations are nonredundant? Not all are. Theorem 4 shows that the asymme-
try of price impact is the key to understanding which innovations are nonredundant.36

THEOREM 4—Nonredundancy of Changes in Market Structure: Conditions: Let I < ∞
and K > 1, and consider a market structure N = {K(n)}n. Suppose a new exchange n′ such
that K(n′) ⊂K(n) for some n ∈N is introduced. Exchange n′ is redundant in an equilibrium
if and only if one of the following conditions holds:

(i) (Innovation mimics an exchange) The set of assets traded in exchange n′ is the same
as in an existing exchange, that is, K(n′) = K(n′′) for some n′′ ∈ N .

(ii) (Symmetric price impact) The price impact in an exchange n′′ such that K(n′) ⊂
K(n′′) is symmetric, that is, �K(n′′) =�′

K(n′′) .
(iii) (Independent or perfectly correlated assets) The payoffs of all assets in K(n′) are

independent or perfectly correlated with those of the assets in K(n) \ K(n′), that is,
|ρk�|∈{0�1} for all k ∈K(n′) and � ∈K(n) \K(n′).

So far, we have emphasized that independent market clearing severs the (proportional)
relation between the price impact, and hence cross-asset demand substitution (i.e., the
inverse of Jacobian C), and asset covariance. The asymmetry of the equilibrium price
impact matrix is a new equilibrium property relative to both the contingent design (�c

is proportional to � and hence λk� = λ�k, � �= k, Eq. (8)) and the uncontingent design
(λk� = 0, � �= k). In more general designs, the price impact is symmetric only under a
joint symmetry restriction on the covariance � and the market structure N = {K(n)}n.
The cross-asset price impacts are asymmetric because the cross-asset inference effects
are (Section 3.2.3). Example 3 illustrates this link.

By Proposition 4, an innovation is nonredundant if it changes the relative trading costs
across assets �̂ or cross-asset inference B̂. Both �̂ and B̂ change if one does, generically
in asset covariance � and market structure N = {K(n)}n (by the proof of Theorem 4).
Intuitively, under any of Theorem 4’s conditions, in any market structure, the prices of
the same asset traded in different venues equalize (Lemma S4 in Appendix B); new ex-
changes do not create additional linearly independent conditioning variables in any asset’s
demand. Neither B̂ nor �̂ change. However, when the price impact is asymmetric, the

35�̂ and B̂ are not defined as equilibrium objects in a single-exchange game. While either price impact �
itself or the demand coefficient B is a sufficient statistic for equilibrium payoffs in a market structure N =
{K(n)}k (Theorems 1 and 5), their per-unit counterparts �̂ and B̂ are both required for the payoffs in two
market structures N and N ′ to match, unless price impact is a symmetric matrix.

36Mathematically, the relevance of the price impact asymmetry can be seen in Eq. (49): the inverse matrix in
B̂ is a harmonic mean of the demand coefficient C = 1

I−1 (�−1)′ and its transpose C′ and, thus, it is not a linear
function of �̂ unless � is symmetric.
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EXCHANGE DESIGN AND EFFICIENCY 2911

prices of the same asset traded in different venues differ, and thus both B̂ and �̂ change.
Example 3 illustrates Theorem 4.

EXAMPLE 3—Nonredundant Exchanges and Price Impact Asymmetry: Consider a
market with two exchanges N = {{1�2}�{3}}. For simplicity, assume that σ11 = σ22 = σ33

and the assets are imperfectly correlated (0 < |ρk�|< 1 for all k and � �= k). Per The-
orem 4(ii), the introduction of exchange {1} is redundant if and only if the equilibrium
price impact �{1�2} is a symmetric matrix, that is, the cross-asset price impacts coincide,
λ12 = λ21.

(a) When is price impact �{1�2} symmetric? This is the case if and only if the covariances
of assets 1 and 2 are symmetric:

σ13 = σ23 ⇔ Cov[p2�p3] = Cov[p1�p3]�

A closer look at the inference effect in price impact shows why. Using the relation
between the price impact and demand slope, �{1�2} = 1

I−1 (C−1
{1�2})

′, that is,[
λ11 λ12

λ21 λ22

]
= 1

I − 1
1

c11c22 − c12c21

[
c22 −c21

−c12 c11

]
�

we decompose the off-diagonal demand coefficients c12 ≡ ∂q
j
1(·)

∂p2
and c21 ≡ ∂q

j
2(·)

∂p1
into direct

and indirect effects (analogously to Eq. (20) in Section 3.2.3):

∂q
j
1(·)

∂p2︸ ︷︷ ︸
=−c12

= ∂q
j
1

∂p2

︸︷︷︸
Direct effect σ12

+ ∂q
j
1

∂p3︸︷︷︸
σ13

∂E
[
p3|p1�p2�qj

0

]
∂p2︸ ︷︷ ︸

Cov[p2�p3]︸ ︷︷ ︸
Inference effect

�

∂q
j
2(·)

∂p1︸ ︷︷ ︸
=−c21

= ∂q
j
2

∂p1

︸︷︷︸
Direct effect σ21

+ ∂q
j
2

∂p3︸︷︷︸
σ23

∂E
[
p3|p1�p2�qj

0

]
∂p1︸ ︷︷ ︸

Cov[p1�p3]︸ ︷︷ ︸
Inference effect

�

Since the direct effects in cross-asset price impact coincide, the price impact is symmetric
if the corresponding inference effects coincide. As we discussed in Section 3.2.3, because
the price impact is not proportional to covariance � with independent market clearing,
the price impact between any pair of assets depends on the covariance of all assets. Sup-
pose that assets 1 and 2, which clear jointly and hence involve no mutual inference effects,
are asymmetrically correlated with asset 3. For instance, let asset 2 be uncorrelated with
asset 3. Then, a trader’s demand increase for asset 2 as p1 changes has no inference effect
on the price of asset 3, but a demand increase for asset 1 as p2 changes has a nonzero
inference effect.

(b) Why is exchange {1} not redundant when the cross-asset price impacts λ12 and λ21

are asymmetric (Theorem 4(ii))? Intuitively, for the new exchange to be nonredundant,
it must be that the equilibrium prices of asset 1 in exchanges {1�2} and {1} carry dif-
ferent information. Price impacts determine the weights in the price function on the ran-
dom variables—the aggregate endowments {q0�k}k (see Eq. (17)). In particular, the matrix
weight coefficient C−1B is determined by the price impact � and its transpose �′ (which
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2912 M. ROSTEK AND J. H. YOON

is not relevant with contingent or uncontingent demands). With asymmetric price im-
pact, the weights on the aggregate endowments in prices of the same assets in different
exchanges are distinct.37

(c) On the other hand, the introduction of exchange {3} is redundant irrespective of the
symmetry of � (Theorem 4(i)). Because the inference effects with respect to assets 1 and
2 are the same in both exchanges {3}, the price impact is the same in these venues—prices
equalize, and traders split their demands for asset 3 equally between the two exchanges.

We highlight additional insights of Proposition 4 and Theorem 4. These results under-
score the role of imperfect competition for the nonredundancy of innovation. Given the
market structure with multiple trading venues that clear independently, there is more
nonredundant innovation when traders have price impact:

• Exchanges n′ whose assets are not a subset of another venue’s assets (K(n′) �⊂ K(n)
for all n): the total demand for some asset k ∈ K is contingent on the prices of new
assets; for example, exchange {2�3} in Example 3. The inference error weakly de-
creases for all assets.

