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Abstract The complexity of age-structured two-sex population models has inhib-
ited analysis of the uniqueness or stability of persistent distributions (i.e., equilibria
in which the population grows exponentially with a fixed proportion in each age
class). To offer some insight, this paper examines a special case in which couples
dissolve only through the death of a spouse, and widows never remarry. Additional
simplifying assumptions on the matching function (individuals meet through ran-
dom mixing of the population; eligible singles have no age preference over potential
partners) yield a tractable model in which equilibria are determined through a two-
equation system that be studied graphically. For the exogenous-growth version of
the model, we prove that multiple equilibria arise only if the population growth rate
is negative. Numerical examples indicate that multiplicity also requires either a high
matching rate or a large range of ages over which singles are eligible for matching.
For the endogenous-growth version of the model, numerical examples demonstrate
the potential for multiple equilibria, catastrophes, and limit cycles.
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1 Introduction

While applied demographers work primarily with one-sex population models, many
sociological applications require two-sex models that explicitly address matching of
females and males into couples. Some important applications such as “marriage
squeeze” (Schoen 1983, Guilmoto 2012) further require age-structured models that
keep track of the age distributions of single females and single males as well as the
joint distribution of ages across couples.

There is now a sizeable literature on two-sex population models both with and
without age structures (e.g., Keyfitz 1972, Hoppensteadt 1975, Caswell and Weeks
1986, Pollak 1986, Schoen 1988, Hadeler 1989, Iannelli et al 2005). While standard
models without an age structure seem to be well understood by mathematical de-
mographers, much remains unknown about age-structured two-sex models. Several
researchers have proven existence of persistent distributions given flexible specifica-
tions of the matching function (e.g., Prüss and Schappacher 1993, Martcheva 1999,
Inaba 2000).1 But the complexity of these models has precluded more exhaustive
analysis addressing stability or uniqueness of these equilibria.

This complexity might prompt researchers to employ computational methods
(see, e.g., Iannelli et al 2005, Ch 4), though the large number of parameters and
initial conditions may still complicate efforts to fully characterize the behavior of
these models. Thus, it remains useful for researchers to consider special cases that
are more amenable to analysis and may provide insight into more general models. For
example, by adding a maturation period to a model with no age structure, Hadeler
(1993) developed a quasi-age-structured model and derived conditions under which
it admits a unique non-trivial persistent distribution.

In this spirit, the present paper considers an age-structured two-sex model similar
to one proposed by Inaba (1993) in which couples dissolve only through the death
of a spouse, and widows never remarry. While a more realistic model would of
course also permit divorce and remarriage, the sequential structure of an individual’s
life-course (from single to married to widowed) simplifies analysis of the present
model. Two further assumptions also greatly facilitate tractability. First, we adopt
a particular specification of the matching function that presumes random mixing
within the population. Second, we assume that singles match only within “eligible”
age ranges, and that eligible singles have no age preference over potential partners.
Given these simplifications, an equilibrium of the model is fully characterized by
two variables – the population growth rate and the share of eligible females in the

1In the context of one-sex models, demographers commonly use the phrase “stable populations”
rather than “persistent distributions” to refer to populations growing exponentially with a fixed
proportion in each age class. Given the non-linearity of two-sex models, the latter phrase is adopted
to acknowledge that these equilibria may or may not be stable in the dynamical systems sense (i.e.,
the population may or may not return to a persistent distribution following a small perturbation).
In contrast, the linearity of one-sex models ensures a unique equilibrium that is globally stable (i.e.,
the population converges to the stable population from any initial condition).
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population – and the problem of finding persistent distributions is reduced to a two-
equation system that can be studied using graphical methods.2

After formal specification of the model, our analysis proceeds in two steps. Fol-
lowing the analytic strategy adopted by Pollak (1986, 1990), we initially assume the
population growth rate is exogenously given. In this case, an equilibrium requires
consistency between the shares of eligible females and eligible males in the popula-
tion. Formally, an exogenous-growth equilibrium may be viewed as the fixed point
of a one-dimensional non-linear equation determining the share of eligible females
(equation 37 below). We then consider the model when the population growth rate
is endogenous. Beyond the consistency condition just described, an endogenous-
growth equilibrium also requires that the number of children produced by couples
is consistent with the growth rate. This gives rise to a second non-linear equation
involving the growth rate and the share of eligible females (equation 51 below).3

Throughout our analysis, we focus especially on the existence of multiple equilib-
ria. The potential for multiple equilibria in age-structured two-sex models is already
well known (see Iannelli et al 2005, p 29, for an example based on a simple model
proposed by Keyfitz 1972). Nevertheless, the existing literature seems to provide
little indication of the conditions under which multiple equilibria arise. Given ex-
ogenous growth, we prove that multiple equilibria arise only if the growth rate is
negative. Numerical examples indicate that multiplicity also requires a sufficiently
high matching rate and a sufficiently large range of eligible ages. Given endoge-
nous growth, numerical examples demonstrate that an equilibrium with a positive
growth rate may be accompanied by equilibria with negative growth rates. Examples
further demonstrate the potential for catastrophes and limit cycles. The practical
importance of these findings and directions for future research are discussed in the
conclusion.

