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Abstract

This paper investigates a nonparametric maximumlikelihood estimator of dynamic discrete-

choice models, which is easily extended to a wide variety of economic and social science

contexts. Speci�cally, we explore longitudinal data models of binary choice in the presence

of unobserved heterogeneity of unknown distribution. Several estimation schemes have

been developed which account for the presence of unobserved e�ects. However, previous

estimators are either based on strict parametric assumptions about the distributional form

of the heterogeneity or do not generalize beyond narrow speci�cations and cannot, for ex-

ample, be used to distinguish between the e�ects of heterogeneity versus state-dependence.

Furthermore, as opposed to many previous estimators, because the distribution of the het-

erogeneity is estimated within the model, policy counterfactual simulations may also be

investigated. The estimator investigated in this paper makes no parametric assumptions

about the form of the heterogeneity. The distribution of the heterogeneity is estimated non-

parametrically, using an approach similar to the one proposed for continuous-time models

by Heckman and Singer (1984). This estimator has the additional advantage that it can

be easily applied in practice with a minimal computational burden.

Two chief drawbacks to applying these estimators in practice have been the lack of

asymptotic distribution theory and the scarcity of knowledge about their small-sample

properties. This paper address both these topics. First, we present identi�cation theorems

that are needed to not only establish asymptotic consistency but also illuminate contexts

in which the estimator is likely to perform well. Second, we investigate the small-sample

performance of the estimator under a variety of assumptions using Monte-Carlo methods.

Along the way, we also investigate several rules for choosing the proper nonparametric

approximation to the unknown heterogeneity distribution.

Our paper makes the following contributions. First, our theorems establish identi�-

cation results for a broader set of distributional assumptions than those already in the

literature. Second, while there is not yet a general asymptotic distribution theory, our

Monte-Carlo evidence suggests that assuming the estimated slope parameters converge to

normality at rate root-n provides a close approximation in practice to the true behavior

of the estimator. Third, our Monte-Carlo results suggest that not only are the parameters

of interest recovered accurately but so are their standard errors, and hence, inferences re-

garding those parameters are likely to be valid. This �nding contradicts previous research,

which is pessimistic about the ability of these estimators to produce accurate standard

errors of the estimated parameters. Fourth, we compare how well this estimator performs

against alternative parametric maximum-likelihood estimators that assume the true hetero-

geneity distribution to be known. We �nd little di�erence between the performance of the

semiparametric estimator and the parametric estimator. However, when the true hetero-

geneity is not assumed known, the semiparametric estimator outperforms the parametric

alternatives hands down.



1 Introduction

Dynamic discrete choice problems in economics and other social sciences appear in many

contexts. In this paper, we investigate the properties of a semiparametric maximum like-

lihood estimator of dynamic choice models in a discrete time-period framework. In par-

ticular, we assume the error term consists of an unobserved random e�ect of unknown

distribution and a period-speci�c error term drawn from a known distribution such as nor-

mal or logistic. For each individual the random e�ect is common across periods, but may

have an intertemporal correlation pattern that depends on time. Omitted variables or, more

generally, unobserved heterogeneity gives rise to the intertemporal correlation of the error

terms in
uencing individual behavior. A similar approach to the one we use to correct for

\heterogeneity bias" has been analyzed for continuous-time models by Heckman and Singer

(1984). In the discrete-time context Follmann (1985) and Follmann and Lambert (1989)

have used Monte Carlo methods to examine a subset of the models we investigate. Despite

Follmann and Lambert's �nding that these models estimate the unknown parameter well

but estimate its variance poorly, we �nd a variety of contexts in which both the parame-

ter and its variance are estimated with surprising accuracy. Furthermore we demonstrate

that the parameters are approximately normally distributed and that we lose very little

precision using our approach as compared to full maximum likelihood.

These types of models are of great value in analyzing discrete outcomes in longitu-

dinal data. For example, an analyst with access to monthly or quarterly spell data on

employment behavior may be interested in the dynamics of the labor force participation or

job-changing decision. Controlling for unobserved heterogeneity when producing estimates

of the behavioral parameters is a key element in the construction and interpretation of

unbiased counterfactual policy simulations. If an omitted variable, such as motivation or

past work history, a�ects the participation decision, then failure to control for that e�ect

will bias estimated parameters and invalidate policy forecasts. Econometricians refer to

this problem as unobserved heterogeneity bias.

We address two separate issues in this paper: the �rst is the identi�cation and asymp-

totic behavior of the estimator, and the second is the small sample bias and precision with

which unknown parameters are recovered. Given that identi�cation is satis�ed, consistency
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for this class of estimators follows from the work of Heckman and Singer (1984) and Foll-

mann (1985), who applied the Heckman and Singer approach to models of dynamic discrete

choice in which the period-speci�c component of the error term is logistic. Using Monte

Carlo methods, we will examine how well the estimator and its standard error recover the

true parameters. Furthermore, since the asymptotic distribution and rate of convergence

of the estimator is unknown, we will present Monte Carlo evidence that suggests the slope

parameter is distributed asymptotically normal and converges at rate
p
n or a rate close

to
p
n. Even more, we present evidence that normality of the estimates is not a bad

assumption in small samples.

We examine the behavior of this type of estimator in three di�erent data environments

that commonly arise in social science and other disciplines. First, we consider a binary time

series on longitudinal data{for example, an analyst may have data available on monthly or

annual labor force participation rates from a panel of individuals. The bulk of the Monte

Carlo results in this paper is devoted to this type of data. The second model we will con-

sider is a binary time series with lagged dependent variables. The third is a birth-death

model that has been used to analyze birth transitions, time to strike settlement (Melino

1989), or schooling transitions (Cameron and Heckman 1992 and 1993, Mare 1981, Bart-

holemew, 1973). We will compare outcomes for each model when the vector of covariates

is constant across time periods and when the vector of covariates is allowed to vary across

time (exclusion restrictions).

Our paper proceeds as follows. Section 1 discusses the basic model and its optimization.

Section 2 presents a discussion of identi�cation and asymptotic consistency. Section 3

presents detailed Monte Carlo results for the dynamic discrete choice models with time-

varying explanatory variables and time-constant exogenous variables. We focus on how

well the nonparametric estimator recovers the parameters of the underlying model and

their standard errors in each of the three data environments mentioned above. We examine

how well our model does with both discrete and continuous omitted variables.
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2 The Model

We assume that for each individual in a sample we observe a binary response vector di of

length T, where T may be 1. (This model is extensively described in Heckman, 1981). Let

the elements of di be denoted by dit and take on values 0 or 1. In general, we may have more

than two states in each period, but we focus on the binary case in the following. We also

observe a matrix of covariates Xi of dimension T*K where K is the number of observable

independent variables. Let the vector of exogenous variables observed in period t (the tth

column of Xi) be denoted by xit. Let fi represent an individual-speci�c omitted variable

not observable to the econometrician but observed by the individual. If T>1, we allow

a factor loading term �t on the fi, and normalize �1 to 1 for identi�cation. (A standard

random e�ects model is a special case in which �t=1 for all t.) Let � signify the vector of

�t and � the vector of �t. The econometrician observes dit equal to one if the individual's

underlying utility in time-period t is positive:

dit = 1(x0it�t + "it + �tfi � 0)(2.1)

where 1(�) is the indicator function which takes the value 1 if its argument is true and the

value 0 otherwise. (We will drop the individual subscript i for the remainder when it is

clear enough to do so.) Assuming "t is independent across time with a logistic distribution

gives us a simple logit with a random e�ect of unknown distribution, denoted by H(f).

We make no assumption about the distribution of f except E(f2) <1 and f is distributed

independently of xt and "t for all t. We will use nonparametric maximum likelihood esti-

mation (NPMLE) to estimate �t. An individual's contribution to the likelihood function

is thus Z (
TY
t=1

F (x0t�t + �tf)
dt(1 � F (x0t�t + �tf))

1�dt

)
dH(f);(2.2)

where F is the logistic distribution function. We obtain consistent estimates of (�1; �2; : : : ; �T ; �2; : : : ; �t;H

by maximizing the likelihood with respect to these arguments.

In practice we approximate H(f) nonparametrically with a mixing distribution de�ned

on a �nite but unknown number of support points. Let G(fc) denote the mixing distribution

and C the number of support points, where c subscripts the points of support (atoms) of
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the mixing distribution from 1 to C. Thus (2.2) is approximated by

CX
c=1

(
TY
t=1

F (x0t�t + �tfc)
dt(1 � F (x0t�t + �tfc))

1�dt

)
gc(2.3)

where fc are the support points of G(fc), and gc are the probability masses associated with

each point (the gc are restricted to be nonnegative and sum to one in order to guarantee

that G is a proper distribution function). Along with �t, we estimate parameters of the

mixing distribution: �t, fc, gc, and C.

