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1 Markov Chains

A Markov chain process is a simple type of stochastic process with many social sci-
ence applications. We'll start with an abstract description before moving to analysis
of short-run and long-run dynamics. This chapter also introduces one sociological
application — social mobility — that will be pursued further in Chapter 2.

1.1 Description

Consider a process that occupies one of n possible states each period. If the process
is currently in state ¢, then it will occupy state j in the next period with probability
P(i, 7). Crucially, transition probabilities are determined entirely by the current state
— no further “history dependence” is permitted — and these probabilities remain fixed
over time. Under these conditions, this process is a Markov chain process, and the
sequence of states generated over time is a Markov chain.

To restate this somewhat more formally, suppose that the possible states of the
process are given by the finite set

S={1,2,...,n}.

Let s; € S denote the state occupied by the process in period ¢ € {0,1,2,...}. Further

suppose that
PT’Ob(SH_l :j | St :Z) = P(%])

where P(1, j) is parameter fixed for each pair of states (7, 7) € S x S. As this notation
makes explicit, the probability of moving to each state j in period ¢t + 1 depends only
on the state 7 occupied in period t. Given these assumptions, the process is a Markov
chain process, and the sequence (sg, s1, So, . ..) is a Markov chain.

The parameters of a Markov chain process can thus be summarized by a transition
matriz, written as

P(1,1) P(1,2) ... P(1,n)
P(2,1) P(2,2) P(2,n)
P(n,1) P(n,2) ... P(n,n)

Of course, because the elements of this matrix are interpreted as probabilities, they
must be non-negative. That is,

P(i,j) >0 foralli,jeS.



Further, each row of P must be a probability vector, which requires that

ZP(i,j) =1 forallielb.

jes

Consequently, while the transition matrix has n? elements, the Markov chain process
has only n(n — 1) free parameters.

To make this description more concrete, consider an example (drawn from Kemeny
et al, 1966, p 195). A Markov process has 3 states, with the transition matrix

0 1 0
P=| 0 1/2 1/2
1/3 0 2/3

In words, if the process is currently in state 1, it always transitions to state 2 in the
next period. If the process is in state 2, it remains in state 2 with probability 1/2,
and transitions to state 3 with probability 1/2. Finally, if the process is in state 3, it
remains in state 3 with probability 2/3, and moves to state 1 with probability 1/3.

Beyond the matrix specification of the transition probabilities, it may also be
helpful to visualize a Markov chain process using a transition diagram. Below is the
transition diagram for the 3 x 3 transition matrix given above.

The nodes of the transition diagram correspond to the possible states of the process
(labeled in boldface); the directed edges indicate possible transitions between states.
If a transition is possible from state i to state j, the directed edge from node i to
node j is labeled with the probability P(7,7). A loop (an edge from some node to
itself) indicates the possibility that the process continues to occupy the same state
next period. By convention, no edge is drawn from node i to node j if P(i,j) = 0.

1.2 Analysis using a probability tree

Having specified a Markov chain process, we might now tackle the following sorts of
questions: If the process begins in state ¢ in period 0, what is the probability that



the process will be in state j in period 17 in period 27 in period t7 in the long run,
as t becomes very large? We’'ll soon learn simple matrix methods for answering these
questions. But it might be instructive first to approach these questions by drawing a
probability tree diagram.

The initial node of a probability tree (aptly called the “root”) is given by the state
1 occupied in period 0. The first set of “branches” are given by the edges indicating
possible transitions from state i. These edges are labeled with the probabilities P(i, )
just as in the transition diagram. From each new node — each state 7 that the process
may occupy in period 1 — we may then draw another set of branches indicating
possible transitions from that state. This creates another set of nodes — every state
7 that the process may occupy in period 2 — which would each sprout another set
of branches. Continuing in this fashion, we could (at least in principle) construct a
probability tree to describe the future of the Markov chain over the first ¢ periods
(for any number of periods ¢). A particular Markov chain generated by the process
corresponds to a single path through the tree, starting at the initial (period 0) node
and ending at one of the terminal (period ¢) nodes.

To illustrate, let’s return to the 3-state example above, and suppose the process
starts in state 2 in period 0. The probability tree for the next 3 periods is shown
below.

1/2 T 3

1/2 1/3

2/3 3/1
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2/3
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Having assumed (arbitrarily) that the process started in state 2 in period 0, we could
also construct similar diagrams with state 1 or state 3 as the initial node. (See Kemeny
et al, 1966, p 196 for the diagram starting from state 1. I'll leave the diagram for
state 3 as an exercise.)