• Exchanges n′ whose assets are a proper subset of another venue’s assets (K(n′) �
K(n) for some n): the total demand of each asset k ∈K is contingent on prices of the
same assets; for example, exchange {1} in Example 3. However, with new contingent
variables (i.e., additional prices of the same assets), demands for the same asset in
different exchanges are contingent on distinct linear combinations of the random
variables. This changes cross-asset inference, and hence �̂ and B̂. Inference error
can increase for some assets and decrease for others.

The latter type of nonredundant innovation, which is present when price impact is
asymmetric (Theorem 4(ii)), has no counterparts in competitive markets. Indeed, when
the price impact is symmetric (e.g., the zero matrix), only the former type of innovation
can be nonredundant. Furthermore, even if inference error were zero (i.e., (σcv�σpv) → 0,
σpv

σcv
> 0), the former type of innovation would be nonredundant when I <∞ but not when

I → ∞, as it would change the equilibrium price impact.
More generally, apart from the introduction of new trading protocols (Example 3),

independent market clearing motivates other forms of innovation, such as the linking of
existing trading protocols (i.e., merging assets between venues), and the inclusion of an
asset in a trading protocol where it was not previously traded (e.g., asset listings). When
increasing the set of (imperfectly correlated) conditioning variables in traders’ demands,
these innovations lead to a market structure with more, fewer, and the same number of
exchanges, respectively.38

4.2. Multiple Exchanges: Equivalence With Joint Market Clearing

In this section, we ask: what is the scope for innovation in trading technology that would
not be redundant in the market? Corollary 2 characterizes the bound on the number of
nonredundant exchanges in any market structure. The intuition for the general result can
be gleaned from the following example.

37Per Theorem 4(ii), the symmetry of the price impact is required only for the exchanges n′′ whose assets are
a superset of those in the new venue n′. For example, in the market {{1�2}�{3�4}}, the price impact in exchange
{3�4} need not be symmetric for exchange {1} to be redundant. The required symmetry condition ensures
that the inference effects among the new assets K(n′) and between assets K(n′) and assets K(n) \ K(n′) and
K \K(n) are symmetric.

38The argument from the proof of Theorem 4 applies to these other innovations: an innovation is redundant
if the price impact submatrix that corresponds to the affected exchanges is symmetric.
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EXCHANGE DESIGN AND EFFICIENCY 2913

EXAMPLE 4—Multi-Venue Market Can Be Equivalent to Market That Clears Jointly:
Consider the market structure {{1�2}�{2�3}�{3�1}}. Even though the market is composed
of multiple exchanges, none of which contain all assets, traders’ equilibrium payoffs are
the same as in the market with a single exchange for all assets {{1�2�3}}.

To explain this result, we consider trader i’s total demand for asset 1 behind the one-
exchange counterfactual in Proposition 4, that is, the sum of his demands for asset 1 in
exchanges {1�2} and {3�1}:

q̂i
1(p{1�2}�p{3�1}) ≡ qi

1�{1�2}(p{1�2}) + qi
1�{3�1}(p{3�1}) ∀p{1�2} ∈ R2 ∀p{3�1} ∈ R2�

In either exchange, the expected trades are conditioned on the respective contingent vari-
ables in traders’ demands—for example, p1 and p2 in exchange {1�2}. In the total demand
for asset 1, with additional expected trade terms contingent on a different subset of prices,
the expected trades of assets 2 and 3 are linear combinations of all random variables,
q0�1� q0�2, and q0�3.39

Crucially, since the total demand for each asset is conditioned on at least K = 3 prices
that give linearly independent combinations of the K random variables {q0�k}k, the infer-
ence errors cancel out: the sum of expected total trades E[̂qi

�|pK(n)�qi
0] in the total demand

for asset k across exchanges {n|k ∈ K(n)} is the same as q̂i
� for all k and � �= k. Equilibrium

can be ex post even if traders’ demand schedules do not condition on prices of all assets
in any exchange (i.e., K(n) � K for all n) so that no expectation about trade is perfect,
that is, E[qi

��n′|pK(n)�qi
0] �= qi

��n′ for all n and n′ �= n, and all i. Then, with perfect inference
in total demands, the price impact matrix is symmetric and the same as in the contingent
market, �̂ = �c = α

I−2� and B̂ = Bc = I−2
I−1 Id (Proposition 4). The cross-exchange infer-

ence effects mimic the contingent design’s cross-asset price impact; equilibrium is as if
traders could condition their demand for each asset on the price vector.40

Corollary 2 gives a condition on the market structure itself that characterizes the scope
for nonredundant innovation.41

COROLLARY 2—Redundancy of Changes in Market Structure: A Condition on Ex-
changes: Suppose that 0 < |ρk�|< 1 for some k and � �= k. When I < ∞, the following
statements are equivalent:

(i) Introducing any additional exchange n′ is redundant;
(ii) Equilibrium is ex post;
(iii) For every pair of assets k′ and �′ �= k′ such that 0 <|ρk′�′|< 1, there is an exchange n

in which these assets are traded, that is, k′� �′ ∈K(n).

The equivalence between conditions (ii) and (iii) answers the following question: Given
the assets and traders, which market structures with multiple exchanges that clear inde-
pendently function like a market that clears jointly, and when does equilibrium behavior

39For example, from Eq. (22), the total expected trade for asset 2 in total demand q̂i
1(·) = qi

1�{1�2}(·)+qi
1�{3�1}(·)

is ((α�{1�2}�{1�2} +�{1�2})−1)1α�{1�2}E[̂qi
2|p{1�2}�qi

0] + ((α�{3�1}�{3�1} +�{3�1})−1)1α�{3�1}E[̂qi
2|p{3�1}�qi

0].
40Consider a market structure {{1�2}�{2�3}�{3�1}�{4}} and assume that the payoff of asset 4 is imperfectly

correlated with those of other assets. This market structure is payoff-equivalent to {{1�2�3}�{4}} if and only
if the inference effects of assets 1�2. and 3 with respect to asset 4 are symmetric. Then, multiple venues that
clear independently can implement joint clearing “locally” for assets 1�2, and 3.

41Corollary S2 in Appendix B shows that as long as some assets in the market are imperfectly correlated,
some innovations will not be redundant. With perfectly correlated assets, inference is perfect; with independent
assets, inference is not payoff-relevant. Innovation then does not affect equilibrium inference, and hence price
impact.
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2914 M. ROSTEK AND J. H. YOON

differ? This result shows that for all market structures characterized in condition (iii) of
Corollary 2, one can implement the contingent-market outcome via schedules with sim-
pler conditioning.42 Two assets per exchange suffice.

The equivalence between conditions (i) and (iii) puts a bound on the number of ex-
changes that can be introduced in a market—or the ways in which trading protocols can
be linked (by merging their assets), or asset listings—and still be nonredundant. The max-
imal number of such nonredundant innovations is K(K−1)

2 .

5. WELFARE AND INDEPENDENCE IN MARKET CLEARING

In this section, we consider the welfare impact of independence in market clearing.
An important implication of Corollary 2 is that when combined with a suitable exchange
design, markets with multiple exchanges that clear independently can be as efficient as
a single exchange that clears all assets jointly, for any distributions of asset payoffs and
endowments. The main observation in this section is that markets with multiple exchanges
can strictly improve ex ante welfare relative to joint market clearing.