Discreteness imposes no restriction on the maximum likelihood procedure for producing

accurate estimates of � and its standard error. Laird (1978) provides conditions under which

the NPMLE estimator of H takes the form (2.3). To see the intuition behind this result,

suppose that for each individual we observe fi and we want to estimate H. For any �nite

amount of data of dimension n, regardless of the true H, the empirical distribution of fi is

discrete with at most n support points, so the empirical distribution of the heterogeneity

could be �t perfectly with C � n. The NPMLE estimator of H in this case is simply the

empirical distribution function of fi.

The model presented above can be easily extended in a number of ways. We will discuss

the relaxation of the logistic assumption later in the paper. Furthermore, endogenous

continuous variables can be integrated into these models, but we will not discuss them here

(see Cameron and Heckman, 1991 for a framework more general than that used here).

Mixing distributions have a long history in statistics, going at least to the work of

Pearson (1894). Recent contributions have been made by Lindsay (1983a, 1983b, and 1989)

and others. Heckman and Singer (1984) analyze the behavior of the NPMLE estimator

for continuous time duration models. Follman (1985) and Follman and Lambert (1989)

examine the NPMLE estimator of � for logistic regression models. Their work is closest

to that presented here. A modern introduction can be found in Everitt and Hand (1981)

or Titterington, Smith, and Makov (1985). For our purposes, these models are relatively

simple to estimate and nest standard logit, probit, and linear probability models as special

cases.

When it is identi�ed, proving consistency for this model is a straight forward extension

of work by Heckman and Singer (1994) and Coslett (1983) who verify the assumptions
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of Kiefer and Wolfowitz (1956). Consistency for a special case of this model is shown by

Follman (1986) and for a more general case by Cameron, Heckman, and Taber (1994). Some

identi�cation issues (e.g identi�cation of the factor loading terms) are nontrivial and are

considered in detail in the next section. While results of the consistency of this estimator

have existed for quite some time, very little is known about its rate of convergence and

asymptotic distribution. This remains an active topic in the statistics literature. However,

we provide Monte Carlo evidence that
p
n asymptotic normality is not a bad assumption

in �nite samples.

3 Identi�cation

In the previous section we presented a general model for longitudinal binary choice data.

In its most general form the model is not identi�ed. In this section we provide conditions

under which it is identi�ed and supply counter examples of models that are not identi�ed.

We take Cameron and Heckman (1993) as our point of departure. They explore iden-

ti�cation of a longitudinal binary choice model with only partial observability. De�ne1

dt = 1(X 0

t
~�t � ut � 0):(3.1)

In their discrete duration model, for t > 1 the Econometrician observes (dt;Xt) if and

only if dt�1 = 1. They establish conditions which deliver identi�cation of ~� = ( ~�1; : : : ; ~�T )

and the joint distribution of u = (u1; : : : ; uT ) up to scale and location. Since they show

identi�cation using a subset of the information available to us, we take their results as

given and assume that � and the distribution of u are identi�ed up to scale. We refer

interested readers to their results. The question still remains whether identi�cation of the

joint distribution u is su�cient for identi�cation of our factor structure (2.1). This is the

question we address here.

The problem turns out to be the non-identi�cation of the scale in a way that we

make precise below. In the binary choice model we can just normalize the scale, however

with this speci�cation no normalization delivers identi�cation without imposing restric-

tions on the underlying model. We �x the scale and location of (3.1) by assuming that

1Comparing this speci�cation with (2.1), � and ~� will be proportional, but not necessarily equal.
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for t = f1; 2; : : : ; Tg, k~�tk = 1 and that Xt does not contain an intercept so no location

normalization is required on the unobservables. Under these normalizations we appeal to

Cameron and Heckman (1993) and make the following assumption.

Assumption 1 The joint distribution of the vector (u1; u2; : : : ; uT ) is identi�ed.

We de�ne our factor structure with the following assumption,

Assumption 2 2
6664

u1

u2

...

uT

3
7775 =

2
6664


1("1 + f)


2("2 + �2f)
...


T ("T + �Tf)

3
7775(3.2)

where for each t = f1; 2; : : : ; Tg; "t is independent of f and independent of "� for � 6= t.

The non-degenerate random variable "t has a known distribution function Ft.

The scalars 
t enter equation (3.2) to represent the non-identi�cation of the scale. Since

we used the normalization k~�tk = 1 , it is easy to show that


t =
1

k�tk

where �t is de�ned by (3.2). We will discuss the cases under which these assumptions are

su�cient for identi�cation of the scalar terms 
t and �t, and the distribution of f .

De�ne 
 � (
1; 
2; : : : ; 
T ) and � � (�2; : : : ; �T ). Let � � (<+)T , A � <T �1, and

de�ne H to be the class of distribution functions with median zero. We want to show

identi�cation of (
; �;H) in the class 
 � (�;A;H).

Under Assumptions 1 and 2, we say (
; �;H) is identi�ed in 
 when for any (
1; �1
;H

2) 2


 and (
2; �2
;H

2) 2 
 ,

Z TY
t=1

Ft

�
yt



1
t

� �
1
tf

�
dH

1(f) =

Z TY
t=1

Ft

�
yt



2
t

� �
2
tf

�
dH

2(f) 8 y 2 <T
;(3.3)

if and only if (
1; �1
;H

1) = (
2; �2
;H

2).
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We begin by considering the one period version of the model

d1 = 1(X 0

1�1 � "1 � f � 0):(3.4)

This is a simple binary choice model where the distribution of "1 is as assumed known,

but the distribution of f is unrestricted.Under Assumption 2,

Pr(d1 = 1) =

Z
F1(X

0

1�1 � f)dH(f):

We know that �1 and the distribution of ("1 + f) are identi�ed up to scale and location

(Coslett 1983). Complete knowledge of the distribution of "1 presumes a knowledge of

its scale, this factor structure imposes the scale normalization on the binary choice model

through the speci�cation of the distribution of "1. However, this scale normalization is

not su�cient for identi�cation of the model. We illustrate with the following two simple

counter examples .

Example 1: For any � > 0 suppose the random variable (�f) has distribution F1. Then

Pr(X 0
1�1 � f � "1 � 0) = Pr(X 0

1(��1)� �f � �"1 � 0)

=

Z
F1(X

0

1(��1)� �"1)dF1("1):

So this model is indistinguishable from model (3.4). Normalizing the scale of "1 is not

su�cient for identi�cation of the scale of �1.

The point of this example is simply that if there is some scalar � 6= 1 such that (�f)

has the same distribution as "1, then we can never tell which error term corresponds with

"1. The other examples uses properties of Gaussian distributions.

Example 2: Let both "1 and f have a standard normal distribution. For any � >
1
2
we

can not distinguish model (3.4) from

d
� = 1(X 0

1(��) + "
� + f

� � 0)

where "� has standard normal distribution and f
� is distributed normally with mean zero

and variance 2� � 1.

7



These counter examples are both very special, but the basic principle behind the lack of

identi�cation is actually quite general. Before proceeding we �rst establish some necessary

notation. Let �t and �H denote the characteristic functions associated with the distribution

of "t and the distribution function H. We make one more additional assumption,

Assumption 3 The characteristic functions �1; �2; : : : ; �t do not vanish.

Since the distribution of these functions is pre-speci�ed, this condition is easy to check and

will be satis�ed for both normal and logistic characteristic functions.

We claimed above that the non-identi�cation of the one period model results from the

non-identi�cation of the scale. The next proposition makes this precise by showing that

when the scale can be identi�ed, the model is identi�ed.

Proposition 1 When T = 1 and 
1 is identi�ed, under Assumptions 1-3 we can identify

the distribution of f .

(Proof in Appendix)

We can summarize the results of this proposition and the two counter examples by

providing a necessary and su�cient condition for identi�cation in the one period model.

While the condition may not be very intuitive, it illustrates the generality of the non-

identi�cation result .

Proposition 2 When T=1, for any (
1;H) 2 
 and any 

�
1 2 �, under Assumptions 1-3

there exists a distribution function H
� such that (
1;H) is not identi�ed relative to (
�1;H

�)

if and only if

�
�(t) �

�1(
1t)�H(
1t)

�1(

�
1t)

is a characteristic function.