Using the probability tree diagram, we can now begin to answer the questions
posed above. By assumption, the process starts in state 2 in period 0. Following one
of the two branches from this initial node, the process then occupies either state 2
(with probability 1/2) or state 3 (with probability 1/2) in period 1. Of course, we
could have obtained those probabilities directly from the second row of the transition
matrix without the aid of the tree diagram. But for period 2, the diagram becomes
more useful, showing that the process has reached state 1 with probability

(1/2)(1/3) = 1/6,

has reached state 2 with probability

(1/2)(1/2) = 1/4,

and has reached state 3 with probability

(1/2)(1/2) + (1/2)(2/3) = 7/12.

Importantly, as reflected in this last computation, there are two different paths that
the process could have taken from the initial state to the destination state. In par-
ticular, the process could have transitioned from state 2 to state 3 to state 3 (with
probability (1/2)(1/2) = 1/4) or it could have transitioned from state 2 to state 2
to state 3 (with probability (1/2)(2/3) = 1/3). To obtain the probability that the
process has transitioned from state 2 to state 3 through any path, we add these two
probabilities together (hence 1/4 4+ 1/3 = 7/12). It is also important to note that

1/64+1/4+7/12 = 1,

which reflects the fact that the process must occupy some state in period 2. More
formally, we say that the probability vector

[1/6 1/4 7/12 ]

constitutes a probability distribution over states of the process in period 2.
In a similar way, we can use the tree diagram to obtain the probability distribution
over states in period 3. The process has reached state 1 with probability

(1/2)(1/2)(1/3) + (1/2)(2/3)(1/3) = 7/36,



has reached state 2 with probability

(1/2)(1/2)(1/2) + (1/2)(1/3)(1) = 7/24,

and has reached state 3 with probability

(1/2)(1/2)(1/2) + (1/2)(1/2)(2/3) + (1/2)(2/3)(2/3) = 37/72.

The computations reflect 2 possible paths (of length 3) from state 2 to state 1, 2
possible paths (of length 3) from state 2 to state 2, and 3 possible paths (of length
3) from state 2 to state 3.

1.3 Analysis using matrix algebra

While probability trees offer an intuitive first approach for analyzing Markov chains, it
is obvious that this method would quickly become impractical as the number of states
(n) or time periods (¢) becomes large. Fortunately, there is a simple matrix approach
involving iterated multiplication of the transition matrix. Raising the matrix P to
the power ¢, we obtain the matrix P’. Let element (7,7) of this matrix be denoted
as P'(i,7). This element has the following interpretation: P*(i,j) is the probability
that a process which begin in state ¢ in period 0 will occupy state j in period ¢.
Consequently, given initial state i, the probability distribution over states after ¢
periods is given by the ith row of P! matrix.

Having so quickly summarized the matrix approach, perhaps an illustration would
be useful. Returning again to the 3-state example, we can use Matlab to determine
the (probabilistic) future of the chain after 2, 3, 4, 5, 10, or 100 periods.

>P=1[010; 01/2 1/2; 1/3 0 2/3] % transition matrix

P =
0 1.0000 0

0 0.5000 0.5000

0.3333 0 0.6667

>> P72 7 period 2

ans =
0 0.5000 0.5000
0.1667 0.2500 .5833
0.2222 0.3333 0.4444

o

>> P~3 ¥ period 3

ans =
0.1667 0.2500 .5833
0.1944 0.2917 .5139
0.1481 0.3889 0.4630

o O



>> P"4 7}, period 4

ans =
0.1944 0.2917 0.5139
0.1713 0.3403 .4884
0.1543 0.3426 0.5031

o

>> P°5 ¥ period 5

ans =
0.1713 0.3403 0.4884
0.1628 0.3414 .4958
0.1677 0.3256 0.5067

o

>> P10 % period 10

ans =
0.1666 0.3335 0.4998
0.1666 0.3334 0.5000
0.1667 0.3332 0.5001

>> P~100 % period 100

ans =
0.1667 0.3333 0.5000
0.1667 0.3333 0.5000
0.1667 0.3333 0.5000

To reconcile these computations with our probability tree analysis, which assumed
that the process was initially in state 2, consider the second row of the P? and P3
matrices. Consistent with our previous analysis of period 2, we find

P?(2,1) = .1667, P*(2,2) = .25, and P*(2,3) = .5833.
And consistent with our analysis of period 3, we find
P3(2,1) = .1944, P3(2,2) = .2917, and P?(2,3) = .5139.