We first ask: Why would trading platforms not allow traders to condition their demands
on more information from other venues or trading protocols within the platform? If the
market were competitive (I → ∞), then joint clearing would give higher welfare than any
other market structure—it would eliminate inference error across exchanges. In imper-
fectly competitive markets, the benefit of lower trading costs associated with price impact
can counteract the cost that stems from inference error.

We then inquire: In which trading environments is welfare higher with multi-venue de-
signs? Unlike the competitive market, efficient design depends on market characteristics.
Corollary 3, Proposition 3, and Examples 1 and 5 give and illustrate the conditions.

5.1. Welfare-Improving Designs

The ex ante total welfare is given by the sum of the equilibrium payoffs for all traders:

E
[
ui

(
qi

) − p · qi
] = E

[
δ · qi

0 − 1
2

qi
0 · α�qi

0

]
︸ ︷︷ ︸

Payoff without trade

+ (
E[q0] −E

[
qi

0

]) ·ϒ (�̂)
(
E[q0] −E

[
qi

0

])︸ ︷︷ ︸
Equilibrium surplus from trade

+ 1
2
I − 1
I

σpv tr
(
B̂′α�+ α�B̂ − B̂′α�B̂

)
�︸ ︷︷ ︸

Payoff term due to Var[q0|qi
0] > 0

� (25)

where the per-unit price impact �̂ ∈ RK×K and cross-asset inference B̂ ∈ RK×K are defined
by conditions (23) and (24), respectively. When the market structure changes, the corre-
sponding welfare change can be decomposed into three effects related to: (1) the price
impact for a given asset (i.e., λ̂k), (2) the cross-asset price impact (i.e., λ̂k�), and (3) the
inference error.43 A corollary of Theorem 3 and Proposition 4 shows that it is important to

42For “(iii) implies (ii),” we select the equilibrium with symmetric price impact (i.e., λk� = λ�k) whenever
it exists. We have not found any parameters with which an asymmetric equilibrium exists when condition (iii)
holds.

43The inference error in the last term of
∑

i E[ui(qi) − p · qi] in Eq. (25) can be characterized as

(I − 1)σpv tr
(

1
2
(
B̂ − Bc

)′
α�

(
B̂ − Bc

) + 1
I − 1

α�
(
B̂ − Bc

))
� (26)
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EXCHANGE DESIGN AND EFFICIENCY 2915

distinguish between the trading cost components (1) and (2). Respectively, they represent
the trading cost of risk sharing and the trading costs of diversification.

COROLLARY 3—Price Impact and Market Structure: Consider two market structures N
and N ′ such that if {k��} ⊂ K(n′) for some n′ ∈ N ′, � �= k, then {k��} ⊂ K(n) for some

n ∈ N . Let �̂
N

and �̂
N ′

be the corresponding per-unit price impact matrices. Assume that

�̂
N �= �̂

N ′
:44

(i) If K = 2, then λ̂
N

k ≤ λ̂
N ′
k for each k.

(ii) If K > 2, λ̂
N

k need not be lower than λ̂
N ′
k for some k.

For two-asset markets, Corollary 3 establishes a trade-off between risk sharing and di-
versification. Namely, when K = 2, then limited conditioning increases the per-unit diag-
onal price impact for each asset (part (i)).45 Although joint clearing minimizes the cost
of risk sharing, multi-venue trading can strictly increase welfare by lowering the trading
cost of diversification that stems from cross-asset price impact; Example 1 illustrates this.
Corollary 4 in Section 5.2 provides the necessary and sufficient conditions for indepen-
dent market clearing to increase welfare in the Pareto sense in two-asset markets.

More generally, in markets with K > 2, multi-venue trading can increase welfare by
lowering the trading costs of risk sharing, diversification, or both (part (ii); Example 5).
Likewise, so can the further limiting of demand conditioning in markets with multiple
exchanges. The increase in welfare with multi-venue trading—relative to joint clearing or
more generally—can be accomplished in the Pareto sense.

5.2. When Are Multi-Venue Markets More Efficient?

We further ask: Which designs are more efficient? Proposition 3 translates Corollary 3’s
price-impact effects on risk sharing and diversification to market characteristics.

PROPOSITION 3—Welfare With Multiple Exchanges Versus Joint Market Clearing:
Given I < ∞ traders and K assets such that 0 < |ρk�|< 1 for some k and � �= k, there
exists a market structure with multiple exchanges for which the ex ante welfare is strictly larger
than that in a single exchange for some distribution of endowments {qi

0}i.

Proposition 3, Corollary 4, and Example 5 demonstrate that neither the contingent nor
the uncontingent market structure is efficient regardless of the market characteristics (see
also Example 1 and Corollary 3). Here, we highlight three insights.

First, if the number of traders is sufficiently large, then joint clearing (or an equiva-
lent design) is efficient. Given any K (imperfectly correlated) assets and I < ∞ traders,
however, a market structure with multiple venues is more efficient than joint clearing for
some distributions of endowments. The proof of Proposition 3 is constructive and pro-
vides a sufficient condition on the pertinent market structures: any demerger of a single
exchange for all assets.

where Bc = I−2
I−1 Id is the coefficient of the contingent demand on qi

0. In the contingent market, using the fact
that �̂ = �c , we have that ϒ(�c) ≡ I(I−2)

2(I−1)2 α� in the ex ante welfare Eq. (25), and the inference error (26) is
zero (equilibrium is ex post).

44That is, there exists {k′� �′} such that {k′� �′} ⊂K(n) for some n ∈N but {k′� �′} �⊂K(n′) for all n′ ∈N ′.
45Part (i) of Corollary 3 holds in more general markets with K ≥ 2 assets, symmetric covariances (i.e.,

σkk = σ for all k and σk� = σρ for all k and � �= k), and market structures defined by symmetric demerg-
ers (Definition 5). (See Proposition S2 in Appendix C.1.)
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2916 M. ROSTEK AND J. H. YOON

DEFINITION 5—Demerger: A demerger of a single exchange for all assets is a market
structure N = {K(n)}n whose exchanges partition the K assets traded: K(n) ∩K(n′) = ∅
for all n and n′ �= n. A demerger is symmetric if its exchanges have the same number of
assets.

Thus, simply breaking up a single exchange for all assets into multiple venues can in-
crease welfare.

A market with multiple trading venues yields higher welfare than a single exchange if
E[q0] − E[qi

0] is proportional to an eigenvector of ϒ (�c) − ϒ (�̂) that corresponds to
a negative eigenvalue (see Eq. (25)). Intuitively, in light of the trade-off between price
impact and information loss implied by the multi-venue design relative to the contingent
one, efficient market structure reduces the (net) cost of within- and across-exchange price
impacts ϒ (�c) −ϒ (�̂), given the trading needs E[q0]−E[qi

0]. Corollary 3 and Lemma S5
in Appendix B give a sufficient condition on the market structures to admit the cost reduc-
tion: a negative eigenvalue exists for any market structure whose exchanges are demergers
of a single venue for all assets (Definition 5). Proposition 3—like all results in the paper—
is robust by continuity (i.e., by the continuity of the price impact and the total welfare with
respect to the endowment distribution).

