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 SUMMARY
 We estimate the covariance between the permanent component of wages and a random coefficient on
 experience in models both with potential experience and with actual experience. Actual experience is allowed
 to be arbitrarily correlated with both the permanent component of wages and the random component on
 experience. We find no evidence that workers of higher ability experience faster wage growth. Our point
 estimates suggest that a worker with a one standard deviation higher level of permanent ability would have a
 return to annual potential experience that is 0.61 of a percentage point lower. The analogous point estimate
 for actual experience is 0.87 of a point lower. Contrary to the popular perception, wage growth among
 low-skill workers appears to be at least as high as that for a medium-skilled worker. Copyright ? 2009 John

 Wiley & Sons, Ltd.

 1. INTRODUCTION

 Increasing labor force participation among low-skill workers has been a major goal of policy
 makers over the last two decades. Examples of policies that share this goal include expansions in the
 Earned Income Tax Credit and the Personal Responsibility and Work Opportunity Reconciliation
 Act (welfare reform). An important consequence of these policies has been additional work
 experience for low-skilled workers. One of the most robust findings in labor economics is that
 wages increase with work experience. However, very little of this work has focused on wage growth
 among low-wage workers. As a result, we have little information on the impact of additional labor
 force participation on future wages for this group. One possible explanation for this gap in the
 literature is that there are serious econometric issues behind the wage growth process involving
 parameter heterogeneity, endogeneity, and selection issues. We attempt to address these issues in
 this paper. A second explanation for this lack of research is that policy makers may believe that
 low-wage workers are locked into 'dead-end jobs' in which wages stagnate. We find no evidence
 to support this claim. Our results suggest that wage growth among low-skill workers is statistically
 indistinguishable from wage growth among medium-skilled workers. In fact, our point estimates
 indicate that wages may grow slightly faster for low-skill workers than medium-skilled workers.

 Since the goal of this work is to study the early labor market experience of low-skill workers,
 we limit our sample in two important ways. First, we study only workers who have completed
 less than a year of college. Second, we examine only the first 10 years after a worker enters the
 labor force.
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 Copyright ? 2009 John Wiley & Sons, Ltd.

This content downloaded from 144.92.38.235 on Wed, 29 Apr 2020 15:02:12 UTC
All use subject to https://about.jstor.org/terms



 THE RELATIONSHIP BETWEEN WAGE GROWTH AND WAGE LEVELS  915

 We use a correlated random effects model to estimate the relationship between wage levels and
 wage growth. That is, we let wages take the form

 wit = ft + ?iEit + uit (1)

 where wu represents log wages, 6i and ft are individual specific random coefficients, Eit is a
 measure of experience, and uu is an error term. The random effect, ft, represents the unobserved
 skill of a worker. Our goal is to estimate the relationship between the permanent component,
 ft, and the random coefficient on experience, ft. In an ideal world we would nonparametrically
 estimate the full joint distribution of (0,-, ft). We could then simulate the expected level of wage
 growth for different levels of unobserved skill (i.e., ?[ft|ft]). Unfortunately the data are not
 rich enough to estimate this conditional expectation precisely. Instead we focus on the simplest
 summary statistic of the relationship between ft and ft, its covariance. We believe that with richer
 data our methodology could be extended to uncover this full joint distribution.

 We estimate models using both potential experience, defined as years since leaving school,
 and actual experience, defined as the total number of weeks worked since leaving school. In
 our primary specification, we allow actual experience, Eit, to be arbitrarily correlated with both
 ft and ft (but uncorrelated with uu). Our point estimates of this relationship are negative and
 statistically insignificant. They suggest that a one standard deviation increase in permanent ability
 reduces the return to annual potential experience by 0.61 of a percentage point. The analogous
 point estimate for actual experience is a reduction of 0.87 of a percentage point. Contrary to the
 popular perception, wage growth among low-skill workers appears to be at least as high as that
 for a medium-skilled worker.1