(Proof in Appendix)

Another avenue to achieve identi�cation is to consider restrictions on the class of per-

missible distribution functions. One possibility is to bound the support of the heterogeneity

. De�ne ~H to be the class of distribution functions with median 0 and bounded support.

So for any H 2 ~H; there exists �1 < f < �f <1 such that H(f ) = 0 and H( �f) = 1.
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Proposition 3 If "1 has support <, X 0
1�1 has support <, and H 2 ~H. Then the scale of

� is identi�ed from the �rst period.

(Proof in Appendix)

Identi�cation of the scale is essentially obtained in Proposition 3 by restricting the tails

of the distribution of f to be thinner than the tails for the distribution of "1. A similar

strategy is used by Heckman and Singer (1984) for continuous time duration models and

is extended to binary choice models by McCall (1992) .Using our notation, they restrict

the tails of the distribution of f by assuming that E(ef) <1. Ishwaran (1994) generalizes

this strategy by restricting the tails of the heterogeneity to be thinner than the tails of the

known distribution. As an indicator of the size of the tails de�nes the radius of continuity

r0(H) � sup
r�0

�
r :

Z
e
rjf j

dH(f) <1
�
:

He shows that the scale is identi�ed in model (3.4) when r0(H) is restricted to be strictly

greater than r0(F1)
2.

We have shown that in general the model is not identi�ed with only one period. We

now consider the two period model in which we obtain much more identifying information.

Not only do we observe the marginal distributions of "1 + f and "2 + �2f , but also their

joint distributions. Since "1 is independent of "2, the dependence of "1 + f and "2 + �2f

will only operate through the distribution of f . However, this additional information is

still not su�cient to identify the full model. As an example we present the case where the

random variables are all normally distributed and show that even though we know that all

the distributions are Gaussian, we can not identify all of the parameters.

Example 3: Let

"1 � N(0; 1)

"2 � N(0; 1)

f � N(0; �2f )

where we take � N(0; �2) to mean distributed normally with mean 0 and variance �2. The

question is whether knowledge of the joint distribution of (u1; u2) will su�ce for identi-

�cation of the scale terms (
1; 
2), the factor loading term �2, and the variance of the

2This result does not strictly generalize Proposition 3. For instance if F1 is Normal then r0(F1) =1.
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heterogeneity �2f . Since all of the error terms are Gaussian, from the joint distribution of

(u1; u2) all that we can hope to identify is

Var(u1) = 

2
1(�

2
f + 1)

Var(u2) = 

2
2(�

2
2�

2
f + 1)

Cov(u1; u2) = 
1
2�2�
2
f

This yields three equations in four unknowns, so we can not identify all four parameters.

Though this example crucially depends on the Gaussian structure, it demonstrates that

the general model is not identi�ed with two periods. Even though normality may be very

special, we do not want to rule it out since most of the previous work in this area has relied

on the normality assumption.

Notice that in the example if we normalize �2 = 1 we are left with three equations

in three unknowns and we can identify the full model. Invoking this assumption restricts

the speci�cation to the standard random e�ect model. We will show below that this one

normalization will provide identi�cation in the general two period model. There is a sense

in which showing identi�cation is most di�cult when all of the error terms are normal.

This can be seen in the following lemmas which we will use to show identi�cation. The

�rst two we take directly from Kagan, Linnik, and Rao (1973) , and the third is simple fact

about polynomials.

Lemma 1 (Kagan, Linnik, Rao (1973) pp. 29-31) Consider the equation, assumed

valid for juj < �0; jvj < �0;

	1(u+ b1v) + : : :+	r(u+ brv) = A(u) +B(v) + Pk(u; v)

where Pk is a polynomial of degree k; 	j,A, and B are complex valued functions of two real

variables u and v. We assume that the numbers bj are all distinct without loss of generality

and that the functions A, B, and the 	j are continuous. Then, in some neighborhood of

the origin, the functions A, B, and the 	j are all polynomials of degree � max (r; k).

This lemma was proved originally by both Linnik (1964) and by Rao (1966) and is also

proved in Kagan, Linnik, Rao (1973). We will use this it to extend identi�cation of the
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Gaussian model to more general models. The importance of normality becomes clear from

the following lemma.

Lemma 2 (Kagan, Linnik, Rao (1973) pp. 82-83) Let the characteristic function �

of some random variable have the form

�(t) = exp(Q(t))

in some neighborhood jtj < � of the origin where Q is a polynomial. Then

Q(t) = At
2 + iCt(3.5)

where A � 0 and C are real constants, and relation (3.5) holds for all real t.

Recall that the characteristic function of a normal random variable with mean � and

variance �2 is exp(it�� (�t)2

2
). Thus if we can show that the log of a characteristic function

of a nondegenerate random variable is a polynomial, then that random variable must be

normal. We will also use the following fact.

Lemma 3 If for some continuous complex function 	, for some 
1 6= 
2, and for some

� > 0, A(t) = 	(
1t)� 	(
2t) is a polynomial of degree k when jtj < �, then 	 must be a

polynomial of degree k in some neighborhood of zero.

(Proof in Appendix)

In the proof of the following proposition we will show that if equation (3.3) holds with

H 6= H
� then H and H

� must be normal. However, as can be seen from Example 3, if the

error terms are all normal than the model is identi�ed.

Proposition 4 In the model above with T = 2 , under Assumptions 1-3 and �2 = 1 ,

(
;H) is identi�ed in 
.

(Proof in Appendix)

With one more period we can show identi�cation of the vector � as well. Consider the

normal case.
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Example 4: Let

"1 � N(0; 1)

"2 � N(0; 1)

"3 � N(0; 1)

f � N(0; �2f )

From the joint distribution of (u1; u2; u3) we can identify

Var(u1) = 

2
1(�

2
f + 1)

Var(u2) = 

2
2(�

2
2�

2
f + 1)

Var(u3) = 

2
3(�

2
3�

2
f + 1)

Cov(u1; u2) = 
1
2�2�
2
f

Cov(u1; u3) = 
1
3�3�
2
f

Cov(u2; u3) = 
1
2�2�3�
2
f

This yields six equations in six unknowns and it is easy to show all six parameters are

identi�ed.

Using the three Lemmas we can show that since the Gaussian version of the model is

identi�ed, the general model is identi�ed. The form of the proof is almost identical to the

previous one.

Proposition 5 In the model above with T � 3 , under Assumptions 1-3 , (
; �;H) is

identi�ed in 
.

(Proof in Appendix)

4 Optimization

Let (�̂; Ĝ; Ĉ) denote a maximum likelihood solution to the product over the sample of

individual likelihoods (2.3), where Ĝ represents the parameters of the mixing distribution

in (2.3): �t, gc, and fc. Even conditioned on C, in general the solution will not be unique

12



and will depend on the initial values of the parameters; moreover, poor starting values may

cause numerical problems for algorithms like quasi-Newton. One widespread technique,

used by Follmann and Lambert (1989) for example, starts searching the parameter space

with the EM algorithm (Dempster, Laird, and Rubin 1977). But since the EM algorithm

converges slowly (linear convergence), once successive iterates become \close" the algorithm

switches to a quasi-Newton routine that converges more quickly (quadratic convergence).

However, since we had little problem in �nding reasonable starting values, and since the

computation needed by the EM algorithm was excessive, we used a quasi-Newton routine

for all the results we present in Section 3. We found virtually no di�erence between results

using EM or quasi-Newton.

Maximization precedes by �rst maximizing the log-likelihood when C = 1. In this case

the likelihood for each individual simpli�es to a product of independent logits in each time

period. The MLE estimator �̂ is unique in this case. Next, C is incremented to two and �̂

is used as the starting value for �, and the log-likelihood is maximized over � again and the

parameters of G2{a 2-point mixing distribution. (Our method for �nding starting values

for G2 is explained below.) Iteration continues in this way until the log-likelihood no longer

increases.

We use a standard method of �nding starting values for the heterogeneity distribution

whenever C is incremented to C + 1 (see Simar, 1976). Let L[ĜC ; �̂C] denote the log-

likelihood with C support points, and let ĜC and �̂C be a set of maximum likelihood

estimates. The e�ect on the log-likelihood of taking " mass from the distribution ĜC and

placing it on a new point �� is described by the directional derivative

D((1 � ")ĜC + "��; ĜC) = lim
"#0

L[(1� ")ĜC + "��; �̂C]� L[ĜC ; �̂C]

"
:(4.1)

The �� that maximizes D(ĜC (1 � ")ĜC + "��) is the best initial guess for a (C + 1)st

point. For mixture problems with no covariates or with � �xed, Lindsey (1983a, Theorem

4.1) showed that �nding a Ĝ such that

max
��

D(ĜC ; (1� ")ĜC + "��) = 0

is equivalent to �nding a Ĝ that maximizes the log-likelihood.
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Lesperance and Kalbl
eish (1992) recently proposed a twist on the Lindsey-Simar al-

gorithm that promises to greatly reduce the computational burden of maximum likelihood

estimation of mixture models in a variety of situations. Based on a result of Lindsey

(1983), they propose adding a new point of support at every local maximum of the di-

rectional derivative, rather than only one point at the global maximum as is done in the

Lindsey-Simar algorithm. Lesperance and Kalb
eisch present promising Monte Carlo re-

sults, but do not investigate the model in which we are interested, nor do we investigate

their technique in this paper. Future investigation in the context of our model may be

fruitful.