But moving beyond the results of our probability tree analysis, we can learn much
more from the preceding matrix computations. Suppose that the process was initially
in state 1. To use the probability tree approach, we would need to draw a new tree
(with state 1 as the root). But given these computations, we can simply inspect
the first row of the matrix P! to determine the probability distribution over states
in period ¢t. Similarly, without drawing a new probability tree with state 3 as the
root, we can inspect the third row of P! to determine the probability distribution
over states in period t. Furthermore, while the probability tree method is impractical
when the number of periods is large, it is trivial (using matrix algebra software) to
compute probability distributions for any number of periods .



Having seen how to use matrix algebra, we should also consider why this approach
works. The argument is already implicit in our reconciliation of the matrix computa-
tions with the probability tree diagram. But restated somewhat more formally, the
argument proceeds by induction. Consider element (i, ) of the P? matrix. Because
this element is found by multiplying row ¢ of P by column j of P, we obtain

P*(i,j) = Y P(i, k) P(k, ).

keS

The kth term of this sum gives the probability that the process transitions from state
1 to state k to state j over the course of two periods. Summing over all k, we obtain
the probability that the process moves from state ¢ in period 0 to state j in period
2 through any intermediate state in period 1. Now consider element (i, 5) of the P3
matrix. Because P? = P?P, this element can be found by multiplying row i of P? by
column 7 of P, and we thus obtain

P3(i,j) = > P*(i, k)P(k, ).

kesS

The kth term in this sum gives the probability that the process transitions from
state ¢ in period 0 to state k in period 2 through any intermediate state, and then
transitions from state k to state j. Summing over all k, we obtain the probability
that the process moves from state ¢ in period 0 to state 7 in period 3 through any
intermediate states in periods 1 and 2. Because this argument could be extended
to cover every subsequent period, we have established that P!(, 7) is the probability
that the process moves from state ¢ in period 0 to state j in period ¢ through any
intermediate states in periods 1 through ¢ — 1.

Returning to the matrix computations, it is interesting (perhaps even surprising)
to find that the rows of the P! matrix become more similar as ¢ becomes large. We'll
return to this “convergence” result below. But first, let’s consider another example
which introduces a first sociological application of Markov chains.

1.4 Social mobility

Sociologists have long been interested in social mobility — the transition of individuals
between social classes defined on the basis of income or occupation. Some research has
focused on intergenerational mobility from parent’s class to child’s class, while other
research has examined intragenerational mobility over an individual’s life course.
Chapter 2 will explore this several aspects of this topic in greater depth. But here,
we’ll develop a simple hypothetical example.

Consider a society with three social classes. Each individual may belong to the
lower class (state 1), the middle class (state 2), or the upper class (state 3). Thus,
the social class occupied by an individual in generation ¢ may be denoted by s; €
{1,2,3}. Further suppose that each individual in generation ¢ has exactly one child
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in generation ¢+ 1, who has exactly one child in generation ¢+ 2, and so on.! Finally,
suppose that intergenerational mobility is characterized by a (3 x 3) transition matrix
which does not change over time. Under these conditions, a single “family history” —
the sequence of social classes (sg, s1, Sz, ...) — is a Markov chain.

To offer a numerical example, suppose that intergenerational mobility is described
by the transition matrix

06 04 0
P=103 04 03
0 07 0.3

which may, in turn, be represented by the transition diagram below.

0.6 0.4 0.3
O L0 L0
\_/ \_/
0.3 0.7

Thus, a child with a lower-class parent has a 60% chance of remaining in the lower
class, has a 40% chance to rise to the middle class, and has no chance to reach the
upper class. A child with a middle-class parent has a 30% chance of falling to the
lower class, a 40% chance of remaining middle class, and a 40% chance of rising to
the upper class. Finally, a child with an upper-class parent have no chance of falling
to the lower class, has a 70% chance of falling to the middle class, and has a 30%
chance of remaining in the upper class.

While mobility across one generation can thus be read directly from the transition
matrix, how can we compute the “life chances” of subsequent generations? That is,
how does the parent’s class affect the class attained by the grandchild, greatgrand-
child, etc? Having assumed that social mobility is a Markov chain process, we can
again obtain the answers through matrix algebra.

>P=1[.6 .40; .3 .4 .3;0 .7 .3]
P =

0.6000 0.4000 0
0.3000 0.4000 0.3000

!Two assumptions are implicit here. First, we are assuming that fertility rates do not vary across
social classes. Second, we are ignoring complications that arise because individuals actually have
two parents (who might themselves have come from different social classes). To use demographers’
terminology, we are considering a “one-sex” (rather than “two-sex”) model. While the present model
offers a useful starting point, we will begin to address differential reproduction and two-sex models
in Chapters 3 and xx.