2 Model

Our model is cast in discrete time to facilitate numerical computation, but specified
so that the continuous-time analog is a limiting case. Dividing each year into H ≥
1 periods of length h = 1/H, we can approximate the continuous-time model by
setting H sufficiently large (bounded only by computational capacity). Given this

2While adopted for the sake of mathematical tractability, these assumptions might also be de-
fended on substantive grounds. Bhrolcháin (2001) argues that individuals have more flexible age
preferences over partners than usually assumed by sociologists or demographers, and suggests that
matching between partners of different ages is largely determined by availability in the population.
Inaba (1993) argues that, at least in Japan, most children are born to couples which constitute first
marriages for both partners. In the present model, marriages between widows that do not produce
children would be essentially irrelevant to the analysis.

3While the exogenous-growth model provides a useful stepping stone toward the endogenous-
growth model, it may also be of independent interest. Schoen (1983) develops a similar model
(albeit with a different specification of the matching function) to study marriage squeeze.
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specification, an individual who is a years old has lived at least aH periods and at
most (a+ 1)H− 1 periods. Further assuming that all individuals die before reaching
ω years, the set of age classes is given by

A = {0, 1, . . . , ωH − 1} (1)

To simplify our discussion of the model below, an individual’s “age” corresponds to
the number of periods (not years) that he or she has lived.

The population is composed of never-married individuals (“singles”), couples,
and widows. Thus, the size of the population in period t is given by

N(t) =
∑
i∈A

F (i, t) +
∑
j∈A

M(j, t) + 2
∑
i∈A

∑
j∈A

C(i, j, t) (2)

+
∑
i∈A

WF (i, t) +
∑
j∈A

WM(j, t)

where F (i, t) denotes the number of single females of age i, M(j, t) denotes the
number of single males of age j, C(i, j, t) denotes the number of couples with a
female of age i and male of age j, WF (i, t) denotes the number of widowed females
of age i, and WM(j, t) denotes the number of widowed males of age j.

Each period, some singles form couples. While mathematical demographers have
suggested a wide variety of functional forms for the matching function (see Pollard
1997 for a review), there remains little consensus about the best specification (see
Ianelli et al 2005 for a recent empirical comparison). In the present paper, we assume
that the number of new couples of type ij formed during period t is given by

Φ(i, j, t) =
h µ(i, j) F (i, t) M(j, t)

N(t)
(3)

where µ(i, j) reflects the “force of attraction” between females of age i and males of
age j. To motivate this specification, suppose that, with probability hπ each period,
each individual meets someone drawn randomly from the population. Conditional
upon a meeting between a single female of age i and a single male of age j, the pair
becomes matched with probability µ̃(i, j). Type ij pairs are thus matched at rate
µ(i, j) = πµ̃(i, j). Note that, because µ(i, j) incorporates the meeting rate as well as
the matching probability, this parameter may take values greater than one.

The population is also altered each period through births and deaths. We assume
that the number of girls born during period t is given by

B(t) =
∑
i∈A

∑
j∈A

h β(i, j) C(i, j, t) (4)

where β(i, j) is the birth rate for couples of type ij. The number of boys born in
period t is given by sB(t) where s is the sex ratio at birth. Letting δF (i) denote
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the death rate for females at age i, a female survives from age i to age i + 1 with
probability [1 − hδF (i)]. Similarly, letting δM(j) denote the death rate for males at
age j, a male survives from age j to age j + 1 with probability [1 − hδM(j)]. Our
assumption that no one reaches ω years implies hδF (ωH − 1) = hδM(ωH − 1) = 1.

Given these assumptions on the matching, birth, and death processes, population
dynamics are characterized by the following system of equations:

F (i+ 1, t+ 1) = [1− hδF (i)]

[
F (i, t)−

∑
j∈A

Φ(i, j, t)

]
(5)

M(j + 1, t+ 1) = [1− hδM(j)]

[
M(j, t)−

∑
i∈A

Φ(i, j, t)

]
(6)

C(i+ 1, j + 1, t+ 1) = [1− hδF (i)] [1− hδM(j)] [C(i, j, t) + Φ(i, j, t)] (7)

WF (i+ 1, t+ 1) = [1− hδF (i)]

[
WF (i, t) +

∑
j∈A

hδM(j) [C(i, j, t) + Φ(i, j, t)]

]
(8)

WM(j + 1, t+ 1) = [1− hδM(j)]

[
WM(j, t) +

∑
i∈A

hδF (i) [C(i, j, t) + Φ(i, j, t)]

]
(9)

F (0, t+ 1) = B(t) (10)

M(0, t+ 1) = sB(t) (11)

C(0, j, t+ 1) = C(i, 0, t+ 1) = 0 (12)

WF (0, t+ 1) = WM(0, t+ 1) = 0 (13)

Thus, for a given birth cohort, the number of singles falls each period as singles be-
come married or die. Fixing the birth cohort of both spouses, the number of couples
rises as singles become married, but falls as one (or both) spouses die. Finally, for
a given birth cohort, the number of widows rises as spouses die but falls as widows
themselves die. As already discussed in the introduction, we have simplified popula-
tion dynamics by ignoring several complications – couples dissolve only through the
death of a spouse, and widows never remarry.