 We know of at least three reasons why these empirical results are interesting and important.
 First, as mentioned above, they are informative for policy makers interested in the effects of
 programs that promote work experience on wages. Our work represents basic research that is not
 intended to answer a specific policy question. However, our results suggest that using estimates
 from the large literature on returns to experience may give reasonable estimates for the returns
 for low-wage workers. Second, these results are informative for labor economists interested in
 understanding the wage process. The parameter ft is often called 'ability', while ft is called
 'ability to learn'. Under this interpretation one might strongly suspect that these two abilities
 are positively correlated. Our results indicate that they are not, a result that is surprising and
 of relevance to labor economists interested in understanding the determinants of wages. Third,
 models of the wage process are often important inputs into simulated models. For example, public
 economists often want to simulate distribution effects of the social security system (e.g., Gokhale
 and Kotlikoff, 2002) or federal income taxes (e.g., Fullerton and Rogers, 1993). Another example
 is given by financial economists who often want to model the amount of wage risk that workers
 face (e.g., Heaton and Lucas, 1996). These models are often based on wage models such as (1).

 While cov(ft , ft ) is only one piece of this process, it may be an important piece. Our results
 present a range of reasonable values that can be assumed for this component.

 It is important to point out the difference between this result and the Mincer 'overtaking' result. Mincer's story is one
 about age: workers with higher levels of schooling leave school later and thus experience their wage growth at a later
 age than do less educated workers. Our story is different because we are measuring wage growth across experience rather
 than across age where one would not expect this result. In fact the standard Mincer model predicts experience profiles
 that are parallel in experience.

 Copyright ? 2009 John Wiley & Sons, Ltd.  J. Appl Econ. 24: 914-932 (2009)
 DOI: 10.1002/jae
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 916  T. GLADDEN AND C. TABER

 Our methodological contribution is to show how to use panel data to estimate cov(#;, ?t) in
 model (1) where Eit is endogenous and potentially correlated with ((9/, ?t). This should be useful
 both for future estimation of wage growth models and for estimation of other random coefficient
 panel data models.

 The empirical approach taken in this paper is somewhat different from much of the literature
 on estimation of the wage process. Our goal is not to uncover a single set of parameters for the
 'best' model of wages. Instead, our goal is to improve understanding of the relationship between
 unobserved skill and wage growth?a topic on which there has been almost no previous work.
 Rather than trying to discover a single best set of estimates, we estimate many different models that
 use different assumptions in different ways. We show that the results are robust across the different
 specifications. The paper proceeds as follows. Section 2 reviews the related literature and Section 3
 describes our econometric approach. In Section 4 we discuss the National Longitudinal Survey of
 Youth (NLSY79) data that we use. Section 5 presents a regression approach and Section 6 presents
 a generalized method of moments (GMM) approach. We provide conclusions in Section 7.

 2. PREVIOUS WORK

 This paper builds on our previous work (Gladden and Taber, 2000) in which we measure the
 variation in wage growth across members of different observable skill classes. As an example of
 the type of analysis in that paper, suppose one wants to compare wage growth between two groups
 of individuals. Let g, be a dummy variable that distinguishes between the groups. Our primary
 comparison is between individuals who obtained a high school diploma versus those that did not.2

 We report results from the regression

 w,7 = ?o + ?igi + j82AE/r + ?iAEitgi + uit

 where AE? represents actual work experience. The key parameter of interest in this work is ?y.
 the difference in returns to experience between high school graduates and workers who do not
 complete high school. The problem in estimating this parameter is that, if higher-wage workers
 participate in the labor force at a higher-rate, actual experience may be positively correlated
 with uit. We deal with this possibility in a number of different ways, including instrumental
 variables and fixed effects. We consistently estimate ft to be small in magnitude and insignificant,
 indicating that the return to work experience for dropouts is not significantly different from the
 return to experience for high school graduates. We also look for differences in earnings growth
 between gender, racial, and socioeconomic groups. We find no evidence that family income or
 other measures of family background affect wage growth. We do find that race and gender relate
 to wage growth in the manner found by previous research. White men tend to have larger returns
 to experience than white women or black men. Interestingly, in some specifications we find that
 black women actually receive higher returns to experience than white women or black men.