5 Monte Carlo Results

5.1 Introduction

We present a series of Monte Carlo results for the three types of data generating environ-

ments previously discussed. In Section B, we present a set of baseline results. We assume

the time-independent component of the error term is drawn from a logistic distribution

and generate heterogeneity from a continuous distribution (normal) and alternatively from

a discrete distribution (binomial). We also show Monte Carlo results for each environment

when both the observed exogenous variables vary with time (exclusion restrictions) and

when the observed exogenous variables are �xed across time periods. We also compare how

the estimated standard errors of the slope parameter matches up with its true coe�cients.

Since the asymptotic distribution of the estimated slope parameter is unknown, we are

interested in examining not only how well the estimated slope parameter recovers the truth,

but also how the empirical distribution of the estimated slope parameter compares to a

normal distribution. We do this in Section C. In Section D, we contrast our baseline results

with results obtained when the number of support points in the heterogeneity distribution

are estimated using three di�erent stopping rules: Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC), and full Maximum Likelihood estimation (MLE),

where convergence is determined when we can no longer numerically increase the log of the

likelihood by adding more points to the estimated heterogeneity distribution. We discuss

the advantages and disadvantages of each rule. We also examine performance when we alter
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the assumptions of our baseline model by varying the number of observations in each Monte

Carlo draw, decreasing the variance of the exogenous covariates varies, and altering the

algorithm that generates starting values each time the a new point is added to the support

distribution. The �ndings of the above section support the
p
n asymptotic normality of

�̂. We strongly reject the hypothesis that any of the estimators of the parameters of the

mixing distribution, Ĝ, possess the same property. Furthermore, we �nd that the NPMLE

estimator not only accurately recovers � but that its standard error is recovered as well.

5.2 Monte-Carlo results for a 10 Period Panel of Binary Indica-

tors

Table 1 displays simple Logit estimates of the slope parameter when no heterogeneity

controls are applied. One-hundred Monte Carlo draws were estimated; each draw contains

500 observations, each observation observed for 10 periods. The heterogeneity distribution

is assumed normal with mean -1.0 and variance 1.0 (panel A), and binomial with equal

mass at -1.0 and 1.0 (panel B). Full details of the model can be found at the base of the

Table. Each panel displays the results when no heterogeneity correction is applied, results

obtained by applying the nonparametric heterogeneity correction, and disaggregated results

for each estimated value of C when applying the heterogeneity correction. Reading across

panel A, \Support Points" is the value of C; \Number of Runs" is the number of draws (out

of 100) that converged at the given number of support points; \Mean" is the mean of the

Monte Carlo distribution of the estimated slope parameter and \Std Dev" is the standard

deviation that distribution; \Median" is the median of the estimated slope parameter;

\Mean of Std Error" is the mean of the Monte Carlo distribution of the standard error

calculated from the estimated information matrix in each run; and �nally the associated

\Std Dev" is the standard deviation of Monte Carlo distribution of the standard error.

The bias in the estimated parameter is substantial: the mean of the estimates is 0.6248

for normal heterogeneity (see the row \No Heterogeneity Correction") and 0.8138 for the

binomial case, compared with the true at 1.0. The standard deviation is less than .04 in

both cases. The next row (\All Runs") in each panel presents comparable estimates using

the same generated data and applying the nonparametric heterogeneity correction. These

results evidence the accuracy with which we can recover the true parameter value and
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the small deviation of the estimated distribution (about .05 in each case). This accuracy

is surprising given the small number of observations on which we estimate �. It is also

important to notice the small number of heterogeneity support points needed for these

estimates even when the underlying heterogeneity is drawn from a continuous distribution

(normal heterogeneity). One draw converged with 3 points of support, 92 with 4 points,

and 7 with 5 points. For the binomial case, 91 runs converged at the true number of points,

and 9 runs �nished with 3 points of support. � is accurately recovered at each estimated

point of support. Even when the binomial heterogeneity distribution is estimated with

three points of support, the mean estimate is within 0.26% of the true value (bottom row

of panel B). Even though we may not do well in recovering the true distribution, we will

see that in both cases this estimator does a good job in approximating the true mean and

variance of the underlying heterogeneity distribution.

Table 2 shows the means of the estimated points of support and their associated masses.

For the normal case he support points are fairly symmetric around the mean -1.0. This is

true for the binomial case when C stops at 2, but not for the other cases. We will further

discuss these results later in the paper.

Table 3 compares several standard error computations to the mean estimated stan-

dard error for both normal and binomial heterogeneity. We �nd that the nonparametric

estimator does extremely well in estimating the true value. The �rst row displays the

heterogeneity-corrected results from Table 1 for comparison; the second row shows results

for the estimator when the true distribution is known up to its mean and variance. In

other words, for the model with normal heterogeneity, we assumed the heterogeneity in

the model to be normally distributed with unknown mean and variance, and for binomial

heterogeneity we assumed the true number of points of support to be 2. The mean es-

timate and the mean standard error of the estimate are virtually identical in both cases

indicating that little if anything is lost in this case from not knowing the true form of

the heterogeneity. The third and forth rows compare the mean standard error to the true

standard error. The third row is the mean over the 100 draws when the information matrix

is constructed with the same data (both x and d) used in the estimation and evaluated

at the true parameter values of the true model. For the fourth row computations, we use

only the draws on the exogenous variables from above and then integrate the information
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matrix over the heterogeneity and the logistic error. This computation represents the value

to which the mean of the information matrices would converge conditional on the values

of the exogenous covariate and shows how close the row 3 value is to its asymptotic value.

The results in rows 3 and 4 are almost identical. By comparing the mean standard error

from row 1 with the corresponding value in row 3, we �nd that the di�erence between the

standard error of the nonparametric estimator and the standard error from the true model

is negligible. By contrast, Table 1 indicates that the estimated standard error from the

uncorrected logit is biased downward about 20% for the normal and 10% for the binomial

case. The nonparametric estimator produces standard errors that are exceptionally close

to their true values and can be used con�dently in hypothesis testing on the estimated

parameters.

Table 4 displays results using three alternative distributions of the heterogeneity factor:

exponential, mixture of normals, and normal. In addition, the model is estimated when no

heterogeneity correction is applied, when the heterogeneity term is assumed normal, and

when the nonparametric correction is applied. In all cases, the nonparametric correction

recovers the slope parameter accurately. The normal correction works well when the true

heterogeneity is drawn from a normal distribution and, surprisingly, when it is drawn from

an exponential distribution. It does not work well when the true heterogeneity distribution

is a mixture of normals.

Since these models are nonlinear, focusing solely on how estimated parameter values

compare to the true value may obscure the true test of the model, which is how well

it predicts. Table 5 �lls this gap. Using the estimates summarized in Table 4, Table 5

shows results from a simple predictive test. Panel A displays our �ndings when the true

heterogeneity distribution is a mixture of normal evaluated at three di�erent points in the

covariate distribution (xit equals 0.0 , 0.675, and -0.675) 3 Column two shows how the

predicted probability of dt = 1 compares to the true, column three shows the probability of

the period one and two indicators both being one, and column four compares the probability

of the period one to �ve indicators all being one. A '*' indicates that the model fails the

prediction test at the 95% level. Panels B and C show the same when the heterogeneity

term is drawn from an exponential and from a normal.

3Recall that the true distribution of the xit are standard normal.
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A glance at the table reveals that the nonparametric model outperforms the other

models hands down. A model that does not �t the data will not necessarily yield correct

behavioral inferences or correct policy simulations. This �nding is given added credence

because we have conditioned the tests on di�erent values of the x distribution. An analyst

interested in doing policy simulations on how people from poor family backgrounds perform

in the labor market, for example, would be interested in exactly this kind of conditioning.