Second, in which trading environments is multi-venue trading more efficient than joint
clearing? Any change in design affects price impacts for all assets46 and these effects
depend on the market structure and characteristics of traders and assets. The proof of
Proposition 3 shows that the welfare impact of a change in design can be determined
by a joint condition on the primitives: the joint substitution in asset payoffs (i.e., �) and
traders’ endowments (i.e., {|E[q0�k] − E[qi

0�k]|}i�k).47 In particular, even if all asset pay-
offs are symmetric substitutes or complements, efficient design depends on whether some
traders buy and others sell assets (e.g., the primary market in Treasury auctions) or traders
buy some assets and sell others (e.g., inter-dealer markets). See Examples 1 and 5(a) and
(b).

Finally, the heterogeneity in the joint substitution {��{E[q0] − E[qi
0]}i} determines

whether the net benefit from diversification and risk sharing dominates with multi-
venue trading. With sufficient heterogeneity, inducing asymmetries in trading costs is
beneficial—market structures “intermediate” between contingent or uncontingent are
then efficient. See Example 5(c).

Corollary 4 illustrates these observations in two-asset markets, providing a necessary
and sufficient condition on {��{E[q0]−E[qi

0]}i} for multi-venue trading to dominate joint
clearing in welfare terms.48

46Another result of the non-proportionality of the price impact to asset covariance in markets other than
the contingent one (Eqs. (16) and (S22)).

47The role of the joint condition can be seen in Eq. (25), where the equilibrium surplus is a quadratic matrix
function of expected trading needs {E[q0] −E[qi

0]}i and the surplus matrix difference ϒ (�c) −ϒ (�̂) depends
on the asset covariance �. In any demerger (including uncontingent markets), the price impact matrices in the
surplus matrix difference ϒ (�c) −ϒ (�̂) are not ranked in a positive semi-definite sense (Corollary 3). Hence,
expected trading needs {|E[q0�k] −E[qi

0�k]|}i�k matter for efficient market structure.
48Corollary 4 illustrates how the market structure reduces the trading costs (i.e., the joint condition de-

scribed below Proposition 3) with K = 2. The eigenvector associated with a negative eigenvalue of the surplus
matrix difference ϒ (�c) −ϒ (�̂) is (1�1) if ρ > 0 and (1�−1) if ρ < 0. Condition (i) in Corollary 4 shows that
the signs of the eigenvector’s elements (either (1�1) or (1�−1)) match the signs of relative trading needs, and
the length of interval [ξ�ξ] in condition (ii) represents how close the trading needs must be to the eigenvector,
i.e., how much heterogeneity in trading needs can be accommodated for independent market clearing to yield
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EXCHANGE DESIGN AND EFFICIENCY 2917

FIGURE 2.—Heterogeneous asset correlations and trading needs. Notes: Each color indicates which market
structure provides the highest ex ante welfare. Darker colors represent market structures with more demand
conditioning. Panel (A): White = {{1}�{2}�{3}} (i.e., the uncontingent market); Shades of gray = {{1�2}�{3}},
{{1�2}�{2}�{3}}, {{1�2}�{1}�{3}}, {{1�2}�{1�3}}, {{1�2}�{1�3}�{3}}; and Black = {{1�2}�{1�3}�{1}}. Panel (B):
Gray = {{1}�{2�3}} and Black = {{1�2�3}} (i.e., the contingent market). Appendix B presents a color version
of Figure 2. The welfare effect of the inference error is sufficiently small not to dominate the welfare benefit
from diversification (σcv = 0�σpv = 0�01). The number of traders is I = 10. The trading needs for assets 2 and
3 are |E[q0�L] −E[qi

0�L]|= 1 for all i. Panel (A) assumes the asset payoff correlation ρL = 0�2 (i.e., substitutes),
and panel (B) assumes ρL = −0�2 (i.e., complements).

COROLLARY 4—Welfare With Multiple Exchanges Versus Joint Market Clearing
(K = 2): Consider a market with two imperfectly correlated (i.e., 0 < |ρ| < 1) assets
whose variances are the same (i.e., σ11 = σ22). Suppose there is no inference error, that is,
(σcv�σpv) → 0 and σ0 < 1. The ex ante welfare is strictly larger in the Pareto sense in the
uncontingent market {{1}�{2}} than in a single exchange for all assets {{1�2}} if and only if
the following conditions hold:

(i) sign(E[q0�1] − E[qi
0�1]) sign(E[q0�2] − E[qi

0�2]) = sign(ρ), that is, the market is one-
sided when ρ > 0 or two-sided when ρ < 0; and

(ii) The trading needs are sufficiently symmetric across assets, that is, there exist bounds
ξ(ρ� I) < 1 < ξ(ρ� I) on the relative trading needs such that

ξ(ρ� I) <
∣∣∣∣E[q0�k] −E

[
qi

0�k

]
E[q0��] −E

[
qi

0��

] ∣∣∣∣< ξ(ρ� I) ∀i�

Even with a vanishing (cf. ft. 48) endowment variance (σcv�σpv), the effects of a change
in market structure do not vanish, because of the heterogeneity in the mean endowments
{E[qi

0]}i. Given the nonzero trading needs {E[q0] − E[qi
0]}i, by condition (i), the zero

cross-asset price impact is beneficial; by condition (ii), the benefit of diversification (i)
dominates the cost of risk sharing (cf. Example 1 and Corollary 3).49

higher welfare. Corollary 4’s result is continuous with respect to the variance of endowment distribution and
holds away from the limit of zero inference error.

49As I → ∞, the bounds in condition (ii) ξ(ρ� I) → 0 and ξ(ρ� I) → ∞ for all ρ, and so the cost of risk
sharing goes to zero regardless of the heterogeneity in trading needs across assets. However, ϒ (�c) −ϒ (�̂) →
0, that is, the benefit from diversification relative to the contingent market also vanishes, and the ex ante welfare
in {{1}�{2}} and {{1�2}} can differ in the limit only due to the inference error (if σcv > 0 and σpv > 0).
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2918 M. ROSTEK AND J. H. YOON

EXAMPLE 5—Heterogeneity and Efficient Market Structure: Consider a market with
K = 3 assets, two of which (i.e., 2 and 3) are each symmetrically correlated with other as-
sets and have symmetric ex ante trading needs. There are thirteen payoff-relevant market
structures, including the contingent and uncontingent ones. Figure 2 plots the welfare-
maximizing design as a function of the heterogeneity in asset correlations ρ12/ρ23 =
ρ13/ρ23 ≡ ρH/ρL on the horizontal axis and the heterogeneity in trading needs (E[q0�1] −
E[qi

0�1])/(E[q0�2] − E[qi
0�2]) = (E[q0�1] − E[qi

0�1])/(E[q0�3] − E[qi
0�3]) ≡ qi

H/q
i
L for all i on

the vertical axis.
(a) If the asset correlations and trading needs are symmetric across assets (i.e., the

point ( ρH
ρL
�
qiH
qiL

) = (1�1) in each panel), either the contingent or the uncontingent market
structure is efficient.

(b) In one-sided markets (i.e., when traders either buy or sell all assets), efficient market
structure depends on the asset payoff substitutability:

If asset payoffs are complements (i.e., ρH < 0 and ρL < 0; Figure 2(B)) and traders
buy both assets (i.e., qi

H > 0 and qi
L > 0), then the contingent market maximizes welfare,

irrespective of the heterogeneity in {ρH�ρL} and {qi
H�q

i
L}.