Our analysis is also faciliated by several additional simplifying assumptions. First,
we assume that the force of attraction is constant across all “eligible” singles. More
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precisely, we assume that the matching function is given by

µ(i, j) =

{
µ if i ∈ EF and j ∈ EM
0 otherwise

(14)

where

EF = {αFH, . . . , γFH − 1} and EM = {αMH, . . . , γMH − 1} (15)

Conceptually, single females become “eligible” for marriage when they reach αF years
and remain eligible until they reach γF years, single males become eligible when
they reach αM years and remain eligible until they reach γM years, and attraction
between eligible singles is not influenced by their ages. To show the implications of
this assumption, we first substitute (3) into (5) and (6) to obtain

F (i+ 1, t+ 1) = [1− hδF (i)]

[
1−

∑
j∈A

hµ(i, j)M(j, t)

N(t)

]
F (i, t) (16)

M(j + 1, t+ 1) = [1− hδM(i)]

[
1−

∑
i∈A

hµ(i, j)F (j, t)

N(t)

]
M(j, t) (17)

Using equation (14), these equations become

F (i+ 1, t+ 1) =

{
[1− hδF (i)] [1− hµσM(t)] F (i, t) if i ∈ EF
[1− hδF (i)] F (i, t) otherwise

(18)

where

σM(t) ≡ 1

N(t)

∑
j∈EM

M(j, t) (19)

is the share of eligible males in the population in period t, and

M(j + 1, t+ 1) =

{
[1− hδM(j)] [1− hµσF (t)] M(j, t) if j ∈ EM
[1− hδM(j)] M(j, t) otherwise

(20)

where

σF (t) ≡ 1

N(t)

∑
i∈EF

F (i, t) (21)

is the share of eligible females in the population in period t. In this way, equation (14)
implies that dynamics of single females is governed by the share of eligible males in
the population, while the dynamics of single males is governed by the share of eligible
females in the population.

To further simplify our presentation, we also assume females live for exactly ωF
years and males live for exactly ωM years. Formally, age classes are now given by

AF = {0, . . . , ωFH − 1} and AM = {0, . . . , ωMH − 1} (22)
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and mortality rates become

δF (i) = 0 for all i < ωFH − 1
δM(j) = 0 for all j < ωMH − 1

(23)

While it would be straightforward to incorporate arbitrary mortality patterns into
the analysis below, this will have little impact on our results if most individuals
survive beyond the ages at which matching and fertility occur (as usually observed
nowadays in developed countries). We thus ignore early mortality to focus on the
effects of other parameters.

3 Exogenous growth

We begin our analysis by decoupling the birth process from the matching process.
That is, in place of equations (10) and (11), we assume throughout this section that
the birth cohort evolves according to

F (0, t+ 1) = (1 + hr) F (0, t) (24)

M(0, t+ 1) = (1 + hr) s F (0, t) (25)

where r is the (exogenous) growth rate of the population. Once we have considered
the potential for multiple equilibria for a given growth rate, we will recouple the
birth process with the rest of the model in Section 4.

Having fixed the growth rate, we further consider equilibria with persistent dis-
tributions of singles, couples, and widows. In particular, this implies

F (i, t+ 1) = (1 + hr) F (i, t) (26)

M(j, t+ 1) = (1 + hr) M(i, t) (27)

for every age class i and j. Using equations (22-23) and (26-27), equations (18) and
(20) can be rewritten as

F (i+ 1, t) =

{
(1 + hr)−1 [1− hµσM(t)] F (i, t) if i ∈ EF
(1 + hr)−1 F (i, t) otherwise

(28)

M(j + 1, t) =

{
(1 + hr)−1 [1− hµσF (t)] M(j, t) if i ∈ EM
(1 + hr)−1 M(j, t) otherwise

(29)

Note that all time-indexed variables share the same time index t. Thus, restricting
our attention to some particular period t (in which the population follows a stable
growth path), we can simplify our notation by supressing the time index. Normalizing
the size of the birth cohort so that F (0) = 1, and making use of the recursive structure
of these equations, we obtain

F (i) = (1 + hr)−i (1− hµσM)ψF (i) (30)

M(j) = s (1 + hr)−j (1− hµσF )ψM (j) (31)
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where the exponent on the final term is given by

ψg(k) =


0 for k ∈ {0, . . . , αgH − 1}
k − αgH for k ∈ Eg
(γg − αg)H for k ∈ {γgH, . . . , ωgH − 1}

for g ∈ {F,M} (32)

Population shares of eligible females and males are thus given by

σF = χF (σM) ≡ 1

N

∑
i∈EF

(1 + hr)−i(1− hµσM)i−αFH (33)

σM = χM(σF ) ≡ s

N

∑
j∈EM

(1 + hr)−j(1− hµσF )j−αMH (34)

where population size is

N =
∑
i∈AF

(1 + hr)−i + s
∑
j∈AM

(1 + hr)−j (35)

Equation (33) indicates that the share of eligible females depends on the share of
eligible males, while equation (34) indicates that the share of eligible males depends
on the share of eligible females. Formally, an equilibrium is a pair (σ∗F , σ

∗
M) such that

σ∗F = χF (σ∗M) and σ∗M = χM(σ∗F ) (36)

Equivalently, we are looking for a fixed point

σ∗F = χF (χM(σ∗F )) (37)

Because the distributions of singles are determined by the shares of eligible females
and males (via equations 30 and 31), the distribution of couples is determined by
the distributions of singles (via equation 7), and the distributions of widows are
determined by the distribution of singles and couples (via equations 8 and 9), any
solution to equation (37) fully determines the equilibrium. Having fixed the growth
rate r (along with the other parameters µ, s, αF , αM , γF , γM , ωF , ωM , and H = 1/h),
the problem of finding persistent distributions has thus been reduced to the problem
of finding fixed points of a one-dimensional non-linear equation.