 Several authors have taken a direct approach by studying the relationship between wage growth
 and welfare receipt. Using data from the Panel Study of Income Dynamics, Moffitt and Rangarajan
 (1989) find that mothers who are typical welfare recipients have steeper wage growth than typical
 non-recipients, but warn of selection bias. Burtless (1995) looks at the return to potential experience

 2 Our sample included no individuals who had completed a year of post-secondary education.

 Copyright ? 2009 John Wiley & Sons, Ltd. J. Appl Econ. 24: 914-932 (2009)
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 and finds that wages grow more slowly for welfare mothers than others. Loeb and Corcoran (2001)
 examine actual experience and find that welfare recipients in the NLSY have slightly lower wage
 growth than other workers. Connolly and Gottschalk (2000) worry about job matching and find
 evidence that wages grow faster for more educated workers. French et al. (2006) look at changes
 in the return to experience for low-skilled workers across time.

 The main weakness of previous work (including our own) is that it only examines the relationship
 between wage progression and observable measures of skill. Observables explain only a small
 amount of wage dispersion. While the observable measures of skill are statistically significant in
 explaining wage growth, the R2 in our regressions are approximately 0.15. This leaves a tremendous
 amount of wage variation that cannot be explained by observable measures of skill. Our goal in
 this work is to assess the relationship between unobservable skill and wage growth, or more
 specifically the relationship between wage growth and wage levels. We build on the substantial
 literature on the covariance structure of wages in labor economics, including Abowd and Card
 (1989) and more recent work by Baker (1997), Baker and Solon (2003), and Lillard and Reville
 (1999). This literature attempts to understand the evolution of wages over the life cycle.

 Although it is not the focus of their studies, Baker (1997) and Lillard and Reville (1999) both find
 a negative relationship between wage levels and wage growth. This work differs from ours along
 many dimensions. First, both authors use the Panel Study of Income Dynamics and do not focus
 on earnings growth early in the life cycle. We show that this early part of the life cycle is crucial
 for identification in our framework. Second, they do not focus on low-skill workers. Third, they
 follow the larger literature on earnings dynamics that has largely ignored the information that can
 be provided by actual experience as opposed to potential experience. Our previous work indicates
 that this may be a major limitation as the results differ substantially when actual experience is
 used.

 On the methodological side, there exists a huge literature that allows for random coefficients.
 In many cases the random coefficient is allowed to be correlated with the coefficient on which it

 multiplies. For example, the 'treatment effect' literature (e.g., Heckman and Robb, 1985; Imbens
 and Angrist, 1994; Heckman, 1997) models the treatment effect as a random coefficient on the
 endogenous treatment. Wooldridge (1997) and Heckman and Vytlacil (1998) consider a more
 general version of this model. We differ from this literature by focusing on a summary statistic
 about the joint distribution (the covariance) of two of these parameters as opposed to a summary
 statistic of the treatment effect (like the 'average treatment effect'). We also take advantage of
 panel data. Other papers such as Baker (1997) or Berry et al. (1995) allow for correlation of
 random coefficients as one part of a larger model. However, they do not focus explicitly on the
 estimation of this relationship, making the method of estimation and the source of identification
 not transparent.

 3. ECONOMETRIC APPROACH

 In the context of the model, our goal is to discover the relationship between 6t and ?t. We will
 consider two measures of experience: potential experience, defined as time since entering the
 labor force; and actual experience, defined as the actual amount of time that the individual has

 worked since leaving school. We first consider the simpler model in which experience is defined
 as potential experience (PE^), so that log wages are defined as

 wit = 0i + ?iPEit + uit (2)

 Copyright ? 2009 John Wiley & Sons, Ltd. /. Appl Econ. 24: 914-932 (2009)
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 918  T. GLADDEN AND C. TABER

 where potential experience increases by one each year.3 We put no restriction on the relationship
 between ft and ft but assume that uit is uncorrelated with both of them. A simple method of
 examining this relationship is to look at the covariance between wage differences and initial wage
 levels:

 cov(wlT - wlT_T, wi0) = cov(ftr + uiT - wlT_r, ft + ui0)

