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17 Predator-Prey Models

The logistic growth model (Chapter 11) focused on a single population. Moving
beyond that one-dimensional model, we now consider the growth of two interde-
pendent populations. Given two species of animals, interdependence might arise
because one species (the “prey”) serves as a food source for the other species (the
“predator”). Models of this type are thus called predator-prey models. While social
scientists are primarily interested in human populations (in which interdependence
hopefully takes other forms), there are several reasons for studying predator-prey
models. Mathematically, some versions of this model generate limit cycles, an in-
teresting type of equilibrium sometimes observed in dynamical systems with two
(or more) dimensions. Substantively, given reinterpretation of the state variables,
predator-prey models have a variety of useful social science applications. Finally, as
we’ll see in Chapter xx, there is a deep mathematical connection between predator-
prey models and the replicator dynamics of evolutionary game theory.

17.1 Logistic growth with a predator

We begin by introducing a predator population into the logistic growth model. Now
that there are two species, we let P denote the size of the prey population, and Q
denote the size of the predator population. The growth rate of the prey population
is determined by the equation

∆P

P
= r

(
1− P

K

)
− s Q

where r, s, and K are parameters. In the absence of predators (when Q = 0),
the growth of the prey population thus follows the logistic model (with K again
interpreted as the carrying capacity of the environment). However, as indicated by
the second term on the right-hand side of the equation, the prey growth rate falls
as the predator population becomes larger. In turn, the growth rate of the predator
population is determined by the equation

∆Q

Q
= −u + v P

where u and v are parameters. In the absence of prey (when P = 0), the predator
population would shrink at rate u. However, as indicated by the second term, the
predator growth rate rises as the prey population becomes larger. We thus obtain
the two-equation system

∆P = [r (1− P/K) − s Q] P h

∆Q = (−u + v P ) Q h
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where h denotes period length. One might well question the precise functional forms
governing the population dynamics (and we return to this issue below). Nevertheless,
this version of the predator-prey model provides a useful starting point, capturing
the basic insight that more predators are bad for prey, while more prey is good for
predators.

We can begin to analyze the model graphically. From the ∆P equation, we see
that one P -nullcline follows the Q axis (at P = 0) while another is given by

Q = (r/s)(1− P/K)

which is a downward-sloping line in (P, Q) space. The prey population is growing
at points below this nullcline (because ∆P > 0 implies Q < (r/s)(1 − P/K)) and
is shrinking at points below this nullcline. From the ∆Q equation, we see that one
Q-nullcline follows the P axis (at Q = 0) while another is given by

P = u/v

which is a vertical line in (P, Q) space. The predator population is growing at points
to the right of this nullcline (because ∆Q > 0 implies P > u/v), and is shrinking
at points to the left of this nullcline. Without choosing numerical values for the
parameters, we can draw the generic phase diagram below.
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This diagram reveals three steady states. The two at (P ∗ = 0, Q∗ = 0) and
(P ∗ = K, Q∗ = 0) are clearly unstable. The introduction of a few prey would cause
the system to move away from the origin (where neither species is present); the
introduction of a few predators would cause it to move away from the one-dimensional
steady state (where the prey population has reached the capacity constraint). In
contrast, the stability of the interior steady state at(

P ∗ =
u

v
, Q∗ =

r

s

(
1− u

vK

))
cannot be immediately determined from the phase diagram. The arrows indicate
that trajectories will “spiral” around this steady state. But without some additional
analysis, it is not yet clear whether trajectories will spiral inward (converging to the
steady state) or outward (moving away from the steady state).

17.2 A numerical example

To develop a numerical example, we now assume the parameter values K = 1,
r = 1.3, s = 0.5, u = 0.7, v = 1.6, and h = 1. Further assuming the initial condition
(P0 = 1, Q0 = 1), the time paths and phase diagram are plotted on the next page.
Given our numerical assumptions, we see that the oscillations dampen over time,
eventually converging to the steady state (P ∗ = 0.4375, Q∗ = 1.4625). On the phase
diagram, this behavior is reflected by the inward spiral of the trajectory. For reasons
made apparent by this diagram, trajectories are sometimes called orbits, and a phase
diagram with a trajectory is sometimes called an orbit diagram.