We continue changing the assumptions of Table 1 and examining the �ndings. Table 6

replicates the results for Table 1 on the same model except the covariate x is �xed for each

period (no exclusion restrictions). Panels A and B show the results when no heterogeneity

correction is applied for both normal and binomial heterogeneity, and Panels C and D

shows the results with the nonparametric correction. The results reported here are also

encouraging. Analogous to Table 2, Table 6 aligns the �ndings of Table 3 with the the

true standard errors and the outcomes when we estimate � knowing the distribution from

which the heterogeneity is drawn. Comparing rows 1 and 2 of Panel A shows, as Table 2

did, that little is lost by estimating � with a nonparametric correction{the mean of each

estimated � distribution is virtually identical. The Monte Carlo mean is slightly low for

both the model with the nonparametric correction, however, but still within 4% of its true

value. This compares with the x-varying case in which we found the mean estimate to be

almost identical to the true value. Panel B also compares favorably, but the mean estimate

is again dead on target. Not only do the estimates perform well, but the mean standard

errors are also very close to the true values: all means are within 2% of the true value.

5.3 Asymptotic Normality

Table 7 shows the results for 1000 runs when the sample sizes are 500 and 250. In Table 8

we report the p-values of a Shapiro, Wilk Normality test on these empirical distributions

(row 1): for the 500 observation runs we get .87 and .61 for the 250 observation runs, sup-

porting the hypothesis that �̂ is asymptotically normal. However, we reject normality of all

of the estimated parameters of the mixing distribution at the .005 level. Figure 1 presents

a standard quantile-quantile plot of the distribution of the �̂ from the 500 observation sam-

ples: any deviation from the normality line is evidence against the hypothesis of normality,

and as the �gure shows, there is virtually none. Furthermore, if the NPMLE estimator of �
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possesses
p
n normality, we would expect that the ratio of the mean standard errors from

the 500 and 250 observation samples to be approximately equal to
p
2. From Table 7,

p
2

times the standard error from panel B is .0684, which is very close to the panel A mean

standard error of .0685. A �nal check of normality is how often we reject the hypothesis

that �̂ over �̂ rejects the true hypothesis of � equal to 1. These results are presented in

Table 8 and also support the notion that �̂ follows something close to a normal distribution.

5.4 Further Perturbations

In Table 9 we change the stopping rule for estimating the number of points of support, c.

We try four di�erent stopping rules: BIC, AIC (these numbers correspond to those found in

Table 1), MLE assuming convergence when the change in the likelihood value was less than

0.01 (since we maximize log-likelihoods, this implies an approximately 1% change), and

MLE with convergence set at a more stringent 0.0001 (an approximately 0.01% change).

Deciding when to stop adding points is somewhat of an inexact science. as c increases,

the Hessian can become numerically ill-behaved or singular, particularly for models where

c becomes relatively large. Since we can never decrease the likelihood by adding a point of

support, forcing more points into the likelihood to increase its value will eventually result

in a singular model. One advantage of conservative stopping rules such as BIC or AIC is

that they are more successful at avoiding ill-behaved Hessians. Another obvious advantage

is that they simply converge more quickly. For the MLE with 0.0001 convergence , 1 in 100

runs became singular for the normal case, and 3 in 100 for the binomial model. All other

stopping rules avoided singularity though the strictest rule, BIC, was best at avoiding any

kind of poorly behaved Hessian.

Panel A reports results for normal heterogeneity, and Panel B for binomial heterogeneity.

The mean number of points of support for each rule is given next to the heading ( �C), and

below are the results for all runs and each point of support. Each stopping rule produces a

mean estimate of the slope parameter within 0.5% of the true, and a mean estimate of the

standard error within 1% of the true value. In general, as the mean number of points of

support increases so does the estimate and its standard error. The mean number of support

points in the normal case ranges from 3.7 for BIC to 4.76 for the last case. For the binomial

case, BIC recovers exactly 2 points in every draw and MLE with 0.0001 convergence has a
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mean of 2.76. Nonetheless, the estimates are all excellent{the mean is within 0.5% of the

true, and the mean standard error is within about 1% of the true value reported in Table

2.

Further perturbations on the model discussed thus far are laid out in Tables 10 and

11. Table 10 shows results for sample sizes ranging from 125 to 5000. In Table 11 we �rst

try two di�erent types of starting values; second we alter the variance of x; and �nally

we alter the probability of d=1. None of these perturbations alters our conclusions: we

�nd exceptional performance in every case. As expected, increasing N only helps. Next, as

discussed in Section 1, �nal estimates may be sensitive to starting values in these models so

we reran the experiments changing the starting values in two ways. First, we dropped the

Lindsay-Simar algorithm described in Section 1 for locating starting values when adding a

point of support to the heterogeneity distribution. Rather, we made each point in the new

distribution equiprobable and made each point equidistant without altering the variance

of the estimated heterogeneity distribution (see \Di�use Starting Values" in the table).

4 Next, when adding a point of support, we not only assumed equidistant points with

equiprobable mass at each point but also set the values of � to zero (see \Zero Starting

Values"). Full details are located at the base of the table. As no change is recorded for

the normal heterogeneity case and only the smallest di�erence for the binomial case, these

�ndings reinforce our con�dence in the algorithm we use to locate the global maximum

of the log-likelihood. Third, increasing the variance of x shrinks the standard error of

the estimated � and increases c for the case with continuous heterogeneity; shrinking the

variance does the opposite. Finally, as the probability of d=1 changes toward 1 or 0, the

total amount of information in the data will fall and we expect and �nd larger standard

errors and slightly less accurate estimates. Changing the probability from 0.43 in the basic

model to 0.85 makes little di�erence, and the the Monte Carlo mean is still within about

1% of the true value with a standard deviation of about 0.05 in each case. In other results

not reported, we altered the values of � and the variance of the heterogeneity. We found

no appreciable degradation in the results. As expected, increasing the variance of the

heterogeneity, decreased slightly the precision with which we estimate �.

4Keeping the variance the same simply locates the distance between each point.
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6 Conclusions

Our �ndings demonstrate the exceptional small sample properties of the nonparametric

maximum likelihood estimator for dynamic discrete choice problems. We �nd that both the

slope parameters and their standard errors are recovered accurately and, hence, inferences

regarding those parameters will be valid. When the true distribution of the heterogeneity

is know, the semiparametric estimator performs as well as the parametric estimator that

is based on the true distribution. When the true heterogeneity distribution is unknown,

our model recovers the parameters of interest with exceptional accuracy, and outperforms

misspeci�ed parametric estimators hands down. Though there is not yet a general theory

of asymptotic convergence, our evidence strongly supports the notion that the estimator

converges to normality at a rate in the neighborhood of
p
n.
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Appendix

Proof of Proposition 1: Let f have distribution H and f
� have distribution H

� where

both H and H� are elements of H. Suppose that the distribution of "1+f is identical to the

distribution of "1+ f
�. Then the characteristic function associated with these convolutions

must be identical,

�1(t)�H(t) = �1(t)�H�(t):

Dividing both sides by �1(t) we see that,

�H(t) = �H�(t):

From the uniqueness theorem for characteristic functions, H is identi�ed.

Proof of Proposition 2: Suppose there exists a distribution function H
� such that

(
1;H) is not identi�ed relative to (
�1 ;H
�). This means thatZ

F1

�
X
0
1�1 + f


1

�
dH(f) =

Z
F1

�
X
0
1�1 + f



�
1

�
dH

�(f)

which implies that

�1(
1t)�H(
1t) = �1(

�

1t)�
�

H(

�

1t)

or

�
�

H(

�

1t) =
�1(
1t)�H(
1t)

�1(

�
1t)

Since H� is distribution function �
�(t) = �

�
H(
1t) is a characteristic function.

Now suppose ��(t) is a characteristic function and let ��H(

�
1t) = �

�(t). Then

�1(
1t)�H(
1t) = �1(

�

1t)�
�

H(

�

1t)

and from the uniqueness theorem of characteristic functions, we can invert ��H(
1t) to

obtain the distribution function H
�, so (
1;H) is not identi�ed relative to (
�1 ;H

�).
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Proof of Proposition 3: Suppose the scale of � were not identi�ed. Then there exists

a 
� 6= 1 and a distribution function H
� 2 ~H such that

Z �f

f

F1(X
0

1�1 + f)dH(f) =

Z �f�

f�
F1(X

0

1(

�
�1) + f)dH�(f)

for all X 0
1�1 2 <, where the support of f is contained in (f ; �f) under H and is contained in

(f�; �f�) under H� . But since

F1(X
0
1�1 + f) �

Z �f

f

F1(X
0
1�1 + f)dH(f) =

Z �f�

f�
F1(


�
X
0
1�1 + f)dH�(f) � F1(


�
X
0
1�1 +

�f�)

and since F1 is strictly increasing over all of <, this can only be true if

(y + f) � (
�1y +
�f�)

for all y 2 <. But this can only be possible if 
� = 1.