 = rcov(ft, ft) + cov(wlT - uiT-T, w;o)

 Under standard time series properties, if T ? x is large enough, cov(uiT ? ua-x, w;o) should be
 close to zero. Let w? be the sample mean of vv/n. As long as uiT is asymptotically uncorrelated for
 each /,

 1 ^ (W,T ~ W/r-r), P m Q, ? V-(w,-o - wo)->cov(6i, ft) N r-f t

 as N -> oo and r -? oo. Our strategy for estimating cov(ft, ft) is based on this idea.
 An alternative interpretation of our approach is an m-dependence type assumption in which one

 assumes that M/r_T is uncorrelated with w;o- That is, we could assume that

 cov(w{T, UiT-h) = 0 when h > h*. (3)

 Formally this is weaker than m-dependence as we only need to assume mean independence rather
 than full independence. However, for expositional purposes we will continue to refer to it as in
 dependence. For example, an MA(4) satisfies this restriction with /i* = 4. As long as T ? x > h*,

 1 ^> (WIT - WlT_T) P ? > -O;o - W0)->COV(ft, ft) N ^ x 1=1

 as N -> oo.
 The key issue is whether T is large enough in practice for either of these approximations to

 be valid. In our specifications, T is usually a number between 6 and 9. As a rough exercise to
 test this approximation, consider the estimates presented in Baker (1997, Table 4, row 5). Baker
 assumes a random coefficient model of wages similar to ours, and assumes that the errors follow
 an ARMA(1,2) process. In the ARMA(1,2) model with T = 8

 COV(W;o, W/8 - Up) = (p ~ l)(p2 + p?\ + /^p6^

 where p is the autocorrelation parameter, /xi and p2 are the moving average parameters, and a]
 is the variance of the white noise component. Note that if p is close to one or close to zero this
 covariance will be small. With Baker's estimates, p = 0.519, = ?0.112, /x2 = ?0.040 and
 of = 0.092, the numerical value of cov(w/0, wl8 - up) would be -0.00015, which is tiny relative
 to Baker's estimate of cov(ft , ft ), which is -0.013. Thus it appears that this approximation should
 work well in practice.

 3 Previous works suggests that the wage profile is approximately linear during the first 10 years. To simplify the analysis
 we do not include a quadratic term in the wage equation at this point. We test this assumption below.

 Copyright ? 2009 John Wiley & Sons, Ltd.  J. Appl Econ. 24: 914-932 (2009)
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 It is not essential for our approach to assume that wages are linear in experience. Generalize
 the model to

 Wit = Oi + bi(PEit) + uit, (4)

 where bt is a nonlinear function and ^(0) = 0. Assume further uit is m-dependent so that
 cov(wiT, UiT-h) = 0 when h > h*, then for all T ? 1 > h*

 cov(wi0, wiT - wiT-i) = cov(0/, bi(T) - bi(T - 1))

 which is the relationship between unobserved ability and wage growth during this period.
 Without making stronger assumptions on bi, using data on initial wages is necessary. The key

 aspect of initial wages is that experience is 0, so the return to experience at that point is irrelevant.
 To see this suppose that the first period of data we observe was 7 = 1. Without parametric
 assumptions on bi we could never separate the model (4) from an alternative model:

 wl7 = 0*+Z?*(PE/r) + W/r

 with

 e? = eI. + ftl-(i)

 b*(PEit) = bi(PEit)-bi(l).

 Clearly cov(&, bt(J) - bt(T - r)) ^ cov(0*, bf(T) - b*(T - 1)) in general. Thus in the absence
 of parameteric restrictions on having initial wages would be essential for identification.