It is easy to establish the existence of at least one fixed point. Inspection of
equations (33) and (34) reveals that χF (σ) and χM(σ) are continuous and decreasing
in σ with 1 > χM(0) > χM(1) > 0 and 1 > χF (0) > χF (1) > 0. Consequently, the
compound function χF (χM(σ)) is continuous and increasing in σ with

0 < χF (χM(0)) < χF (χM(1)) < 1 (38)

Thus, there must be at least one fixed point σ∗F ∈ [0, 1] satisfying equation (37).
Perhaps the more interesting question is whether, for a given set of parameter values,
there can be multiple equilibria.
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Figure 1: Plot of χF (χM(σF ))
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This diagram plots the compound function χF (χM (σF )) for parameter values r = −.02,

µ = 3, s = 1, αF = αM = 20, γF = γM = 60, ωF = ωM = 80, and H = 1/h = 10.

Solutions to equation (37) are indicated by the intersection of this function (solid curve)

with the 45-degree line (dotted curve).

To answer this question in the affirmative, we consider a numerical example.
Setting the parameter values as indicated, Figure 1 plots the compound function
χF (χM(σF )) and reveals three different solutions to equation (37): σ∗F = .012, σ∗F =
.038, and σ∗F = .112. The intermediate solution entails a symmetric equilibrium
for males and females: σ∗F = .038 implies σ∗M = χM(.038) = .038. The other
two solutions entail asymmetric mirror-image equilibria: σ∗F = .012 implies σ∗M =
χM(.012) = .112, while σ∗F = .112 implies σ∗M = χM(.112) = .012.

It is important to recognize that Figure 1 establishes existence but not stability of
equilibria. However, viewed naively as a cobweb diagram for a one-dimensional dy-
namical system (see, e.g., Allman and Rhodes 2004), Figure 1 suggests that σF would
rise over time if χF (χM(σF )) > σF and fall over time if χF (χM(σF )) < σF . Hence,
the equilibria at σ∗F = .012 and σ∗F = .112 would be stable while the equilibrium
at σ∗F = .038 is unstable. Of course, the underlying dynamical system actually has
many more dimensions. But simulation analysis indicates that, fixing a growth rate
with multiple equilibria, the asymmetric equilibria are stable while the symmetric
equilibria are unstable.4

4Given population dynamics determined by equations (5-9), (24-25), and (12-13), we computed
trajectories for various initial conditions (distributions of singles, couples, and widows). An initial
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Figure 2: Exogenous growth equilibria
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This diagram plots solutions to equation (37) for growth rates r ∈ [−.1, .1] holding fixed

the other parameter values from Figure 1. It thus indicates the equilibrium value(s) of the

share of eligible females σ∗F for each exogenous growth rate r.

Holding fixed the other parameter values from this numerical example, Figure 2
plots solutions to equation (37) for growth rates r ranging from −10% to +10%.5 To
reconcile Figure 2 with Figure 1, note that a growth rate of r = −.02 generates the
three equilibria already indicated. More generally, Figure 2 reveals the existence of
three equilibria for a range of negative growth rates, but shows that there is a unique
equilibrium for positive growth rates. For instance, a growth rate of r = .02 generates
a unique (and symmetric) equilibrium with σ∗F = .050 and σ∗M = χM(.050) = .050.

It may be instructive to consider the age structure and the distribution of cou-
ples implied in cases with positive and negative growth rates. Figure 3 illustrates
the equilibrium outcomes when r = .02. The top panel shows the age structure,
with singles in dark gray, members of couples in white, and widows in light gray.
Note that the age pyramid becomes narrower at older ages, consistent with a grow-
ing population. The symmetry of the age structure follows from the symmetry of
the equilibrium, as eligible females and males enter marriage at the same rate. The

condition in the neighborhood of one of the asymmetric equilibria converges to that equilibrium,
but an initial condition in the neighborhood of the symmetric equilibrium diverges. When the
initial condition is chosen arbitrarily, the population always converges to one of the asymmetric
equilibria.

5We obtain this figure by evaluating the function χF (χM (σF ))−σF at every point on a fine grid
in (r, σF ) space, and then plotting the zero contour curve for the implied surface.
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Figure 3: Equilibrium population structure given r = .02
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These diagrams show the unique equilibrium population structure for r = .02 given the

other parameter values from Figure 1. The top panel depicts the age structure, with singles

in dark gray, members of couples in white, and widows in light gray. The horizontal dotted

lines indicate the range of eligibility for matching. The bottom panel depicts the distribution

of couples, with darker shades of gray indicating higher densities.
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Figure 4: Equilibrium population structure given r = −.02
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These diagrams show one of the asymmetric equilibrium population structures for r = −.02

and the other parameter values from Figure 1. The top panel depicts the age structure, with

singles in dark gray, members of couples in white, and widows in light gray. The horizontal

dotted lines indicate the range of eligibility for matching. The bottom panel depicts the

distribution of couples, with darker shades of gray indicating higher densities.
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bottom panel gives a contour plot of the couples distribution, with darker shades
of gray corresponding to higher densities. While our model presumes that the force
of attraction is constant for all eligible pairs regardless of age, the equilibrium dis-
tribution of couples displays strong positive sorting by age. Intuitively, matching
is driven by availability, and most eligible singles are young (as shown by the age
distribution).

Figure 4 illustrates one of the (stable) asymmetric equilibrium outcomes when
r = −.02. Note that the age pyramid becomes wider at older ages, consistent with
a shrinking population. Given the asymmetry of this equilibrium (σ∗F = .012 and
σ∗M = .112), the relatively large share of eligible males causes eligible females to
quickly enter marriage. Conversely, the relatively small share of eligible females
creates a backlog of eligible males. While the distribution of couples shows some
positive sorting by age, the asymmetry of the age distribution of eligible singles
induces asymmetry of the couples distribution, with husbands typically older than
wives. Note also that the couples distribution is now skewed toward older couples,
reflecting the negative growth rate of the population.