When we previously encountered oscillations (in Chapter 11), we raised the con-
cern that they were merely artifacts of the discrete-time formulation of the model.
But having moved from one- to two-dimensional models, it is important to recognize
that the oscillations observed here would remain even if the model was recast in
continuous time. To illustrate, we repeat the preceding example, this time setting
period length very short (h = .01) to approximate continuous-time behavior. The
time path and phase diagram are shown on the following page. Clearly, the oscilla-
tions dampen more rapidly in the continuous-time model.1 Nevertheless, even in the
continuous-time model, we see that the trajectory initially “overshoots” and then
spirals inward toward the steady state.

For this example, the stability of each of the three steady states can be assessed
more formally using the approach discussed in Chapter 11. Our two-equation system
can be rewritten in the form

Pt+1 = g1(Pt, Qt)

Qt+1 = g2(Pt, Qt)

1Comparing the two time-path diagrams, note that each period in the first diagram is divided into
1/h (= 100) periods in the second diagram. But the horizontal axes of both diagrams correspond
to the same amount of real time.
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>> K = 1; r = 1.3; s = .5; u = .7; v = 1.6; h = 1;
>> P = 1; Q = 1; y = [P Q];
for t = 1:(100/h);

dP = (r*(1-P/K)-s*Q)*P*h; dQ = (-u+v*P)*Q*h; P = P+dP; Q = Q+dQ; y = [y; P Q];
end
>> plot(0:100, y) % time paths
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>> P = 0:.1:1; nullP = (r/s)*(1-P/K); plot(y(:,1),y(:,2),P,nullP,[u/v u/v],[0 3])
>> % phase diagram with trajectory
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>> K = 1; r = 1.3; s = .5; u = .7; v = 1.6; h = .01;
>> P = 1; Q = 1; y = [P Q];
for t = 1:(100/h);

dP = (r*(1-P/K)-s*Q)*P*h; dQ = (-u+v*P)*Q*h; P = P+dP; Q = Q+dQ; y = [y; P Q];
end
>> plot(0:(100/h), y) % time paths
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>> P = 0:.1:1; nullP = (r/s)*(1-P/K); plot(y(:,1),y(:,2),P,nullP,[u/v u/v],[0 3])
>> % phase diagram with trajectory
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where

g1(P, Q) = P + [r(1− P/K)− sQ]Ph

g2(P, Q) = Q + [−u + vP ]Qh

Recall that the elements of the Jacobian matrix can be found using calculus or non-
calculus methods. Using calculus (to obtain the result more quickly),

J =

[
∂g1/∂P ∂g1/∂Q
∂g2/∂P ∂g2/∂Q

]
(P ∗,Q∗)

=

[
1 + [r(1− 2P ∗/K)− sQ∗]h −sP ∗h

vQ∗h 1 + (−u + vP ∗)h

]
Given the parameter values from our example, we can assess stability by evaluating
the Jacobian matrix at each steady state and then computing its eigenvalues.

>> K = 1; r = 1.3; s = .5; u = .7; v = 1.6; h = 1;
>> P = 0; Q = 0; J = [1+(r*(1-2*P/K)-s*Q)*h, -s*P*h; v*Q*h, 1+(-u+v*P)*h];
eig(J) % eigenvalues for steady state at (P = 0, Q = 0)

ans =
0.3000
2.3000

>> P = 1; Q = 0; J = [1+(r*(1-2*P/K)-s*Q)*h, -s*P*h; v*Q*h, 1+(-u+v*P)*h];
eig(J) % eigenvalues for steady state at (P = 1, Q = 0)

ans =
-0.3000
1.9000

>> P = .4375; Q = 1.4625; J = [1+(r*(1-2*P/K)-s*Q)*h, -s*P*h; v*Q*h, 1+(-u+v*P)*h];
eig(J) % eigenvalues for interior steady state

ans =
0.7156 + 0.6565i
0.7156 - 0.6565i

>> abs(ans) % computing the absolute value of complex eigenvalues

ans =
0.9711
0.9711

For each of the first two steady states, we see immediately that the dominant eigen-
value is greater than one, indicating instability. For the interior steady state, the
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eigenvalues are complex, and so we must compute their absolute values. The interior
steady state is stable because both eigenvalues have absolute values less than one.