If asset payoffs are substitutes (i.e., ρH > 0 and ρL > 0; Figure 2(A)), then the hetero-
geneity in trading needs matters. If trading needs are symmetric, the uncontingent market
is efficient. With sufficiently heterogeneous trading needs, a market structure other than
the contingent or uncontingent ones maximizes welfare.

(c) Welfare-maximizing market structures in which some but not all assets clear jointly
either link assets to reduce the trading cost of diversification for those assets (orange and
blue areas) or link assets with the most heterogeneous trading needs to balance the trade-
off between risk sharing and diversification—even when linking the assets increases the
trading costs due to diversification (yellow and purple areas).

Proposition S3 in Appendix C.1 generalizes Corollary 4 to K ≥ 2 assets. It shows the
link between asset payoff substitutes and complements, and the optimality of an extreme
market structure in symmetric trading environments.50 The uncontingent market is the
most efficient when asset payoffs are substitutes (ρ > 0 in condition (i)), whereas a single
exchange for all assets is the most efficient when asset payoffs are complements (ρ < 0).

6. DISCUSSION

The effects identified in this paper contribute to the discussion concerning the impact
of changes in trading technology (e.g., Pagano (1989), Budish, Cramton, and Shim (2015),
Pagnotta and Philippon (2018), Budish, Lee, and Shim (2020), Cespa and Vives (forth-
coming)). By accommodating general cross-asset demand conditioning, our analysis takes
a step towards exploring the implications of innovation in trading technology defined by
changes in market clearing that cross-asset conditioning makes possible. We conclude
with possible directions for future research and further discussion of the model.

First, the non-neutrality of innovation in trading technology is a manifestation of a
more general implication of independence in market clearing: equilibrium payoffs can
be changed by innovations whose payoffs lie in the span of traded assets. This paper’s
model and equilibrium characterization as a fixed point in price impacts can be adapted

50That is, symmetric demergers (Definition 5), asset covariances (i.e., σkk = σ for all k and σk� = σρ for all

� �= k and k), and trading needs across assets (
E[q0�k]−E[qi0�k ]

E[q0��]−E[qi0�� ]
= 1 for all k��, and i in condition (ii) of Corollary 4).
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EXCHANGE DESIGN AND EFFICIENCY 2919

to the study of other innovations. In Rostek and Yoon (2020a), we studied one such class:
derivatives, that is, securities whose payoffs are defined as bundles (linear combinations)
of the existing assets. We showed that the equilibrium effects of the introduction of nonre-
dundant derivatives differ from those produced by the innovation in trading technology
studied in this paper. Thus, innovation in trading technology provides an instrument for
impacting markets’ performance separate from security innovation.

Second, it would be worthwhile to explore whether, in a dynamic market, a joint design
of the trading frequency and trading technology could further improve the lower bound
on welfare relative to the contingent design. A study of the joint design would also illumi-
nate the effectiveness of traders’ breaking up their orders across trading protocols versus
over time to mitigate their trading costs. Dynamic trading provides additional reasons to
innovate in trading technology (see Lyu, Rostek, and Yoon (2021)). More generally, con-
ditioning on simultaneously determined prices (i.e., this paper) and past prices within or
outside an exchange will interact in nontrivial ways with the relative frequencies of mar-
ket clearing, shocks which renew the gains from trade, and payoff realizations (i.e., con-
sumption). The rich set of market design questions raised by these two types of demand
conditioning merits a separate study.

Third, independence in market clearing gives rise to equilibrium price differentials for
the same assets, which would be absent with contingent demands (Lemma S4 in Ap-
pendix B). This result indicates a possible source of latency arbitrage and competition for
speed, which have been controversial (e.g., Budish, Lee, and Shim (2020)).51 Our analysis
also suggests a potential market-design solution that could eliminate these incentives: de-
mands contingent on simultaneously determined prices eliminate the rents extracted by
fast traders. Cross-asset conditioning allows traders to “react” instantaneously to changes
in prices within and across exchanges. Since such rents are substantial, it would be worth
thinking about the role of exchange design through its effect on price impacts and the
presence of such arbitrage opportunities.

Fourth, the non-neutrality of innovation in trading technology could be leveraged to
enhance revenue or other objectives in markets such as that for Treasury bills, in which
securities are often traded simultaneously and independently.

Fifth, dispensing with the assumption that demands are contingent also admits asym-
metric designs: if the demand for asset k is contingent on the price of asset l, the converse
need not hold. Designs in which demand conditioning is not mutual give rise to additional
reasons to innovate, some of which are explored in Lyu, Rostek, and Yoon (2021).

Finally, there is room for further development of the asset-pricing implications of inde-
pendence in market clearing as well as the equilibrium properties it induces, such as the
transformation of risk made possible by the non-proportionality and asymmetry of price
impact.

Independence of market clearing: incentives of traders versus exchanges. While the pa-
per does not characterize the endogenous formation of exchanges, the analysis suggests
that it is interesting to distinguish between the incentives of traders and exchanges. If
traders themselves could decide whether to submit contingent or uncontingent demands,

51In particular, it is useful to distinguish between the incentives of traders participating in the market to
trade fundamental risk versus algorithmic market makers with a speed advantage. We thank an anonymous
referee for this suggestion. Since in imperfectly competitive markets, profits from arbitrage are bounded, price
equalization (with one shock) requires multiple trading rounds. With additional shocks renewing the gains
from trade, price differentials and hence the incentives to profit from them will remain. (See Rostek and
Weretka (2015) for the analysis of the incentives of the hedgers vs. outside investors.)
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2920 M. ROSTEK AND J. H. YOON

individual optimization entails that a contingent demand would be a best response, tak-
ing as given the demand schedules submitted by others. Submission of contingent de-
mand schedules by all traders would be the unique equilibrium, eliminating the welfare-
improving (possibly in the Pareto sense) effects of limited conditioning. Thus, implemen-
tation of uncontingent trading involves a restriction of the cross-asset conditioning of si-
multaneously placed orders. This is the prevalent practice. Exchanges, however, endowed
with an objective to maximize (e.g., revenue, volume, or liquidity) generally have at least
weak incentives not to allow for full demand conditioning of assets traded. Too much
innovation, through its externalities on the liquidity of the traded assets, can hinder the
exchanges’ objective.

Role of the uniform-price mechanism. One might wonder whether the effects of cross-
asset conditioning are intrinsic to the designs based on the uniform-price demand sub-
mission (e.g., markets for Treasury bills, repo, electricity, spectrum, natural resources).
The cross-asset conditioning matters in other designs, such as the limit order book. This
is the case unless prices are observable without any delay and submission/withdrawal of
limit orders is executed immediately. The key to the welfare effects of new exchanges is
the inefficiency of equilibrium allocation due to price impact—given incomplete demand
conditioning—which new exchanges alter.

Heterogeneous participation.52 Decentralizing a market by allowing some traders to par-
ticipate in exchanges for only a subset of all assets or trade with only a subset of all traders
(while submitting contingent schedules) can increase welfare by reallocating risk across
traders, provided that traders’ risk preferences differ; with symmetric risk preferences, the
centralized market maximizes welfare (Malamud and Rostek (2017)). Our results suggest
that restrictions on conditioning can provide an effective instrument to increase welfare in
the Pareto sense, by improving risk sharing across traders and/or risk diversification across
assets in ways not feasible with heterogeneous participation and contingent trading.