Figures 5 and 6 provide some sense of how the solutions of equation (37) vary with
the parameters of the model. In Figure 5, we fix αF = αM = 20, γF = γM = 60,
and ωF = ωM = 80, and then consider µ ∈ {.5, 1, 2, 4} and s ∈ {.95, 1, 1.05}. For
each combination of parameters, the diagram gives the equilibrium share of eligible
females σ∗F for every growth rate r ∈ [−.1, .1]. The diagrams suggest that multiple
equilibria arise when the matching rate µ is sufficiently large, and the sex ratio at
birth s is close enough to 1. In Figure 6, we repeat the same exercise, but with
γF = γM = 50 and µ ∈ {1, 2, 3, 4}. Comparison of Figures 5 and 6 suggests that
scope for multiple equilibria decreases as the range of eligible ages shrinks. Fixing
the other parameters, additional examples (not reported) indicate that a matching
rate of µ ≥ 5 is needed to induce multiple equilibria when γF = γM = 45, and that
a matching rate of µ ≥ 10 is needed when γF = γM = 40.

Perhaps the most interesting observation from Figures 5 and 6 is that multiple
equilibria arise only when the growth rate is negative. This result also holds for
additional examples (not reported) covering more of the parameter space and also
permitting asymmetry between the sexes in the first age of eligibility (α), the last age
of eligibility (γ), and the age at death (ω). In the Appendix, using the continuous-
time analogs of equations (33) and (34), we provide a formal proof that non-negative
growth implies a unique equilibrium. Arguably, because populations with negative
growth ultimately become extinct, this result might seem to undermine our emphasis
on the potential for multiple equilibria. But as shown by Figures 5 and 6, multiple
equilibria can arise even when the growth rate is only slightly below zero. Further,
as we will see in the next section when we endogenize the growth rate, it may be
possible (for a given set of parameter values) to have one equilibrium with a positive
growth rate and other equilibria with negative growth rates.
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Figure 5: Equilibrium outcomes given γ = 60
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Following the format of Figure 2, each diagram plots solutions to equation (37), indicating

equilibrium value(s) of the share of eligible females σ∗F for each exogenous growth rate

r ∈ [−.1, .1]. The parameter values αF = αM = 20, γF = γF = 60, ωF = ωM = 80, and

H = 1/h = 10 are fixed across all diagrams. The matching rate µ and the sex ratio at birth

s vary across diagrams as indicated.
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Figure 6: Equilibrium outcomes given γ = 50
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Following the format of Figure 2, each diagram plots solutions to equation (37), indicating

equilibrium value(s) of the share of eligible females σ∗F for each exogenous growth rate

r ∈ [−.1, .1]. The parameter values αF = αM = 20, γF = γF = 50, ωF = ωM = 80, and

H = 1/h = 10 are fixed across all diagrams. The matching rate µ and the sex ratio at birth

s vary across diagrams as indicated.
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4 Endogenous growth

We now consider the model with endogenous growth, replacing equations (24-25)
with equations (10-11), so that population dynamics are given by equations (5-13).

In the absence of early mortality (equations 22-23), equation (7) becomes

C(i+ 1, j + 1, t+ 1) = C(i, j, t) + Φ(i, j, t) (39)

Given the recursive structure of this equation, and the age ranges over which indi-
viduals may form couples (equation 15), we obtain

C(i, j, t) =

τ(i,j)∑
τ=τ(i,j)

Φ(i− τ, j − τ, t− τ) (40)

where

τ(i, j) = max{i− γFH + 1, j − γMH + 1, 1} (41)

τ(i, j) = min{i− αFH, j − αMH} (42)

Intuitively, τ(i, j) is the number of periods since an ij couple could have most recently
formed, and τ(i, j) is the number of periods since an ij couple could have first
formed. Note that τ(i, j) = 1 if both the female and male are currently eligible for
matching. If either the female or the male is not yet eligible, then τ(i, j) < 0 and
hence C(i, j, t) = 0.

We continue to consider equilibria with persistent distributions. Equation (40)
may thus be written as

C(i, j) =

τ(i,j)∑
τ=τ(i,j)

Φ(i− τ, j − τ) (1 + hr)−τ (43)

where the time index t has been suppressed. Given our specification of the matching
function (equations 3 and 14), and using equations (30-32) to determine F (i) and
M(j), we obtain

C(i, j) =
shµ

N

τ(i,j)∑
τ=τ(i,j)

(1 + hr)−i−j+τ (1− hµσM)i−τ−αFH(1− hµσF )j−τ−αMH (44)

where population size N is given by equation (35). Fixing the parameters of the
model, each element of the couples distribution is thus determined by the growth
rate r, the share of eligible females σF , and the share of eligible males σM .