17.3 The original Lotka-Volterra model

We have assumed that the prey population faces a capacity constraint (given by
parameter K). If there is no capacity constraint (so that K is infinite), the two-
equation system becomes

∆P = (r − s Q) P h

∆Q = (−u + v P ) Q h

This special case is, in fact, the original predator-prey model. Developed indepen-
dently in the 1920s by Alfred Lotka (who was modeling chemical reactions) and Vito
Volterra (who was attempting to explain the dynamics of fish populations), it is often
called the Lotka-Volterra model.

Removing the capacity constraint, the P -nullcline which had sloped downward
is now horizontal in (P, Q) space. We can see from the phase diagram below that
trajectories will spiral around the interior steady state at (P ∗ = u/v, Q∗ = r/s). But
again, it is unclear from the diagram whether the trajectories will spiral inward (so
that the steady state is stable) or outward (so that it is unstable).
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For the continuous-time version of the Lotka-Volterra model, it is well known
that the equilibria are cyclical. More precisely, starting from any initial condition,
the trajectory will eventually return to this point (and the system continues along
this “closed orbit” forever). This result does not hold for the discrete-time version
(with h > 0) where orbits are not closed but instead spiral outward.2 However, we
can approximate continuous-time behavior by setting period length very small (say
h = 0.001). To illustrate, we assume the other parameter values from above, along
with the initial condition (P0 = 1, Q0 = 3). Time-path and phase diagrams are shown
on the next page. While the phase diagram does not indicate elapsed time, we can
see from the time-path diagram that one complete orbit takes about 7000 periods
(corresponding to 7000/h = 7 units of time). Had we chosen an initial condition
closer to the interior steady state, it would lie on a “tighter” orbit around this
steady state. Conversely, an initial condition further from this steady state would lie
on a “wider” orbit. Thus, this model has a continuum of cyclical equilibria, arranged
concentrically around the interior steady state.

When we first encountered cycles in Chapter 11, we viewed them as artifacts of the
discrete-time formulation of the model. But in moving to two-dimensional models,
cycles become possible even in continuous-time models.3 Recognizing that cycles
are not artifactual, perhaps we should begin looking for social science applications
of the predator-prey model. In fact, several authors have already suggested that
this model could help explain the dynamics of interpersonal relationships. To sketch
the simplest application, consider a couple (we’ll call them Chris and Pat) who are
romantically involved. Reinterpreting the state variable of the Lotka-Volterra model,
let P denote the affection of Pat for Chris, and Q denote the affection of Chris for
Pat. The dynamics of Chris’ affection level seem straightfoward: Chris becomes more
affectionate when Pat’s affection level is high, and becomes less affectionate when
Pat’s affection level is low. On the other hand, because the changes in Pat’s affection
are inversely related to Chris’ affection level, we might say that Pat is “playing hard
to get.” As we have already seen, the affection levels never converge to a steady
state, but perpetually wax and wane over time.

Moving beyond that (perhaps too-cute) example, researchers have suggested more
sophisticated applications of dynamical systems models to interpersonal relationships
(and social psychology more generally); some references are provided in the further
reading section at the end of this chapter. Applications to other subfields would
also seem possible. For instance, empirical studies indicate that protest activity is
sometimes cyclical. One simple explanation closely follows the predator-prey model.

2Intuitively, because dynamics are updated more frequently as period length becomes smaller,
the orbits make “sharper turns” in the continuous-time version of the model. This also explains the
contrast between the orbit diagrams in the preceding section (which assumed h = 1 and h = 0.01).