Proof of Lemma 3: We know A(0)=0 so de�ne (a1; a2; : : : ; ak) so that

A(t) =

kX
n=1

ant
n
:

Consider a possible candidate for 	,

~	(t) =

kX
n=1

an



n
1 � 


n
2

t
n
:

Then

A(t) = ~	(
1t)� ~	(
2t):

Thus if for some constant c, 	 = ~	 + c in some neighborhood of zero, then it must be a

polynomial of degree k in a neighborhood of zero. Therefore we only need to show that

V (t) = 	(t)� ~	(t)

is constant in some neighborhood of zero. Without loss of generality assume j
2j > j
1j.
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Suppose there is no neighborhood around zero for which V is constant , in particular

suppose that there exists � > 0 and t
�
< �j
2j such that jV (t�)� V (0)j > �. Note that ,

A(t) = 	(
1t)�	(
2t) = ~	(
1t)� ~	(
2t)

for jtj < �. This implies that V (
1t) = V (
2t) for jtj < �, so

V (t�) = V

�

2

�
1


2

�
t
�

�
= V

�

1

�
1


2

�
t
�

�
= V

��

1


2

�
t
�

�

= V

�

2

�

1



2
2

�
t
�

�
= : : : = V

��

1


2

�n

t
�

�

But since V is continuous at zero and

lim
n!1

�

1


2

�n

= 0

then there must be some n for which

jV (t�)� V (0)j =
����V
��


1


2

�n

t
�

�
� V (0)

���� < �

a contradiction. In some neighborhood of zero V (t) must be constant, so 	(t) must be a

polynomial of degree k.

Proof of Proposion 4: Let �(t1; t2) be the characteristic function of (u1; u2), then

under Assumption 1

�(t1; t2) = �1(
1t1)�H(
1t1 + 
2t2)�2(
2t2)

where H is the distribution of f Suppose there exists (
�;H�) 2 
 such that

�(t1; t2) = �1(

�

1t1)�H�(
�1t1 + 

�

2t2)�2(

�

2t2)

= �1(
1t1)�H(
1t1 + 
2t2)�2(
2t2)(6.1)

We will �rst show, using Lemma 1, that (6.1) implies that


2


1

=


�
2



�
1

:

Suppose not, suppose that


2


1

6=


�
2



�
1

(6.2)
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then in a neighborhood of the origin let

	1(u) � log(�H(
1u))

	2(u) � � log(�H�(
�1u))

A(u) � log(�1(

�

1u))� log(�1(
1u))

B(u) � log(�2(

�

2u))� log(�2(
2u))

So (6.1) implies that

	1(t1 +

2


1

t2) + 	2(t1 +


�
2



�
1

t2) = A(t1) +B(t2)

Therefore, from Lemma 1 	1;	2; A and B must all be polynomials of degree � 2 in a

neighborhood of the origin. But then Lemma 1 and Lemma 2 imply that "1; "2, and f must

all be normally distributed 5.

Since they are all normal with median zero, they can be completely characterized by

their variance. Let �2f be the variance associated with the distribution function H, and let

�
�2
f be the variance associated with H�, �21 be the variance of "1, and �

2
2 be the variance of

"2. Thus if (
1; 
2;H) is not identi�ed relative to (
�1; 

�
2 ;H

�) then



2
1(�

2
f + �

2
1) = 


�2
1 (��2f + �

2
1)



2
2(�

2
f + �

2
2) = 


�2
2 (��2f + �

2
2)


1
2�
2
f = 


�

1

�

2�
�2
f

Solutions of this system of equations yields �2f = �
�2
f . So


2


1

=


�
2



�
1

which contradicts (6.2).

We therefore know that


2


1

=


�
2



�
1

:

5Actually f may also be degenerate, but in what follows we can think of this as a normal with mean

zero and variance zero.
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In equation (6.1), let

t2 =
�
1t1

2

:

which implies

�1(
1t1)�2(
1t1) = �1(

�

1t1)�2(

�

1t1)

Since the left hand side is the characteristic function for the random variable 
1("1 � "2)

and the right hand side is the characteristic function for the random variable 
�1("1 � "2),

from the uniqueness theorem for characteristic functions 
1 = 

�
1 . By similar reasoning we

can show 
2 = 

�
2 . But then from (6.1) and Assumption 3, we can see that �H = �H�, and

thus H = H
�.

Proof of Proposition 5: We proceed in a manner very similar to the proof of Propo-

sition 4. Clearly if the model is identi�ed when T = 3 it is identi�ed for T > 3. So we will

assume T = 3. Suppose there exists (
; �;H) 2 
 and (
�; ��;H�) 2 
 for which

�1(
1t1)�2(
2t2)�3(
3t3)�H(
1t1 + �2
2t2 + �3
3t3)

= �1(

�

1t1)�2(

�

2t2)�3(

�

3t3)�H(

�

1t1 + �
�

2

�

2t2 + �
�

3

�

3t3):(6.3)

Consider the case,

�
�
2


�
2



�
1

6=
�2
2


1

�
�
3


�
3



�
1

6=
�3
3


1

First set t3 = 0 and apply the logic above to show that f; "1, and "2 must all be normal.

Setting t2 = 0 we can show "3 is normal.

Next consider the case

�
�
2


�
2



�
1

6=
�2
2


1

�
�
3


�
3



�
1

=
�3
3


1

First set t3 = 0 and apply the logic above to show that f; "1, and "2 must all be normal.

Then setting t3 = t1 we can show "3 is normal.

Similarly if

�
�
2


�
2



�
1

=
�2
2


1

�
�
3


�
3



�
1

6=
�3
3


1
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we can show that f; "1; "2, and "3 must all be normal.

If we are in any of these three cases we are left with the model in Example 4. It is easy

to show that the parameters are all identi�ed in that case.

This leaves only the following possibility,

�
�
2


�
2



�
1

=
�2
2


1

�
�
3


�
3



�
1

=
�3
3


1

(6.4)

Let

	(t) � log(�H(
1t))� log(�H�(
�1t))

A(t) � log(�1(

�

1t))� log(�1(
1t))

B(t) � log(�2(

�

2t))� log(�2(
2t))

then by setting t3 = 0 and taking logs of equation (6.3) we know,

	(t1 +
�2
2


1

t2) = A(t1) +B(t2)

From Lemma 1, A and B must be polynomials of degree zero or one. From Lemmas 2 and

3, if 
1 6= 

�
1 then �1 must be a polynomial of degree zero or one which is a contradiction

to �1 nondegenerate, so 
1 = 

�
1 . Similarly, we can show 
2 = 


�
2 . But then A(t1) = 0 and

B(t2) = 0 for all t1 and t2, so 	(t) = 0 for all t, which implies that �H = �H�. From the

marginal distributions we know

�2(
2t2)�H(�2
2t2) = �2(

�

2t2)�H(�
�

2

�

2t2)

So using Assumption 3 we can identify �2. We can use exactly the same argument as above

to show identi�cation of �3 and 
3, so (
; �;H) is identi�ed in 
.
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Table 1

Monte Carlo Results from 100 Runs (500 Observations in Each Run)†
Means of the Slope Parameter β and its Standard Error‡

(True Value of β is 1.0)

A. True Heterogeneity Distribution is Normal§

# of # of Mean of Std
Points Runs Mean (Std Dev) Median Error (Std Dev)

Applying the Nonparametric All Runs 100 1.0021 (.053) 0.9935 0.0484 (.002)
Heterogeneity Correction 3 Points 1 0.9386 ( na ) 0.9386 0.0484 ( na )

4 Points 92 1.0028 (.053) 0.9949 0.0484 (.002)
5 Points 7 1.0016 (.052) 0.9845 0.0475 (.002)

No Heterogeneity Correction 0 Points 100 0.6248 (.040) 0.6264 0.0311 (.002)
(Standard Logit):

B. True Heterogeneity Distribution is Binomial§

Applying the Nonparametric All Runs 100 0.9976 (.047) 0.9947 0.0408 (.002)
Heterogeneity Correction: 2 Points 91 0.9971 (.047) 0.9943 0.0407 (.002)

3 Points 9 1.0026 (.048) 0.9950 0.0421 (.001)

No Heterogeneity Correction 0 Points 100 0.8138 (.038) 0.8068 0.0348 (.002)
(Standard Logit)

na = not applicable: only one run in this category.