 In addition, without making strong assumptions about uit, one cannot identify cov(w/o, b;(l)).
 In principle one could use later periods in life to estimate the covariance structure of Uit. However,

 the early labor force experience of low-wage workers is notoriously unstable, with job changes
 common. It does not seem attractive to assume that the covariance structure for a 40-year-old
 high school graduate is informative about the covariance structure for an 18-year-old high school
 graduate.

 Our second specification incorporates actual experience into the model as

 Wir = 0i + ?iAEu + uit

 where AE,-f is measured as total weeks of experience (divided by 52) at the beginning of the current
 calendar year. A potential problem with using actual experience is that we would expect it to be
 correlated with wage levels and wage growth. We will not put any restriction on this relationship.
 In order to obtain estimates we assume that uit is independent of (ft, ?i9 AEit). In this case, the
 natural extension of the previous model does not work. Even if cov(?/T ? w^_r, w,0) = 0,

 cov(w/0, wiT - w/r-r) = cov(0i, ?i(AEiT - AElT_T))

 #cov(0{-,A)(AEjT-AEiT_T)

 Copyright ? 2009 John Wiley & Sons, Ltd. J. Appl. Econ. 24: 914-932 (2009)
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 920  T. GLADDEN AND C. TABER

 in general. However, using a simple transformation of the data we can extend the model to the
 case of actual experience. Note that

 / wiT-wiT-T \ f UiT-UiT-r _ ( \ cov Wf0' -?~c- = cov ?i + ?-?-, ft + ui0 V AEiT-AEit-t/ V AElT-AElT_r /

 = cov(ft, ?{) + cov fM/0, A^T~^"T ) (5)

 Once again, if uiT is asymptotically uncorrelated we can obtain a consistent estimate of cov(ft, ?t)
 as T gets large or by using m-dependence.4

 One nice aspect of this approach is that we are able to avoid making any assumption at all about
 the relationship between (ft, ?t) and AE?. In general it would be very complicated to model the
 relationship between the two. Second, our method makes the relationship between the data and
 the estimates clear. A small estimate of cov (ft, ?t) simply means that there is little relationship
 between the workers' initial wages and their wage growth later in the life cycle.

 However, an important sample selection problem arises when we implement a GMM estimator
 based on (5). It requires that we observe wage data for three specific periods: 0, T ? r, and T.
 However, if some individuals in the data do not work in one of those periods then there may be
 selection bias in our estimate of cov(ft , ?i). A major advantage of our approach is that it allows us
 to address this problem. We do not have data on earnings in every year for every sample member,
 but since the parameters ?t and ft do not vary over time we can estimate them using the data we
 have. As long as almost all individuals work at least 3 years at some point in the panel, cov (ft, ?t)
 is identified.

 To see this, consider the model in which uit is serially uncorrelated. In this case, calculating a
 consistent estimate of

 V AEf2 - AE/i J

 yields a consistent estimate of cov (ft, ?i). However, the sample selection bias may be severe in
 this case. We can only construct this covariance for those individuals in the sample who work in
 years zero, one, and two. In a sample of low-wage women, there are likely to be a considerable
 number of sample members who do not work in at least one of these 3 years. However, this
 problem can be easily solved. To estimate cov(ft, ?i) in this case, we can use the first 3 years that
 the woman actually works. Let f i,- be the first year the women works, t2i the second, and tyi the
 third. By definition actual experience is zero at tu. In this case

 covffl.,A)^cov^,?.,AE)t3_AEjJ.

 4 One potential problem is that ft- may be correlated with (uit - uit-T)/(AEit - AE/,_T) due to sample selection bias.
 While it is impossible to know for sure, we have tried a number of robustness checks to see if this can be driving the
 results (see Gladden and Taber, 2004, for another specification which should be robust to this problem). We also argue
 below that this result is likely to lead to positive biases which make our results even more surprising. We have found no
 evidence that this problem is empirically important.