APPENDIX A: EQUILIBRIUM CHARACTERIZATION

Theorem 5 characterizes the equilibrium for general market structures (Definition 4).
We allow endowments to be correlated across assets: � = (Cov[qi

0�k� q
i
0��])k�� ∈ RK×K is

a positive definite matrix.53 In a market structure N = {K(n)}n, the distribution of asset
returns is jointly Normal, N (δ+��+), where δ+ ∈ R

∑
n K(n) and �

+ ∈ R(
∑

n K(n))×(
∑

n K(n)) . We
introduce an indicator matrix W that represents a market structure N ={K(n)}n.

DEFINITION 6—Indicator Matrix for Market Structure: An indicator matrix W ≡
(Wn)n ∈ {0�1}(

∑
n K(n))×K represents a market structure N = {K(n)}n if, for each exchange

n, the (��k)th element of Wn ∈ {0�1}K(n)×K equals 1 if the �th asset in exchange n is asset
k and zero otherwise.

We can now write δ+ = Wδ and �
+ = W�W′.

Notation. We define an operator [·]N : R(
∑

n K(n))×(
∑

n K(n)) → R(
∑

n K(n))×(
∑

n K(n)) that maps
a matrix M to a block-diagonal matrix [M]N with ([M]N)K(n)�K(n′) ≡ 0 for n �= n′ and
([M]N)K(n)�K(n) ≡ MK(n)�K(n) for any n.

52Babus and Kondor (2018), Babus and Parlatore (2021), and Malamud and Rostek (2017) studied markets
with limited participation and contingent contracts.

53The characterization results—Theorems 2 and 5, Proposition 2, Corollaries 1 and S1, and Lemmas S2
and S3—allow for general market structures. Theorem 5, Proposition 2, Corollary 1, Lemma S2 also allow for
correlated endowments across assets, and heterogeneous risk preferences across traders.
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EXCHANGE DESIGN AND EFFICIENCY 2921

THEOREM 5—Equilibrium: Fixed Point in Demand Schedules; General Design: Con-
sider a market with N = {K(n)}n exchanges. In equilibrium, the (net) demand schedules,
defined by matrix coefficients {ai�Bi�Ci}i, and price impacts {�i}i are characterized by the
following conditions: for each trader i,

(i) (Demand coefficients, given price impact) Given price impact matrices �i ∈
R(

∑
n K(n))×(

∑
n K(n)) , the coefficients of (net) demands ai ∈ R

∑
n K(n)�Bi ∈ R(

∑
n K(n))×K ,

and Ci ∈ R(
∑

n K(n))×(
∑

n K(n)) are characterized by

ai = Ciδ+ + (
Bi − (

αi�
+ +�i

)−1
Wαi�

)
E

[
qi

0

]
− (

Ci − (
αi�

+ +�i
)−1)

×
(∑

j

(
αj�

+ +�j
)−1

)−1 ∑
j

(
αj�

+ +�j
)−1

Wαj�E
[
qj

0

]
︸ ︷︷ ︸

=δ+−E[p]

� (27)

Bi = (
αi�

+ +�i
)−1

Wαi�

− ((
αi�

+ +�i
)−1 − Ci

)(∑
j

Cj

)−1(
Bi + σcv

σcv + σpv

(∑
j �=i

Bj

))
︸ ︷︷ ︸

Adjustment due to cross-asset inference

� (28)

[(
Id − (

αi�
+ +�i

)
Ci

)(∑
j

Cj

)−1 (∑
j �=i

Bj�

(
Bj + σcv

σcv + σpv

∑
h�=i

Bh

)′

︸ ︷︷ ︸
Inference coefficient Var[s−i|qi

0]

)]
N

= 0� (29)

where W ∈{0�1}(
∑

n K(n))×K is the indicator matrix in market N (Definition 6).
(ii) (Correct price impact) Price impact �i equals the transpose of the Jacobian of trader

i’s inverse residual supply:

�i =
((∑

j �=i

Cj

)−1)′
� (30)

Note. With one asset per exchange (i.e., N = {{k}}k), the statement of Theorem 5 spe-
cializes to that of Theorem 1.

Lemma 2 in Appendix B shows that asset by asset optimization54 brings no loss of gen-
erality for optimization with respect to a profile of demands {{qi

k�n(·)}k∈K(n)}n.55 Proposi-

54That is, trader i’s optimization with respect to demand qi
k�n(·) for each asset k ∈ K(n) in each ex-

change n, taking as given his demands for other assets {qi
��n(·)}�∈K(n)���=k in exchange n and {{qi

��n′ (·) : RK(n′) →
R}�∈K(n′)}n′ �=n in all other exchanges n′ �= n.

55A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously differ-
entiable functions {
qi

k(·) : RK(n) → R}k so that qi
K(n) (·) + 
qi

K(n) (·) are downward-sloping with respect to the

contingent variables, that is, the Jacobian
∂(qi

K(n) (·)+
qi
K(n) (·))

∂pK(n)
∈RK(n)×K(n) is negative semi-definite.
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2922 M. ROSTEK AND J. H. YOON

tion 2 shows that pointwise optimization56 is necessary and sufficient for optimization with
respect to demand schedules qi

K(n) (·) ≡ (qi
k�n(·))k∈K(n) :RK(n) →RK(n) in each exchange n.

PROOF OF THEOREM 5: (Equilibrium: Fixed Point in Demand Schedules; General De-
sign). Step 1 (Part (i): Optimization, given residual supply �i and F (s−i|qi

0)). Because pK(n)

maps one-to-one to s−i
K(n) (as we will show in Step 1.3), the price vector pK(n) has full sup-

port. Proposition 2 and Lemma S2 establish that a trader’s pointwise optimization for
each asset k and each exchange n is necessary and sufficient for optimization in demand
functions (i.e., {{qi

k�n(·)}k}n): for each k and n,

max
qi
k�n

∈R
E

[
δ · (qi + qi

0

) − αi

2
(
qi + qi

0

) ·�(
qi + qi

0

) − p · qi|pK(n)�qi
0

]
∀pK(n) ∈RK(n)�

given his demands for other assets {qi
��n(·)}��=k∈K(n) and {qi

��n′ (·)}�∈K(n′)�n′ �=n, and his residual
supply functions for all assets: that is, the distribution of the trader’s residual supply inter-
cepts F (s−i|qi

0) and price impact �i
K(n) ≡ dpK(n)

dqi
K(n)

∈ RK(n)×K(n) > 0 for all n.57 The first-order

condition of trader i in each exchange n is

δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)E

[
qi|pK(n)�qi

0

]
= pK(n) +�i

K(n)q
i
K(n) ∀pK(n) ∈ RK(n)� (31)

In the quadratic-Gaussian setting, �i
K(n) is a constant matrix for all n, given the linearity

of residual supply.
Because the first-order condition (31) in exchange n depends on expected trades

E[qi|pK(n)�qi
0] of other assets, to characterize the best-response demands of trader i,

{qi
K(n) (·)}n, we transform the fixed point among the trader’s best-response demands into

a fixed point among the trader’s demand coefficients, given the residual supplies, �i and
F (s−i|qi

0) (Step 1). We then endogenize the distribution of the residual supply—and thus
all demand coefficients, including expected trades E[qi

K(n′)|pK(n)�qi
0] for all n′ �= n and n—

as a function of price impacts {�i}i (Step 2).
Step 1.1 (Parameterization of trader i’s demands in exchanges n′ �= n). Fix trader i’s de-

mands {qi
K(n′) (·)}n′ �=n in exchanges n′ �= n, and parameterize them as linear functions: for

each n′ �= n,

qi
K(n′) (pK(n′)) = ai

K(n′) − Bi
K(n′)q

i
0 − Ci

K(n′)pK(n′) ∀pK(n′) ∈ RK(n′)� (32)

where ai
K(n′) ∈ RK(n′)�Bi

K(n′) ∈RK(n′)×K , and Ci
K(n′) ∈RK(n′)×K(n′) .