† The data was generated as follows. The slope parameterβ was estimated 100 times on samples of 500 obser-
vations. Each observation consisted of a 10 period long vector (dtir ,xtir), where r denotes the run (1 to 100), i denotes
the observation in run r (1 to 500), and t denotes the period (1 to 10). LetUtir = xtir β + fir + ε tir . The binary indicator
dtir=1 iff Utir ≥ 0. (Note thatxtir varies across periods.) Theε tir is drawn from a logistic distribution with mean 0 and
variance 1. Theβ is equal to 1.0, andxtir is drawn from a N(0,1) for all t,i, and r. The unobserved heterogeneity com-
ponent fir is drawn from a normal or binomial distribution (see below).

‡ The mean reported above issimply the mean of the empirical distribution of the 100 estimatedβ parameters,
and the standard deviation of that distribution is reported in parentheses following the mean. The mean of the standard
error reported in the right column is the mean of the empirical distribution of the standard error of the estimatedβ
taken from the estimated information matrix for each run. The standard deviation of that distribution is reported in
parentheses following the mean. The information matrix was calculated using the outer-product approximation to the
hessian matrix (formed from analytic first derivatives) described in Anderson (1969) or Berndt, et al (1977).

§ The heterogeneity componentfir is drawn from a N(-1,4) distribution for panel A results, and a binomial dis-
tribution with equal mass at -1.0 and 1.0 (i.e., mean zero and variance 1) for panel B results.



Table 2

Support and Mass Points of the Estimated Heterogeneity Distribution†
(Mass Points are Ordered Lowest to Highest)

A. True Heterogeneity is Normal‡ (Compare Table 1, Panel A)

Support Point (θ i) Mass at θ i (µ i)

Estimated Number Mean (Std Dev) Median Mean (Std Dev) Median
of Points

3 -2.67 ( na ) -2.67 .45 ( na )  .45
-0.44 ( na ) -0.44 .37 ( na )  .37
1.63 ( na ) 1.63 .19 ( na )  .19

4 -4.25 (2.92) -3.46 .25 (.08) .27
-1.32 ( .39) -1.27 .36 (.04) .37
0.44 ( .36) 0.45 .27 (.05) .26
2.54 ( .59) 2.46 .12 (.04) .12

5 -9.99 (7.51) -3.99 .16 (.05) .16
-1.84 ( .25) -1.70 .31 (.04) .31
-0.21 ( .22) -0.11 .32 (.03) .31
1.44 ( .26) 1.37 .17 (.02) .18
8.80 (7.60) 4.37 .04 (.02) .03

B. True Heterogeneity is Binomial§ (Compare Table 1, Panel B)

2 -1.00 ( .06) -1.00 .50 (.03) .51
1.01 ( .07) 1.01 .50 (.03) .49

3 -3.96 (4.33) -1.66 .21 (.20) .18
-0.27 ( .73) -0.48 .44 (.08) .46
1.40 ( .62) 1.15 .35 (.19) .43

† For a full description of the model and its parameters see the base of Table 1.

‡ The mean of the true normal heterogeneity distribution is -1.0 and its variance is 4.0.

§ The mean of the true binomial heterogeneity distribution is 0 and its variance is 1.0.



Table 3

Comparisons of Standard Error Estimates
Mean Standard Error (Standard Deviation of the Standard Error)

Model True distribution True distribution
is Normal (Table 1.A) is Binomial (Table 1.B)

Estimated with Nonparametric 0.484 (.002) .0408 (.002)
Heterogeneity Correction (Table 1)

Estimated When Functional Form of 0.482 (.002) .0407 (.002)
Heterogeneity Distribution Known*

Standard Errors Calculated Using 0.482 (.002) .0407 (.002)
Generated Data and True Parameters†

Standard Errors Computed Using 0.479 ( na ) .0407 ( na )
Generated X’s and Integrating
Out Heterogeneity and Logistic Error‡

na= Not applicable: only one calculation was made for the entire realized distribution of X .

* We estimate the model assuming the functional form of the heterogeneity distribution is normal with unknown
mean and variance (which we estimate) for column one and binomial for column two (i.e., has exactly 2 points of sup-
port with unknown distribution).

† Using the same generated Xt and dt vectors on which the models were estimated, we take the standard error
from the inverse of the information matrix for each run evaluated at the true parameter values and then average over all
runs.

‡ For these calculations, we retain only the values of the Xt vectors generated for the Table 1 estimates (and not
the dt vectors), and then for each draw in each run we integrated out the heterogeneity term and the logistic error given
the true values of the parameters. We then calculate an information matrix by combining all draws from all runs. An
alternative procudure would be to to forming inverse information matrices for each run and then average over all runs;
in fact, we found no difference between the two procedures.



Table 4

Monte-Carlo Results Using Alternative Heterogeneity Distributions
and Applying Different Heterogeneity Corrections (100 Runs)†

(True β = 1.0)

Mean Estimates

No Heterogeneity Normal Nonparametric
Correction Correction Correction

True Heterog.
Distribution Mean (std dev) Std Err (std dev) Mean (std dev) Std Err (std dev) Mean (std dev) Std Err (std dev)

Normal 0.6248 (.040) .0311 (.002) 0.9998 (.053) .0482 (.002) 1.0021 (.053) .0484 (.002)
(Table 1)

Mixture of 0.1632 (.032) .0275 (.001) 0.8487 (.099) .0792 (.006) 1.0008 (.093) .0891 (.007)
Normals‡

Exponential‡ 0.5701 (.053) .0431 (.002) 1.0004 (.070) .0673 (.004) 1.0006 (.068) .0681 (.004)

† Only the mean and variance of the normal were estimated along with β . The Monte-Carlo design is identical
except for the underlying heterogeneity distribution.

‡ The mean and variance of mixture of normals used to generate the data for the row 2 estimates were 6.0 and
90.0 (a mixture of a N(-3,9) and a N(15,9) normal with equal mass on each). For row 3, the underlying heterogeneity
was drawn from an exponential with mean 8 and variance 64.



Table 5

Predictions for the Models in Table 4
Conditional on Values of Exogenous Variables†

Mean Prediction and Standard Deviation of the Prediction in Parentheses
(’*’ Indicates the Average Prediction Fails a Two-Tailed T-Test at a 95% Level)

A. Basic Model with Mixed-Normal Heterogeneity (Table 4)

Estimation
Strategy Pr(d1 = 1|x) Pr( d1 = 1, d2 = 1|x) Pr( d1 = 1, . . . , d5 = 1|x)

i. xi = 0.0 for all i

True Probability .598 .558 .530
No Heterogeneity Control .600 (.023) .360*(.027) .079*(.015)
Normal Hetero. Control .559 (.126) .486*(.142) .428*(.153)
Nonparametric Control .595 (.023) .555 (.025) .527 (.026)

ii. xi = .675 for all i

True Probability .627 .581 .545
No Heterogeneity Control .626 (.022) .392*(.027) .097*(.017)
Normal Hetero. Control .601*(.118) .525*(.134) .454*(.152)
Nonparametric Control .624 (.022) .578 (.024) .542 (.025)

iii. xi = -.675 for all i
True Probability .573 .540 .519
No Heterogeneity Control .573 (.025) .329*(.028) .079*(.015)
Normal Hetero. Control .519*(.133) .480*(.148) .454*(.152)
Nonparametric Control .571 (.024) .538 (.025) .516 (.026)

B. Basic Model with Exponential Heterogeneity (Table 4)

i. xi = 0.0 for all i

True Probability .860 .785 .690
No Heterogeneity Control .867*(.011) .751*(.020) .489*(.032)
Normal Hetero. Control .865 (.031) .799*(.039) .692 (.041)
Nonparametric Control .860 (.012) .787 (.017) .690 (.021)

ii. xi = .675 for all i

True Probability .905 .844 .750
No Heterogeneity Control .905 (.009) .819*(.016) .608*(.030)
Normal Hetero. Control .904 (.027) .854*(.035) .765*(.044)
Nonparametric Control .906 (.009) .845 (.019) .750 (.020)

iii. xi = -.675 for all i
True Probability .807 .726 .633
No Heterogeneity Control .816*(.015) .665*(.024) .362*(.033)
Normal Hetero. Control .815 (.035) .732 (.039) .613*(.034)
Nonparametric Control .808 (.015) .727 (.019) .636 (.022)



C. Basic Model with Normal Heterogeneity (Table 4)

Estimation
Strategy Pr(d1 = 1|x) Pr( d1 = 1,d2 = 1|x) Pr( d1 = 1, . . . ,d5 = 1|x)

i. xi = 0.0 for all i

True Probability .352 .212 .098
No Heterogeneity Control .352 (.015) .124*(.010) .005*(.001)
Normal Hetero. Control .352 (.015) .210 (.014) .094*(.011)
Nonparametric Control .353 (.015) .212 (.014) .097 (.011)

ii. xi = .675 for all i

True Probability .451 .299 .157
No Heterogeneity Control .452 (.016) .205*(.015) .005*(.001)
Normal Hetero. Control .452 (.015) .299 (.015) .156 (.014)
Nonparametric Control .452 (.016) .301 (.016) .158 (.004)

iii. xi = -.675 for all i

True Probability .263 .139 .055
No Heterogeneity Control .262 (.014) .069*(.007) .001*(.000)
Normal Hetero. Control .262 (.015) .138 (.012) .056 (.008)
Nonparametric Control .264 (.014) .140 (.012) .052*(.009)

† The likelihood and parameters of the above model are specified in Table 4.