Our specification of the birth process (equation 4) allows fertility rates to vary
arbitrarily with the ages of the partners. But to reduce the number of fertility
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parameters, it is convenient to assume that the fertility rate is constant for all couples
within a fixed age range, and is zero otherwise. Under this assumption, the number
of female births becomes

B = h β
∑
i∈RF

∑
j∈RM

C(i, j) (45)

where

RF = {αFH, . . . , κFH − 1} (46)

RM = {αMH, . . . , κMH − 1} (47)

are the fertile age ranges for females and males. Note that this specification permits
asymmetry between females and males so that (for instance) couples with older males
(but not older females) have positive fertility rates. Substituting equation (44) into
equation (45), we can define

ρ(r, σF , σM) =
sh2βµ

N

∑
i∈RF

∑
j∈RM

τ(i,j)∑
τ=τ(i,j)

(1+hr)−i−j+τ (1−hµσM)i−τ−αFH(1−hµσF )j−τ−αMH

(48)
which gives the number of female births as a function of the growth rate r, the share
of eligible females σF , and the share of eligible males σM .

In equilibrium, the number of births must be consistent with the growth rate.
Substituting equation (26) into equation (10), we obtain

(1 + hr) F (0) = B (49)

Because we have normalized F (0) to 1, the equilibrium condition is thus

1 + hr∗ = ρ(r∗, σ∗F , σ
∗
M) (50)

From our analysis in the preceding section, equilibrium also requires consistency
between the distribution of females and males, as stated in equation (36). An equi-
librium of the endogenous-growth model is thus a triple (r∗, α∗F , α

∗
M) determined by

the pair of equations (36) and equation (50). Equivalently, equilibrium is a pair
(r∗, α∗F ) determined by equation (37) and

1 + hr∗ = ρ(r∗, σ∗F , χM(σ∗F )) (51)

In this way, the problem of finding equilibria with persistent distributions has been
reduced to the problem of solving a two-dimensional non-linear system.

Plotting solutions to equations (37) and (51), endogenous growth equilibria are
determined by the intersections of these curves, as illustrated in Figure 7.6 This

6To plot solutions to equation (51), we first evaluate the function ρ(r, σF , χM (σF )) − (1 + hr)
at every point on a fine grid in (r, σF ) space, and then plot the zero contour curve for the implied
surface.
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example retains the parameter assumptions from Figure 2, and makes the additional
assumptions indicated. The thin curves indicate solutions to equation (37), and the
thick curve indicates solutions to equation (51). Given β = .1, the top panel indicates
a unique equilibrium (r∗ = .009, σ∗F = .048). Simulation analysis (using population
dynamics from equations 5-13) reveals that this equilibrium is stable. Given β = .08,
the bottom panel indicates three different equilibria: (r∗ = .001, σ∗F = .046), (r∗ =
−.006, σ∗F = .068), and (r∗ = −.051, σ∗F = .117). Simulation analysis reveals that the
equilibria with the highest and lowest growth rates are stable, while the equilibrium
with the intermediate growth rate is unstable.

It is straightforward to consider graphically the effect of a change in the fertility
rate β. To obtain the thick curve (representing solutions to equation 51), we plotted
the zero contour lines for the function

ρ(r, σF , χM(σF ))− (1 + hr) (52)

This function is positive in the region bounded by the thick curve (at the lower
left of the diagrams in Figure 7) and negative outside of this region. Inspection of
equation (48) reveals that ρ(r, σF , χM(σF )) is increasing in the fertility rate β. Thus,
as illustrated in Figure 7, a decrease in β causes the region bounded by the thick curve
to contract, while an increase in β causes this region to expand. One implication is
that, starting from the case in the upper panel where β = .1, an increase in β would
cause the thick curve to shift rightward in the neighborhood of (r = .009, σF = .046),
and the equilibrium growth rate would increase.

The existence of multiple equilibria raises the possibility of catastrophes. That is,
a small (continuous) change in a parameter value might cause an abrupt (discontinu-
ous) change in the equilibrium outcome. In particular, we might consider whether a
small decrease in the fertilty rate could cause a discontinuous jump downward in the
equilibrium growth rate. For the preceding example, Figure 7 reveals that a gradual
decrease in the fertility rate from β = .1 to β = .08 would cause the equilibrium
growth rate to fall smoothly from r∗ = .009 to r∗ = .001. Further gradual decreases
in β would continue to shift the thick curve slowly leftward, and simulation analysis
reveals that equilibria along the lower arm of the thin curve are stable. One can show
that, as the fertility rate gradually decreases to β = .06 and β = .04, the equilibrium
growth rates would fall smoothly to r∗ = −.005 (with σ∗F = .031) and r∗ = −.018
(with σ∗F = .013). Thus, for the scenario just described, a gradual decrease in the
fertility rate would not cause any catastrophic change in the equilibrium growth rate.

However, as illustrated in Figure 8, this sort of catastrophe can arise given other
parameter values. Given β = .07, the top panel indicates five different equilibria:
(r∗ = .001, σ∗F = .046), a pair of mirror-image equilibria (r∗ = −.005, σ∗F = .080)
and (r∗ = −.005, σ∗F = .023), and another pair of mirror-image equilibria (r∗ =
−.089, σ∗F = .075) and (r∗ = −.089, σ∗F = .001). Simulation analysis reveals that
the equilibria with highest and lowest growth rates are stable, while the equilibria
with the intermediate growth rate are unstable. Given β = .06, the bottom panel
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Figure 7: Endogenous growth equilibria
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These diagrams assume µ = 3, s = 1, αF = αM = 20, γF = γM = 60, ωF = ωM = 80,

H = 1/h = 10, κF = 40, and κM = 60. The fertility rate β varies across diagrams as

indicated. The thin curves indicate solutions to equation (37); the thick curves indicate

solutions to equation (51). Equilibria (r∗, σ∗F ) correspond to the intersections of these

curves.
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Figure 8: A catastrophe
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These diagrams assume µ = 3, s = 1, αF = αM = 15, γF = γM = 60, ωF = ωM = 80,

H = 1/h = 10, and κF = κM = 40. The fertility rate β varies across diagrams as indicated.