Step 1.2 (Expected trades, given F (s−i|qi
0)). To endogenize the expected trades in a

trader’s demands in exchange n, we characterize the distributions of prices pK(n′) and
the trader’s quantity traded qi

K(n′) in other exchanges n′ �= n, using the parameterized de-
mands (32).

The price vector pK(n′) is determined as a function of the residual supply intercept s−i
K(n′)

by applying market clearing to trader i’s demands (32) and residual supply S−i
K(n′) (·) =

56That is, optimization with respect to qi
K(n) pointwise to each realization of s−i

K(n) ∈RK(n) in each exchange n.
57Given the downward-sloping demands of traders j �= i (Step 2.2).
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EXCHANGE DESIGN AND EFFICIENCY 2923

s−i
K(n′) + ((�i

K(n′))
−1)′pK(n′) :RK(n′) →RK(n′): for each n′ �= n,

ai
K(n′) − Bi

K(n′)q
i
0 − Ci

K(n′)pK(n′) = s−i
K(n′) + ((

�i
K(n′)

)−1)′
pK(n′) ∀s−i

K(n′) ∈RK(n′)� (33)

Given the downward-sloping demand in each exchange n′ �= n (i.e., we assume Ci
K(n′) > 0),

price vector pK(n′) maps one-to-one to the residual supply intercept vector s−i
K(n′) , which we

can thus treat as the contingent variable in trader i’s demands in exchange n′ (in place of
pK(n′)):

qi∗
K(n′)

(
siK(n′)

) = (
Ci

K(n′)
(
�i

K(n′)
)′ + Id

)−1(
ai
K(n′) − Bi

K(n′)q
i
0

)
+ Ci

K(n′)
(
�i

K(n′)
)′(

Ci
K(n′)

(
�i

K(n′)
)′ + Id

)−1
s−i
K(n′)� (34)

Equation (34) characterizes the distribution of trades qi
K(n′) as a function of F (s−i|qi

0), and
ai
K(n′)�Bi

K(n′) , and Ci
K(n′) . Denote this distribution by F (qi

K(n′)|qi
0). Moreover,

E
[
qi
K(n′) (pK(n′))|pK(n)�qi

0

] = E
[
qi∗
K(n′)

(
s−i
K(n′)

)
|s−i

K(n)�qi
0

]
� (35)

By Eq. (34), the expected trades vector E[qi∗
K(n′) (s−i

K(n′))|s−i
K(n)�qi

0] is a linear function of ex-
pected intercepts E[s−i

K(n′)|s−i
K(n)�qi

0]. Applying the Projection Theorem to the distribution
of intercepts F (s−i|qi

0), the vector of expected intercepts is

E
[
s−i
K(n′)|s−i

K(n)�qi
0

] = x−i
n′�n + Y−i

n′�ns−i
K(n) + Z−i

n′�nqi
0� (36)

where x−i
n′�n ∈ RK(n′)�Y−i

n′�n ∈ RK(n′)×K(n) , and Z−i
n′�n ∈ RK(n′)×K are coefficients of the expected

residual supply intercepts. We will endogenize these coefficients in Eqs. (44)–(46), having
endogenized distribution F (s−i|qi

0).
Substituting the expected intercepts (36) into Eq. (35) characterizes the expected

trades E[qi|s−i
K(n)�qi

0] as a function of the demand coefficients in other exchanges
{ai

K(n′)�Bi
K(n′)�Ci

K(n′)}n′ �=n and the inference coefficients {x−i
n′�n�Y−i

n′�n�Z−i
n′�n}n′ �=n.

Step 1.3 (Best response in exchange n is linear). Substituting the expected trades (35) into
the first-order condition (31) gives the best-response demands qi

K(n) (·) in exchange n as a
linear function of pK(n)� s−i

K(n) , and qi
0:(

αi�
+
K(n)�K(n) +�i

K(n)

)
qi
K(n)

= δ+
K(n) − pK(n) − αi�K(n)qi

0

−
∑
n′ �=n

αi�
+
K(n)�K(n′)

(
Ci

K(n′)
(
�i

K(n′)
)′ + Id

)−1(
ai
K(n′) − Bi

K(n′)q
i
0

)

−
∑
n′ �=n

αi�
+
K(n)�K(n′)C

i
K(n′)

(
�i

K(n′)
)′(

Ci
K(n′)

(
�i

K(n′)
)′ + Id

)−1

× (
x−i
n′�n + Y−i

n′�ns−i
K(n) + Z−i

n′�nqi
0

)
� (37)

By the linearity of the downward-sloping best response qi
K(n) (·), equilibrium price pK(n) is a

strictly monotone linear function of s−i
K(n) (Eq. (33) for exchange n), and hence maps one-

to-one to s−i
K(n) . Thus, substituting s−i

K(n) for pK(n) in Eq. (37) gives the best response qi
K(n) (·)
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2924 M. ROSTEK AND J. H. YOON

as a function of his private information qi
0 and contingent variable pK(n) . This allows us to

parameterize qi
K(n) (·) as a linear function of qi

0 and pK(n):

qi
K(n) (pK(n)) = ai

K(n) − Bi
K(n)q

i
0 − Ci

K(n)pK(n) ∀pK(n) ∈ RK(n)� (38)

Step 1.4 (Fixed point for each demand coefficient as a single matrix equation). Given the
linearity of best-response schedules {qi

K(n) (·)}n in all exchanges (Step 1.3), we will write
a profile of demand schedules qi(·) = (qi

K(n) (·) : RK(n) → RK(n))n in matrix form (Eq. (39)
below). The matrix form allows us to write the fixed point problem (37) for trader i’s
best-response demands in all exchanges as a system of matrix equations, given �i and
F (s−i|qi

0).
Define demand coefficients for all N exchanges,

ai ≡ (
ai
K(n)

)
n
∈ R

∑
n K(n)� Bi ≡ (

Bi
K(n)

)
n
∈ R(

∑
n K(n))×K�

Ci ≡ diag
(
Ci

K(n)

)
n
∈R(

∑
n K(n))×(

∑
n K(n))�

With matrix coefficients {ai�Bi�Ci}i, a profile of trader i’s demand schedules qi(·) can be
written as a function of the vector of the contingent variables in all exchanges p ∈R

∑
n K(n)

rather than the price vector pK(n) ∈RK(n) for exchange n:

qi(p) = ai − Biqi
0 − Cip ∀p ∈ R

∑
n K(n)� (39)

using that the matrix slope Ci = diag(Ci
K(n))n is a block-diagonal matrix; each block cor-

responds to an exchange in N . Similarly, we can write the inference coefficients (36) in
trader i’s expected intercepts E[s−i

K(n′)|s−i
K(n)�qi

0] in matrix form:

(
x−i
n′�n

)
n′ ∈ R

∑
n K(n)� Y−i ≡ (

Y−i
n′�n

)
n′�n ∈R(

∑
n K(n))×(

∑
n K(n))�

(
Z−i

n′�n
)
n′ ∈R(

∑
n K(n))×K�

where x−i
n�n ≡ 0�Y−i

n�n ≡ Id, and Z−i
n�n ≡ 0 for all n and i.