Table 6

Monte Carlo Results from 100 Runs with Time-Invariant X
500 Observations in Each Run (True Value of β is 1.0)

Means of the Slope Parameter β and its Standard Error
(Standard Deviations in Parentheses)

A. True Heterogeneity Distribution is Normal†

# of # of Mean of Std
Points Runs Mean (Std Dev) Median Error (Std Dev)

Applying the Nonparametric All Runs 100 0.9993 (.257) 1.0052 .1604 (.031)
Heterogeneity Correction

3 Points 55 0.9185 (.247) 0.9597 .1453 (.020)
4 Points 41 1.0919 (.234) 0.9901 .1792 (.030)
5 Points 4 1.1600 (.280) 1.0112 .1945 (.061)

No Heterogeneity Correction 0 Points 100 0.6113 (.062) 0.6174 .0162 (.001)
(Standard Logit):

B. True Heterogeneity Distribution is Binomial†

Applying the Nonparametric All Runs 100 0.9957 (.059) 0.9939 .0559 (.004)
Heterogeneity Correction

2 Points 90 0.9934 (.058) 0.9939 .0554 (.003)
3 Points 10 1.0164 (.070) 1.0151 .0606 (.005)

No Heterogeneity Correction 0 Points 100 0.8133 (.053) 0.8062 .0234 (.001)
(Standard Logit)

C. Comparisons of Standard Error Estimates
Mean of the Standard Error (Standard Deviation in Parentheses)

Normal Binomial
Model (panel A) (panel B)

Estimated with Functional Form of Heterogeneity Known .1870 (.018) .0550 (.004)
(The Mean β̂=1.0209 for normal and 0.9923 for binomial)

Standard Errors Calculated Using Generated Data and .1884 (.020) .0550 (.004)
True Parameters

na = not applicable: only one run in this category.

Note: the data and estimates above were generated in the same manner described at the base of Table 1 except
that the observed exogenous variable xtir is constant across periods for the above results (i.e., xtir = x1ir for all i,r). The
calculations for the standard error comparisons are detailed at the base of Table 3.

† In panel A, 3 runs converged with a singular Hessian matrix and in panel B results, 1 run was had a singular
Hessian. These runs were used in forming the β̂ distribution but not the σ̂ distribution.



Table 7

Monte Carlo Results from 1000 Runs† when the Heterogeneity is Normal
Means of the Slope Parameter β and its Standard Error

(True Value of β is 1.0)

A. Estimates with 500 Observations in Each Run

# of # of Mean of Std
Points Runs Mean (Std Dev) Median Error (Std Dev)

All Runs 1000 1.0000 (.050) 0.9996 .0484 (0.002)
3 Points 25 0.9694 (.041) 0.9735 .0472 (0.002)
4 Points 899 0.9999 (.049) 0.9995 .0480 (0.002)
5 Points 76 1.0118 (.051) 1.0092 .0491 (0.002)

B. Estimates with 250 Observations in Each Run

All Runs 1000 1.0021 (.067) 0.9904 .0689 (.004)
3 Points 440 0.9801 (.066) 0.9898 .0674 (.004)
4 Points 550 1.0045 (.068) 1.0001 .0695 (.004)
5 Points 10 1.0483 (.093) 1.0115 .0705 (.004)

† The likelihood and parameters of the above model are specified exactly as those reported in Table 1.A (except
that the panel B estimates were obtained on samples with 250 observations in each run).



Table 8

Tests of Normality for the Monte Carlo
Distribution of Estimated Slope Parameters

for Experiments Reported in Table 7

A. Shapiro, Wilk Normality Tests

500 Observations 250 Observations
(Compare Table 7.A) (Compare Table 7.B)

P-Value .87 .61

B. Probablity of Rejecting β̂ i/σ̂ i from a Normal Distribution (Ho: β=1)

Size of Test Portion Rejected

One Percent .016 .010
Five Percent .053 .046
Ten Percent .100 .089



Table 9

Effect on Estimates of β of Alternative Stopping Rules for
the Number of Support Points C

(True β = 1.0)

A. X Varies over Time

Normal Binomial

Mean (std dev) Std Err (std dev) c Mean (std dev) Std Err (std dev) c

Bayesian Information 0.9974 (.053) .0480 (.002) 3.70 0.9964 (.047) .0407 (.002) 2.00
Criterion

Akaike Information 1.0021 (.053) .0484 (.002) 4.06 0.9976 (.047) .0408 (.002) 2.09
Criterion (Table 1)

Log-Likelihood 1.0045 (.054) .0486 (.002) 4.72 1.0007 (.047) .0412 (.002) 2.71
Less Than .01†

B. X Fixed over Time

Bayesian Information 0.9361 (.254) .1402 (.022) 3.01 0.9923 (.058) .0550 (.004) 2.00
Criterion

Akaike Information 0.9993 (.257) .1605 (.031) 3.49 0.9957 (.059) .0559 (.004) 2.10
Criterion (Table 4)

Log-Likelihood 1.0897 (.259) .1906 (.028) 4.34 1.0046 (.060) .0595 (.004) 2.74
Less Than .01†

Note: Estimates and standard deviations produced by using a stopping rule based on a log-likelihood change of
.0001 were almost identical to those based on a .01 change in log-likelihood as a stopping rule except that the mean
number of support points increased by 5 to 10 percent.

† Since we are using log-likelihood as a criterion, a change in its value of less than .01 (.0001) is the same as a
1% (.01%) change in the likelihood.



Table 10

Effect of Changing Sample Size on the Basic Model Presented in Table 1†
True Heterogeneity Distribution is Normal

(True β = 1.0)

Number of Cases Mean (std dev) Std Err (std dev) c

125 Cases 0.9957 (.0823) .0973 (.008) 3.41

250 Cases 1.0043 (.0688) .0695 (.004) 3.66

500 Cases (Table 1) 1.0021 (.0534) .0484 (.002) 4.06

2000 Cases 1.0013 (.0281) .0241 (.002) 4.58

5000 Cases 1.0005 (.0156) .0152 (.000) 4.95

† Details of the Monte-Carlo design are provided at the base of Table 1.



Table 11

Alternative Versions of the Basic Model Presented in Table 1
(True β = 1.0)

A. Normal B. Binomial

Mean (std dev) Std Err (std dev) c Mean (std dev) Std Err (std dev) c

Basic Model from 1.0021 (.053) .0484 (.002) 4.06 0.9976 (.047) .0408 (.002) 2.09
Table 1

Diffuse Starting Values 1.0021 (.053) .0484(.002) 4.06 0.9975 (.047) .0408 (.002) 2.08
for Heter. Distribution†

Zero Starting Values 1.0021 (.053) .0484 (.002) 4.06 0.9976 (.047) .0408 (.002) 2.09
for β‡

Decreasing Variance 1.0093 (.102) .0843 (.002) 3.96 0.9961 (.097) .0803 (.002) 2.04
of X from 1 to .25

Increasing Pr(dt) 1.0118 (.053) .0624 (.002) 3.73 0.9986 (.049) .0495 (.002) 2.11
from .47 to .85

† Rather than using the Lindsay-Simar algorithm (see Section 1 of the text) to choose the value of the new support
point when increasing the number of support points fromC to C+ 1, we let the starting values of the support take val-
ues equidistant while holding the variance and mean of the estimated heterogeneity distribution constant (and letting
the starting values forβ be the optimum values that maximize the likelihood when the number of support points is fixed
atC.

‡ We employ the same algorithm used to choose the heterogeneity distribution described for panel C with the excep-
tion that starting values forβ are set to zero wheneverC is increased.