 Copyright ? 2009 John Wiley & Sons, Ltd.  J. Appl. Econ. 24: 914-932 (2009)
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 THE RELATIONSHIP BETWEEN WAGE GROWTH AND WAGE LEVELS  921

 We can estimate cov(ft, ?t) using the sample analog of the right-hand side of this equation.5 If
 every member of the sample worked for at least three different years during the panel (with t2i
 sufficiently greater than tu), the sample selection problem would disappear.
 While using different years allows us to address the sample selection problem, it leads to an

 additional problem. Few of the observations in our sample provide all 10 wages. This occurs for
 four reasons: some individuals started working before 1979, the year of the first NLSY interview;
 after 1994, data on wages are collected only every other year; many individuals, especially women,
 have some years in which they do not work; finally, some individuals drop out of the sample. As
 a result (tu, t2u t3i) varies across different members of the sample.

 In the spirit of the discussion above, if we construct moments that are weighted sums of several
 covariances, we are able to minimize this selection problem. We condition on individuals for whom
 we observe wi0, the wage during the first year after they left school. Define a dummy variable
 that takes the value of 1 if we observe wages for individual / in periods T and T ? r, and zero
 otherwise. That is, let

 i,TT = {o
 if we observe w,t, u^y_t, and (AE,t ? AE,T_T).
 otherwise.

 We consider estimating cov (w^, aEt ? ae-/ ) ^or var^ous vames ?f T and r. Let R be the
 set of (T, r) that we consider. Define a variable ra; as

 diTr(WiO-Wo)
 m =-^- (o)

 iTx y di
 Since E(mj) = cov(#,, ?t), we can then estimate the covariance as

 ] n
 cov(0,-,ft) = jjY,mi- W

 In this calculation, each individual receives equal weight regardless of the number of observed
 wages that we have for them. Since we expect the number of observed wages to depend on (ft, ?t)
 this yields a consistent estimate of cov (ft, ?t\ while an estimate obtained by putting equal weights
 on each observed wage typically would not.6

 Unfortunately, the method above does not completely solve the problem of sample selection.
 In our NLSY sample, there are 6491 individuals with 12 or fewer years of school. About 4350
 of these individuals leave school after 1977, so that we can observe one of their first two wages,
 and continue in the sample six or more years after leaving school.7 If we assume that there is no

 5 It is important to note that this solves the sample selection problem relation to labor supply. There may be an additional
 problem of missing data if some individuals are not surveyed in all years. The solution for that problem is not as clean
 as we need to impute actual experience for them.

 6 Clearly, one cannot simultaneously deal with the sample selection problem and nonparametric We must ignore one
 problem in dealing with the other.

 7 About 150 observations are lost due to attrition from the sample. The remainder is lost because the older members of
 the sample leave school before 1977.

 Copyright ? 2009 John Wiley & Sons, Ltd.  /. Appl Econ. 24: 914-932 (2009)
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 922  T. GLADDEN AND C. TABER

 cohort effect, and that attrition from the sample does not cause sample selection, we could obtain
 unbiased estimates using these 4350 individuals. However, only about 3250 of these individuals
 have non-missing wage observations for one of the first 2 years out of school, and non-missing
 observations for two or more wages in periods 6-9. Thus we still have a selected sample. The basic
 problem is that we are estimating the effect of work experience on wages, and this is impossible
 to measure for people who do not work. Thus we estimate the covariance between ft and ft
 conditional on individuals who have non-missing wage observations for one of the first 2 years
 out of school and non-missing wage observations for two or more wages in periods 6-9.

 There is an additional potential source of bias. The fact that we only observe wages for
 individuals who work likely causes an upward bias in the uit for our observed sample. Focusing
 on potential experience, we can obtain the equation

 The bulk of this paper focuses on the first and fourth terms on the right-hand side of this
 equation. However, even if the variables ft and ft are uncorrelated with un unconditionally, they
 may be correlated with un conditional on working. We generally expect that workers who receive
 large positive wage shocks will be more likely to work, and thus will be more likely to have
 observed wages. This means that the expected value of un conditional on working will tend to
 be positive, and that the second and third terms in the equation above may not be zero, causing
 our estimates to be biased.