The thin curves indicate solutions to equation (37); the thick curves indicate solutions to

equation (51). Equilibria (r∗, σ∗F ) correspond to the intersections of these curves.
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indicates three different equilibria: (r∗ = −.006, σ∗F = .043), and a pair of mirror-
image equilibria (r∗ = −.109, σ∗F = .051) and (r∗ = −.109, σ∗F = .001). Simulation
analysis reveals that the equilibrium with the higher growth rate is unstable, while
the equilibria with lower growth rates are stable.

The instability of the equilibrium with r∗ = −.006 for β = .06 creates the po-
tential for a catastrophe. Suppose the fertility rate is β = .07 and the population
is initially in the positive growth equilibrium. If the fertility rate decreases slightly
to β = .06, the population moves from (r = .001, σF = .046) toward the equilibrium
(r∗ = −.006, σ∗F = .043). However, because this equilibrium is not stable, the pop-
ulation will diverge (slowly at first) from this outcome. In the process, the growth
rate will continue to fall until the population ultimately reaches one of the stable
equilibria. Thus, given a small change in the fertility rate from from .07 to .06, the
equilibrium growth rate jumps discontinously downward from 0% to nearly −11%.

Equations (37) and (51) determine existence but not stability of equilibria, and it
is important to recognize the high dimensionality of the dynamical system composed
of equations (5-13). Nevertheless, a naive interpretation of Figures 7 and 8 as phase
diagrams for a two-dimensional dynamical system does provide some insight into
disequilibrium dynamics. On this interpretation,

sign{dσF/dt} = sign{χF (χM(σF ))− σF} (53)

sign{dr/dt} = sign{ρ(r, σF , χM(σF ))− (1 + hr)} (54)

To illustrate, consider again Figure 8. For the top panel (β = .07), these dynamics
suggest stability of the equilibrium (r∗ = .001, σ∗F = .046). Within the neighborhood
of this equilibrium, both r and σF would converge to the equilibrium levels. In
contrast, for the bottom panel (β = .06), these dynamics suggest instability of the
equilibrium (r∗ = −.006, σ∗F = .043). Within the neighborhood of this equilibrium, r
would converge to the equilibrium, but σF would diverge. Consistent with this naive
phase-diagram analysis, simulations reveal that the population initially diverges by
following a path along the thick black curve away from the unstable equilibrium.

However, these “phase diagrams” may be a poor guide to disequilibrium dynamics
in other cases, especially given the potential for limit cycles.7 Figure 9 illustrates.
In the top panel, χF (χM(σF )) − σF is negative above the thin curve and positive
below it, while ρ(r, σF , χM(σF )) − (1 + hr) is positive to the left of the thick curve
and negative to the left. Equations (53-54) would thus suggest convergence of the
population to the equilibrium (r∗ = .028, σ∗F = .106). But simulation analysis reveals
the population actually converges to the limit cycle indicated by the dotted curve in
the top panel and the time paths in the bottom panel.

Further examples suggest that limit cycles arise only when the reproductive age
ranges are relatively short. That is, fixing the earliest ages at which individuals
reproduce (αF and αM), limit cycles arise only when the final ages (κF and κM) are

7See Caswell and Weeks (1986) for a discussion of limit cycles in two-sex models.
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Figure 9: A limit cycle
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This example assumes µ = .5, s = 1, αF = αM = 20, γF = γM = 60, ωF = ωM = 80,

H = 1/h = 10, κF = κM = 40, and β = .5. In the top panel, the thin curve indicates

solutions to equation (37), the thick curve indicates solutions to equation (51), and the

dotted curve indicates the limit cycle revealed by simulation analysis. The bottom panel

shows the time path of the growth rate r and the share of eligible females σF after population

dynamics have converged to the limit cycle.
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relatively low. To illustrate, Figure 10 varies these parameters while holding fixed
the other parameters from Figure 9. The dotted curves on the upper-left diagrams
indicate that the population converges to a limit cycles, while the absence of dotted
curves in the other diagrams indicates that the population converges to the steady
state determined by the intersection of the thin and thick curves.

5 Conclusion

This paper examines an age-structured two-sex model in which couples dissolve only
through the death of a spouse, and widows never remarry. Additional simplifying
assumptions on the matching function (individuals meet through random mixing of
the population; eligible singles have no age preference over potential partners) yield
a highly tractable model. In the exogenous-growth version, an equilibrium is fully
characterized by a single variable (the share of eligible females in the population). In
the endogenous-growth version, an equilibrium is characterized by a pair of variables
(the growth rate as well as the share of eligible females). In both versions, equilibria
can be determined through simple graphical methods.

While other age-structured two-sex models are more general and more realistic,
their complexity has precluded analysis of the stability and uniqueness of equilibria.
In contrast, the tractability of the present model permits some new insight into
conditions under which multiple equilibria arise. In the exogenous-growth model, we
prove that multiple equilibria arise only if the growth rate is negative. Numerical
examples further indicate that multiplicity requires either a high matching rate or
a large range of eligible ages. In the endogenous-growth model, numerical examples
demonstrate the potential for multiple equilibria, catastrophes, and limit cycles.