Using the matrix demand coefficients {ai�Bi�Ci} and the matrix inference coefficients
{{(x−i

n′�n)n′� (Z−i
n′�n)n′}n�Y−i}, the fixed point (37) for trader i’s best-response demands across

exchanges simplifies to three matrix equations, one for each demand coefficient:

(
αi�

+ +�i + (
�i

)′)(
Ci

(
�i

)′ + Id
)−1

ai

= δ+ − (
αi�

+
K(n)C

i
(
�i

)′(
Ci

(
�i

)′ + Id
)−1(

x−i
n′�n

)
n′
)
n
� (40)(

αi�
+ +�i + (

�i
)′)(

Ci
(
�i

)′ + Id
)−1

Bi

= Wαi�+ (
αi�

+
K(n)C

i
(
�i

)′(
Ci

(
�i

)′ + Id
)−1(

Z−i
n′�n

)
n′
)
n
� (41)

�iCi + [
αi�

+Ci
(
�i

)′(
Ci

(
�i

)′ + Id
)−1

Y−i
]
N

(
�i

)′(
Ci

(
�i

)′ + Id
) = Id� (42)

Step 2 (Correct residual supply {F (s−i|qi
0)}i and {�i}i). Applying market clearing to the

best-response demands (38) of traders j �= i gives the residual supply of trader i in ex-

 14680262, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
16537 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline L

ibrary on [31/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EXCHANGE DESIGN AND EFFICIENCY 2925

change n: for each pK(n) ∈ RK(n) ,

S−i
K(n) (pK(n)) ≡ −

∑
j �=i

qj

K(n) (pK(n)) = −
∑
j �=i

(
a
j

K(n) − Bj

K(n)q
j
0

)
︸ ︷︷ ︸

=s−i
K(n)

+
∑
j �=i

Cj

K(n)pK(n)� (43)

Step 2.1 (Correct distribution of residual supply intercepts {F (s−i|qi
0)}i). We endogenize the

distributions of the vector of the residual supply intercepts s−i of each trader i as a func-
tion of price impacts {�j}j . The vector of intercepts s−i

K(n) in Eq. (43) in each exchange n
is jointly Normally distributed:

F
(
s−i|qi

0

) =N
(

−
∑
j �=i

(
aj − BjE

[
qj

0|qi
0

])
�
∑
j�h �=i

Bj Cov
[
qj

0�qh
0|qi

0

](
Bh

)′
)
�

given traders’ j �= i demand coefficients {aj�Bj}j �=i and the primitive joint distribution of
their endowments F ((qj

0)j �=i|qi
0). Applying the Projection Theorem to the joint distribu-

tion F (s−i|qi
0) determines the inference coefficients (x−i

n′�n)n′�Y−i, and (Z−i
n′�n)n′ in expected

intercepts E[s−i|s−i
K(n)�qi

0] (Eq. (36)) as functions of demand coefficients {aj�Bj}j �=i, given
{�j}j �=i: for each n,

(
x−i
n′�n

)
n′ = −

∑
j �=i

(
aj − (

Y−i
n′�n

)
n′a

j

K(n)

)

+
∑
j �=i

(
Bj − (

Y−i
n′�n

)
n′B

j

K(n)

)(
E

[
qj

0

] − σcv

σcv + σpv

E
[
qi

0

])
� (44)

(
Z−i

n′�n
)
n′ = σcv

σcv + σpv

∑
j �=i

(
Bj − (

Y−i
n′�n

)
n′B

j

K(n)

)
� (45)

Y−i =
(∑

j �=i

Bj�

(
Bj + σcv

σcv + σpv

∑
h�=i

Bh

)′)

×
[∑

j �=i

Bj�+
(

Bj + σcv

σcv + σpv

∑
h�=i

Bh

)′]−1

N

� (46)

Substituting these inference coefficients into Eqs. (40)–(42) gives the system of equations
(27)–(29) for demand coefficients {ai�Bi�Ci}i as functions of price impact matrices {�i}i.

Step 2.2 (Part (ii): Correct price impact {�i}i). The transpose of the Jacobian of the
trader’s inverse residual supply (S−i(·))−1 characterizes equilibrium price impact �i ≡
diag(�i

K(n))n by a single matrix equation for all exchanges: for each i,

�i =
((∑

j �=i

Cj

)−1)′
� (47)

The system of equations (28)–(29) and (47) for all traders characterizes the fixed point
problem for price impact {�i}i. Q.E.D.
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2926 M. ROSTEK AND J. H. YOON

Proposition 4 characterizes the traders’ equilibrium payoffs. Its proof is provided in
Appendix B. Recall that tr(M) ≡ ∑

k mkk is the trace of a matrix M (i.e., the sum of its
diagonal elements).

PROPOSITION 4—Sufficient Statistic for Equilibrium Payoffs: Let I < ∞ and K > 1.
Assume that � is not singular.58 Fix a market structure N ={K(n)}n.

(1) (Expected payoffs) The expected equilibrium payoff of trader i is characterized as a
function of �̂ and B̂:

E
[
ui

(
qi

) − p · qi
] = E

[
δ · qi

0 − 1
2

qi
0 · α�qi

0

]
︸ ︷︷ ︸

Payoff without trade

+ (
E[q0] −E

[
qi

0

]) ·ϒ (�̂)
(
E[q0] −E

[
qi

0

])︸ ︷︷ ︸
Equilibrium surplus from trade

+ 1
2
I − 1
I

σpv tr
(
B̂′α�+ α�B̂ − B̂′α�B̂

)
︸ ︷︷ ︸

Payoff term due to Var[q0|qi
0] > 0

� (48)

where the per-unit price impact �̂ ∈ RK×K and cross-asset inference B̂ ∈ RK×K are defined by
conditions (23) and (24), respectively, and characterized by

�̂≡ (
W′ �−1

︸︷︷︸
=(I−1)C′

W
)−1

�

B̂ ≡ W′((1 − σ0)
(
α�

+ + �︸︷︷︸
= 1

I−1 (C−1)′

) + σ0(I − 1) �′

︸︷︷︸
= 1

I−1 C−1

)−1
Wα�;

(49)

ϒ (�̂) ≡ 1
2α�(α� + �̂

′
)−1(α� + �̂ + �̂

′
)(α� + �̂)−1α� ∈ RK×K represents the marginal

payoff per unit of ex ante trading needs E[q0] −E[qi
0].

(2) (Sufficient statistic and symmetry) The sufficient statistic (�̂� B̂) for the equilibrium
payoffs (48) reduces to �̂, equivalently B̂, if and only if the equilibrium price impact is a
symmetric matrix, that is., �= �′.
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