 First consider the second term in this expression. In a classic Heckman style selection model,
 if labor supply were the same in periods T and T ? r this selection bias would bias both w,T
 and uiT-T upward by the same amount and not affect the covariance. However, both labor supply
 and wages increase with age, so Uu-T is likely to be biased upward by more than uiT. As a
 result, conditioning on working both periods tends to bias uiT ? uiT-T downward. Since low-wage
 workers tend to work less this bias will be relatively larger for low-wage workers than high-wage
 workers so it will tend to positively bias our estimates of cov(ft , ft). This makes our results more
 surprising.

 The third term could go in the other direction. We have very little evidence on the relationship
 between working in the first period and ft but one would generally expect it to be positive.8 Thus
 the selection bias on w/o will tend to be larger for individuals with smaller values of ft, which
 could lead to a negative bias. However, we will show (in Table III) that, if anything, the estimates
 of cov(ft, ft) are more negative for men than for women, making it hard to believe that this could
 be driving our results.

 We use data from the National Longitudinal Study of Youth 1979 (NLSY79). The NLSY79 is
 a panel dataset begun in 1979 with youth aged 14-22. We use the cross-sectional sample as

 Economic theory has no prediction as the income and substitution effects go in different directions.

 COv(w,-o, (W/r - WiT-j. )\diTT = 1)

 = cov(ft, ?i\diTr = 1) + cov(ft, uiT - uiT_r\diTT = 1)

 + COV(H/0, ?i\diTx = 1) + COV(W/o, UiT - UiT-AdiTx = 1).

 4. THE DATA

 Copyright ? 2009 John Wiley & Sons, Ltd.  J. Appl Econ. 24: 914-932 (2009)
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 THE RELATIONSHIP BETWEEN WAGE GROWTH AND WAGE LEVELS  923

 well as the oversamples of blacks and Hispanics. The survey is conducted annually until 1994
 and biannually since then, and respondents are questioned on a large range of topics, including
 schooling, wages, and work experience.

 Our goal is to focus on low- to moderate-skilled workers, so we use the subsample of individuals
 with 12 or fewer completed years of schooling. In order to focus on the early part of the career, we
 only use wage information collected during the first 10 years after an individual has left school.
 One advantage of the NLSY is that individuals report the number of weeks worked for each
 year in the sample. This information is also obtained retrospectively for the years preceding the
 survey. This allows us to construct a measure of actual experience that is the key variable in our
 analysis. We calculate labor market experience in the following manner. An individual is assumed
 to enter the labor force at the time of the interview immediately following the last year that he was
 enrolled in school. At the time of this interview, we assume he has no experience, and experience
 accumulates each year by the number of weeks worked. We impute experience for missing years
 by averaging the number of weeks worked in the year immediately preceding and in the year
 immediately following the missing year.

 One potentially difficult issue is precisely defining the time of entry into the labor force. Ideally,
 entry would begin on the date that an individual leaves school and enters the labor force. Owing to
 data limitations, we assume that an individual begins his working life with zero experience at the
 time of the first interview after leaving school. The issue of individuals returning to school does
 not appear to be problematic in our sample. We do not include anyone who completes a year of
 post-secondary education. While a substantial number of high school graduates return to college
 after working in the labor force for some time, these people are not included in our data. Second,
 individuals who drop out of school and later receive a General Equivalency Degree (GED) are
 treated as dropouts. This assumption is justified by Cameron and Heckman (1993), who show that
 individuals with GEDs have earnings that are closer to dropouts than to high school graduates.
 The few students who drop out, complete a GED, and then attend college are not included in the
 sample. Thus, the only group of students who will be problematic are those who drop out of high
 school and return to conventional high school to complete a grade or get a standard high school
 diploma, but do not move on to college. Very few individuals report this pattern of schooling:
 only about 7% of high school non-completers and 1% of eventual high school graduates leave
 school for over a year and then return.