0 0.7000 0.3000

>> P2

ans =
0.4800 0.4000 0.1200
0.3000 0.4900 0.2100
0.2

100 0.4900 0.3000

>> P~3

ans =
0.4080 0.4360 0.1560
0.3270 0.4630 0.2100
0.2

.2730 0.4900 0.2370

>> P74

ans =
0.3756 0.4468 0.1776
0.3351 0.4630 0.2019
0.3108 0.4711 0.2181

>> P°5

ans =
0.3594 0.4533 0.1873
0.3400 0.4606 0.1995
0.3

.3278 0.4654 0.2068

.3447 0.4589 0.1965
.4591 .1968
.3438 0.4592 0.1970

O O O |
w w w
N
S
[N
o
(@]

0.3443 0.4590 0.1967
0.3443 .4590 .1967
0.3443 0.4590 0.1967

o
o

Given the assumed transition matrix, it is impossible for the children of lower-class
parents to transition directly to the upper class. But these computations show that
grandchildren of these parents have a 12% of reaching the upper class, that great-
grandchildren have greater than 15% chance, and that in the long-run (after many
generations) there’s a nearly 20% chance.



1.5 The limiting distribution

In both of the numerical examples we’ve considered, the rows of the P! matrix become
increasingly similar as ¢ rises, and become identical as ¢ becomes very large. This
“convergence” result may be described in several ways. We may say that, after a
Markov chain process has run for many periods, the current state of the chain does
not depend on the initial state of the chain. Alternatively, we may say that the
limiting distribution — the probability distribution over states in the long run — is
independent of the initial state.

To define the limiting distribution more precisely, suppose that the initial state of
the chain is characterized by the row vector xy. For instance, given a Markov process
with 3 states, and assuming that the process begins in state 2, this vector is

X =101 0],

which indicates that the process is initially in state 2 with probability 1 (and the
other states with probability 0). Having specified the initial condition in this fashion,
the probability distribution over states in period 1 is given by

X, = XoP,
the probability distribution in period 2 is given by
Xy = X3P = (xoP)P = xP?
and the probability distribution in period 3 is given by
X3 = XP = (x,P)P = ((xP)P)P = xP>.
By induction, the probability distribution for period t is given by
x; = XoP'.

By definition, the limiting distribution is the probability distribution x; as ¢t becomes
very large (i.e., as t approaches the “limit” of infinity).

In the examples we have seen, the limiting distribution does not depend on the
initial condition xy. Of course, because we have considered only two examples, we
should not assume that this result will hold for every Markov chain process. Indeed,
it turns out that this result is guaranteed only if the transition matrix satisifies the
condition described in the following

Definition.? A square, non-negative matriz A is primitive if and only if there ex-
ists some t > 1 such that every element of A is positive (i.e., A'(i,j) > 0 for all i, 7).

2Some authors — notably Kemeny and Snell (1960) — refer to a primitive matrix as a regular
matrix. In any case, this condition should not be mistaken for irreducibility, a weaker condition that
will be discussed in Chapter 7.
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Given our matrix computations, it is easy to see that both of the transition matrices
we’'ve considered are primitive. In the first example, all elements of the P! matrix
are positive for every ¢ > 3. In the second (social mobility) example, all elements
of the P' matrix are positive for every ¢ > 2. Having offered this definition, the
“convergence” result can now be stated precisely as the following

Theorem.? Consider a Markov chain process for which the transition matriz P is
primitive, and the initial state of the chain is given by X so that the probability dis-
tribution in period t is given by the vector x, = xqP'. As t becomes very large, X;
converges to the unique probability vector x such that x = xP.

Thus, if the transition matrix is primitive, the probability distribution x; converges
to the limiting distribution x as ¢t becomes large. Moreover, the limiting distribution
x does not depend on the initial condition xq.

1.6 Solving algebraically for the limiting distribution

We have already seen how to solve numerically for the limiting distribution. Raising
the (primitive) transition matrix P to some sufficiently high power ¢, every row of P!
is equal to x. But it is useful to recognize that the condition

x =xP

is a simultaneous equation system that can also be solved algebraically. To illustrate,
consider again the social mobility example. The limiting distribution is determined
by the condition

0.6 04 0
[x(1) x(2) x3)] = [x(1) x(2) x(3)] | 0.3 04 0.3
0 0.7 03

along with the requirement that x is a probability vector. Reverting to high-school
algebra, the matrix condition can be rewritten as

x(1) = 0.6 x(1)+ 0.3 x(2)
x(2) = 04x(1)4+0.4x(2)+0.7x(3)
x(3) = 0.3x(2)+0.3x(3)

and the probability vector requirement is

x(1)+x(2) +x(3) = 1

3See Kemeny and Snell (1960, Chapter 4) for a restatement and proof of this theorem. This
theorem can also be viewed as a special case of the Perron-Frobenius Theorem, which is the central
result necessary for understanding the long-run dynamics of linear systems. See Chapter 3 for more
discussion.
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Using the first and third equations, we obtain

x(1) = (3/4)x(2)
x(3) = (3/7) x(2)

and substitution into the probability vector condition yields
(3/4) x(2) +x(2) + (3/7) x(2) = 1.