3Indeed, as we have just discussed, cycles emerge only in the Lotka-Volterra model only when
time is continous. However, we’ll soon encounter other models in which cycles arise in both discrete-
time and continuous-time versions.
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>> r = 1.3; s = .5; u = .7; v = 1.6; h = .001;
>> P = 1; Q = 3; y = [P Q];
for t = 1:10000;

dP = (r-s*Q)*P*h; dQ = (-u+v*P)*Q*h; P = P+dP; Q = Q+dQ; y = [y; P Q];
end
>> plot(0:10000,y) % time paths
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>> plot(y(:,1),y(:,2),[0 1.2],[r/s r/s],[u/v u/v],[0 6])
>> % orbit diagram
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Letting P denote protest activity and Q denote police enforcement, the change in
police enforcement is directly related to the level of protest activity, while the change
in protest activity is inversely related to the level of police enforcement. (In this
context, it is the protesters who are “playing hard to get.”) Again, the equilibrium
outcome is not a steady state but a cycle in which protest activity perpetually rises
and falls. While a more realistic model might incorporate other explanatory factors,
the predator-prey model seems like a useful starting point. We suspect that many
other sociological applications of the model are waiting to be discovered.

17.4 Another version of the predator-prey model

While the Lotka-Volterra model is well known (and a perennial favorite of textbook
authors), it raises technical and substantive concerns that may undermine its empir-
ical usefulness. The technical concern arises because each closed orbit is only weakly
stable (that is, on the “borderline” between stability and instability). Following a
small shock, the system neither returns to its original equilibrium nor continues to
diverge from it. Rather, the system is simply “bumped” onto a new closed orbit
where it remains indefinitely (unless hit by a subsequent shock). Weak stability
might not seem problematic per se. However, in models with a continuum of weakly
stable equilibria, small respecifications of the dynamics can have large qualitative ef-
fects, dramatically altering the number and stability of equilibria. In the parlance of
dynamical systems, such models are not structurally stable. This calls into question
the robustness of any predictions derived from the model.4

Substantively, reflection on the interaction between predator and prey species
might suggest alternative (more realistic) specifications of the model. Generalizing
our first model, suppose that predator-prey dynamics are given by

∆P =

[
r P

(
1− P

K

)
− s f(P ) Q

]
h

∆Q = [−u Q + v f(P ) Q] h

where the function f(P ) reflects the number of prey consumed per predator. Our first
model implicitly assumed that this function is linear (with f(P ) = P ). When the
prey population is small relative to the predator population, this linearity assumption
may be reasonable. However, when there is an abundance of prey, each predator will
stop eating once it sated. In that context, it seems more reasonable to assume that

4Perhaps the technical concern is even more apparent in a different context. Consider a one-
dimensional threshold model in which thresholds are uniformly distributed between 0 and 1, so
that the threshold curve is given by F (x) = x. Graphically, the threshold curve lies along the
45-line, and hence every outcome x between 0 and 1 is a weakly stable steady state. Clearly, small
respecifications of the threshold distribution could have a large qualitative effect (perhaps inducing
a unique stable equilibrium as opposed to the initial continuum of equilibria).
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f(P ) is a constant (which is independent of P ). To address this issue, biologists have
suggested several specifications of this function. Perhaps the simplest is

f(P ) =
P

a + P

where a is a new parameter. Given this specification, note that f(P ) is concave
(increasing at a decreasing rate) and essentially constant when P is large (with
f(P ) ≈ 1). The two-equation system becomes

∆P =

[
r

(
1− P

K

)
− sQ

a + P

]
P h

∆Q =

[
−u +

vP

a + P

]
Q h

Moving toward a graphical analysis of the model, we see from the first equation
that ∆P = 0 implies P = 0 or

Q = (r/s)

(
1− P

K

)
(a + P )

= (r/s)

[
a +

(
1− a

K

)
P − 1

K
P 2

]
Thus, this P -nullcline (which sloped downward in our first model) is now quadratic.
From the second equation, we see that ∆Q = 0 implies Q = 0 or

P =
au

v − u

Thus, this Q-nullcline remains a vertical line in (P, Q) space. As before, the interior
equilibrium is given by the intersection of these nullclines.