Though the practical importance of these results is somewhat difficult to judge
without generalization of the model and calibration of model parameters, our findings
might suggest that multiple equilibria are not likely to arise in realistic settings
given the ranges of parameter values that would be associated with observed human
populations. In particular, while our leading examples (Figures 1 to 4) assumed
a very large range of eligible ages (20 to 60 years), we might expect this range to
be smaller in observed populations (at least under the maintained assumption that
eligible singles are indifferent to the age of potential partners). Further, intuition
suggests that divorce and remarriage, by increasing the availability of eligible singles
at older ages, might further limit the potential for multiple equilibria.

On the other hand, we note that the exogenous-growth version of our model is
similar to the MSQUEEZ model developed by Schoen (1983). In parallel to our anal-
ysis, Schoen derived the equilibrium population structure for exogenous growth rates
between −20% and +20%. But in contrast to our analysis, the iterative procedure
he used to compute these equilibria would not have detected the existence of multi-
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Figure 10: Equilibrium outcomes by κM and κF
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The parameter values µ = .5, s = 1, αF = αM = 20, γF = γM = 60, ωF = ωM = 80,

H = 1/h = 5, and β = .5 are fixed across all diagrams. The parameters κF and κM vary

across the diagrams as indicated. Following the format of the top panel of Figure 9, the

dotted lines indicate limit cycles revealed by simulation analysis. For the diagrams without

dotted lines, the population converges to the steady steady indicated by the intersection of

the thin and thick curves.

24



ple equilibria.8 Perhaps there was no potential for multiple equilibria given Schoen’s
(harmonic mean) specification of the matching function or his (empirically grounded)
specification of matching parameters. But our present results might encourage future
researchers to consider this possibility.

Our finding that multiple equilibria arise in the exogenous-growth model only
if the growth rate is negative might seem to further limit the practical relevance
of our results. Obviously, populations with negative growth rates will ultimately
become extinct. However, our examples indicate that multiple equilibria can arise
even when the growth rate is only slightly negative. While speculative, our findings
might encourage researchers to explore the theoretical potential for multiple equilib-
ria or even catastrophic change in countries currently experiencing negative growth
or below-replacement fertility.

The tractability of the present model allows equilibria to be determined through
a two-equation system that can be analyzed graphically. Future theoretical work
might see how far the model can be generalized without losing this attractive impli-
cation. While tractability hinges on the two simplifying assumptions on the matching
function, other simplifying assumptions were made merely for convenience. In par-
ticular, it would be straightforward to allow arbitrary patterns of mortality (δF and
δM varying by the individual’s age) or fertility (β varying by the ages of partners).
Potentially, the model could also be extended to allow divorce and remarriage with-
out moving beyond our two-equation framework, since the distribution of couples
would still be determined by the distributions of singles, though the form of the
dependence would become more complicated.

While motivated by tractability considerations, our key assumptions on the match-
ing function might be defended on substantive grounds. In the absence of consensus
on the best specification of the matching function (Pollard 1997, Ianelli et al 2005),
random mixing provides a useful baseline. Age preference among eligible singles may
be weaker than generally assumed (Bhrolcháin 2001), and we have shown that strong
positive sorting by age can arise solely through availability considerations (recall the
lower panel of Figure 2). Nevertheless, empirical realism surely warrants more gen-
eral specifications of the matching function. We hope that the present paper, by
beginning to identify the conditions under which multiple equilibria arise, will prove
useful as researchers continue to grapple with more general (and harder to analyze)
age-structured two-sex models.

8In that procedure, initial conditions were taken from empirical one-sex life tables. A wider
range of initial conditions would be needed to address the existence (or non-existence) of multiple
equilibria.
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6 Appendix

In this appendix, we prove that multiple equilibria arise in the exogeneous-growth
model only if the growth rate is negative.

The continuous-time analogs of equations (33) and (34) are

χF (σM) =
1

N
e−αF r

γF−αF∫
0

e−(r+µσM )i di (55)

χM(σF ) =
1

N
s e−αMr

γM−αM∫
0

e−(r+µσF )j dj (56)

and hence the derivatives are

χF
′(σM) = −µ 1

N
e−αF r

γF−αF∫
0

i e−(r+µσM )i di (57)

χM
′(σF ) = −µ 1

N
s e−αMr

γM−αM∫
0

j e−(r+µσF )j dj (58)

The slope of the compound function χF (χM(σF )) can be written

χF
′(χM(σF )) · χM ′(σF ) (59)

which, evaluated at the fixed point σ∗F , becomes

χF
′(σ∗M) · χM ′(σ∗F ) (60)

Using equation (36), this product may be rewritten as

σ∗M χF
′(σ∗M)

χF (σ∗M)
· σ
∗
F χM

′(σ∗F )

χM(σ∗F )
(61)

which is equal to

σ∗M µ
γF−αF∫

0

i e−(r+µσ
∗
M )i di

γF−αF∫
0

e−(r+µσ
∗
M )i di

·
σ∗F µ

γM−αM∫
0

j e−(r+µσ
∗
F )j dj

γM−αM∫
0

e−(r+µσ
∗
F )j dj

(62)

Note that both terms in equation (62) take the form

ζ(r) =
x
∫ b
0
i e−(r+x)i di∫ b

0
e−(r+x)i di

(63)
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where ζ(0) < 1 for b < ∞, and ζ ′(r) < 0. Thus, when the growth rate r is non-
negative, both terms in equation (62) are less than 1. Consequently, the slope of the
compound function χF (χM(σF )) must be less than 1 at any fixed point σ∗F . Recalling
that the compound function is continuous and increasing and satisfies equation (38),
this guarantees the existence of a unique fixed point.
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