We thus obtain

x(1) = 21/61 ~ 0.3443
x(2) = 28/61 ~ 0.4590
x(3) = 12/61 ~ 0.1967

which is consistent with our numerical computations.

This algebraic approach becomes essential when the elements of the transition
matrix are specified symbolically (rather than numerically). For instance, consider
the generic 2-state Markov chain process, with transition matrix

l—a a
P00
Without specifying the parameters a and b we cannot solve numerically for the lim-

iting distribution. But proceeding algebraically, it is easy to verify that the limiting
distribution is given by

x = [ b/(a+b) a/(a+b)].

Intuitively, an increase in the parameter a (holding b constant) implies that the system
transitions more often from state 1 to state 2, and thus increases the probability of
occupying state 2 (and decreases the probability of occupying state 1) in the long
run. Conversely, an increase in b (holding a constant) increases the probability that
the process occupies state 1 in the long run.

1.7 A “macro-level” interpretation

Throughout this chapter, we have so far maintained a “micro-level” interpretation of
Markov chain processes. For instance, in the social mobility example, we adopted the
perspective of a particular individual, and considered how that individual’s social class
affected the “life chances” of his child and grandchild and subsequent descendents.
Thus, the initial condition x( reflected the individual’s class, and the probability
vector x; reflected the probability distribution over classes for a particular descendent
in generation .

But it is also possible to adopt a “macro-level” interpretation of this process.
Given a large population in which each individual belongs to one of the social classes,
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we may interpret Xg(7) as the share of the population in class i in generation 0. For
instance, setting
xg = [02 03 05 ],

we are assuming that 20% of the population belongs to the lower class, that 30%
belong to the middle class, and that 50% belong to the upper class. Assuming that
each individual has one child, population dynamics are determined by the equation

x; = xoP!

and we know (from the preceding theorem) that the population distribution x; will
converge to the limiting distribution x as ¢ becomes large. To illustrate, consider

population dynamics over the next 15 generations (computed using a for loop in
Matlab).

>x=[.2 .3 ..5]; P=1[.6 .40; .3 .4 .3; 0.7 .3];
>> for t = 0:15; disp(x*P"t); end
0.2000 0.3000 0.5000
0.2100 0.5500 0.2400
0.2910 0.4720 0.2370
0.3162 0.4711 0.2127
0.3310 0.4638 0.2051
0.3378 0.4615 0.2007
0.3411 0.4602 0.1987
0.3427 0.4596 0.1977
0.3435 0.4593 0.1972
0.3439 0.4592 0.1969
0.3441 0.4591 0.1968
0.3442 0.4590 0.1968
0.3442 0.4590 0.1967
0.3442 0.4590 0.1967
0.3443 0.4590 0.1967

0.3443 0.4590 0.1967
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Thus, for this example, the population distribution has converged to the limiting
distribution in less than 15 generations.

Given the micro-level interpretation, Markov chain processes are stochastic. Our
knowledge of an individual’s current class i in period 0 allows us to derive the prob-
ability that a descendent is in class ¢ in period ¢t. But obviously we cannot know the
realization of the process — the particular social class that will occupied — in period
t. In contrast, adopting the macro-level interpretation, Markov chain processes gen-
erate population dynamics that are deterministic. Intuitively, each individual in the
population is associated with a different Markov chain, and we can ignore sampling
variation because we are averaging across the realizations of many chains.*

1.8 Further reading

Bradley and Meek (1986, Chap 6) provide an informal introduction to Markov chains.
The classic undergraduate text by Kemeny, Snell, and Thompson (1966) offers a
somewhat more formal (but still very readable) introduction to Markov chains (see
especially Chapters 4.13 and 5.7) as well as probability theory, matrix algebra, and
other useful topics in discrete mathematics. See Kemeny and Snell (1960) for a more
rigorous treatment of Markov chains.

4More formally, by assuming that the size of the population approaches infinity, we can invoke
the Law of Large Numbers (see, e.g., Kemeny and Snell, 1960, p 73).
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