For the continuous-time version of this model, it can be shown that trajectories
spiral inwards toward the (stable) interior equilibrium if

K < a

(
1 +

2u

v − u

)
Conversely, trajectories spiral outward from the (unstable) interior equilibrium if

K > a

(
1 +

2u

v − u

)
In this latter case, there is a unique cyclical equilibrium. This sort of equilibrium is
sometimes called a limit cycle because trajectories converge to this cycle in the limit
as time becomes infinite. Crucially, in contrast to the Lotka-Volterra model, there
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is not a continuum of equilibria. Rather, every trajectory converges to the unique
limit cycle in the long run.

To illustrate, we consider an example with the parameter values r = 1.3, s = 0.5,
u = .7, v = 1.6, a = 1, and K = 3. Because these values imply

K = 3 < a

(
1 +

2u

v − u

)
= 2.5555

we know that the equilibrium is a limit cycle (when h is sufficiently small). The
diagram below shows the orbits resulting from the initial conditions (P0 = .7, Q0 = 3)
and (P0 = 2, Q0 = 6). Note that the orbit spirals outward toward the limit cycle in
the first case, while the orbit spirals inward toward the limit cycle in the latter case.

>> r = 1.3; s = .5; u = .7; v = 1.6; a = 1; K = 3; h = .01;
>> P = .7; Q = 3; y1 = [P Q]; for t = 1:10000; dP = (r*(1-P/K)-(s*Q)/(a+P))*P*h;
dQ = (-u+(v*P)/(a+P))*Q*h; P = P+dP; Q = Q+dQ; y1 = [y1; P Q]; end;
>> P = 2; Q = 6; y2 = [P Q]; for t = 1:10000; dP = (r*(1-P/K)-(s*Q)/(a+P))*P*h;
dQ = (-u+(v*P)/(a+P))*Q*h; P = P+dP; Q = Q+dQ; y2 = [y2; P Q]; end;
>> P = 0:.1:3; nullP = (r/s)*(1-P/K).*(a+P);
>> plot(y1(:,1),y1(:,2),y2(:,1),y2(:,2),P,nullP,[a*u/(v-u), a*u/(v-u)],[0 8])
>> % phase diagram with two trajectories

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

size of prey population (P)

si
ze

 o
f p

re
da

to
r p

op
ul

at
io

n 
(Q

) 

∆ Q = 0 

∆ P = 0 

12



17.5 Further reading

Our discussion of the logistic model with a predator follows the treatment in Allman
and Rhodes (Mathematical Models in Biology, 2004, Chap 3). Original formula-
tions of the Lotka-Volterra model are found in Lotka (J Am Chem Soc 1920) and
Volterra (1926, 1931). For more advanced readers, Hofbauer and Sigmund (Evolu-
tionary Games and Population Dynamics, 1998) offer an extended treatment of a
generalized version of the predator-prey model. Strogatz (1994) discusses this model
(Chapter 6.4) as well as the dynamics of “love affairs” (Chapter 5.3). A related
analysis of interpersonal relationships is given by Felmee and Greenberg (J Math
Soc 1999). A more extended treatment of this topic is provided by Gottman et al
(The Mathematics of Marriage, MIT, 2002). Other applications of dynamical sys-
tems in social psychology are presented by Nowak and Vallacher (Dynamical Social
Psychology, Guilford, 1998). See Oliver and Myers (Mobilization 2003) for discus-
sion of formal models of protest movements. The version of the predator-prey model
developed in Section 17.4 follows Holling (Mem Ent Soc 1973), and is discussed by
Hofbauer and Sigmund (The Theory of Evolution and Dynamical Systems 1988, p
155). Also see also May (Science 1972) for variations on the Lotka-Volterra model.
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