 5. REGRESSION RESULTS

 We begin with a regression exercise as a preliminary approach. The key relationship studied in this
 paper is cov(wl0, Wij ? Under a linear random effects model, this can be interpreted as
 the covariance between ft and ft. In the potential experience model, if we regress (wlT ? wlT-i)
 on H>io, the slope coefficient will converge to

 cov(ft,ft)
 var(w/0)

 Thus OLS estimates a normalized version of the covariance that is helpful because the regression
 framework provides a nice scale for judging the magnitude of the covariance.

 Table I presents the results from a regression of wage growth per year of potential experience
 (Wij - on initial wages. To avoid correlation between the error terms, we construct wage

 Copyright ? 2009 John Wiley & Sons, Ltd.  J. Appl Econ. 24: 914-932 (2009)
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 differences using wages from T = 7, 8, 9, and 10. These results are presented in the first four
 columns of Table I. Columns (1) and (3) present unweighted results; columns (2) and (4) present
 results that are weighted so that each individual receives equal importance regardless of the number
 of wages observed. The point estimate of the relationship between wage levels and wage growth is
 actually negative, but insignificant at conventional levels. The magnitude of the effect is small and
 fairly precisely estimated. Workers who earn 0.5 log wage points less than the median experience
 approximately 0.005 (one half of a percentage point) more wage growth per year than the median
 worker. Since a 0.5 log wage change seems large to us, the change of 0.005 relative to the level
 of 0.05 seems small, particularly relative to the differences across racial groups.

 Since there may be reasons to not trust the first wage after entering the labor market, as a
 robustness check we run the same regression for the wage in the second year as well. These results
 are presented in columns (5)-(8) of Table I. The results are similar, although the magnitudes of
 the point estimates are slightly bigger and the standard errors are somewhat smaller in this case,
 leading to statistically significant results. It is straightforward to modify the framework to formally
 justify the use of the second wage simply by allowing the wage process described above to initialize
 at that point. The implicit assumption would be that in the first year after leaving school workers
 are not serious about their job prospects and do not buckle down until the second year, so that
 experience gained during the first year is useless. The main lesson from this exercise is that the
 basic results are robust.

 We next account for actual experience by using the analog of the moment from equation (5).

 Specifically, we regress A^,r?atT"1 on initial wages and wages 1 year out. These results

 Table I. Regression of wage growth per year of potential experience3 on initial wages seven or more years
 since labor force entry (standard errors in parentheses)0

 Variable (1) (2)c (3) (4)c (5) (6)c (7) (8)c

 First period wage -0.0082 -0.00258 -0.0106 -0.0053
 (0.0067) (0.0126) (0.0068) (0.0129)

 Second period -0.0099 -0.0099 -0.0123 -0.0471
 wage

 (0.0052) (0.0082) (0.0054) (0.0226)
 White male 0.0466 0.0335 0.0487 -0.0125

 (0.0135) (0.0259) (0.0113) (0.0107)
 White female 0.0425 0.0306 0.0504 0.0497

 (0.0132) (0.0251) (0.0110) (0.0214)
 Black male 0.0402 0.0325 0.0406 0.0396

 (0.0133) (0.0251) (0.0113) (0.0216)
 Black female 0.0228 0.0089 0.0311 0.0273

 (0.0132) (0.0248) (0.0110) (0.0211)
 Hispanic male 0.0418 0.0345 0.0542 0.0565 (0.0142) (0.0263) (0.0119) (0.0229)
 Hispanic female 0.0351 0.0259 0.0399 0.0430 (0.0151) (0.0292) (0.0127) (0.0278)
 Number of observations
 Wage differences 10,112 10,112 10,112 10,112 11,589 11,589 11,589 11,589 Individuals 2,464 2,464 2,464 2,464 2,827 2,827 2,827 2,827

 aThe dependent variable in these regressions is log wage differences, i.e., wit - wit-\.
 b The standard errors are robust HuberAVhite standard errors for panel data.

 c Regression is weighted so that each individual gets equal weight.

 Copyright ? 2009 John Wiley & Sons, Ltd. /. Appl. Econ. 24: 914-932 (2009)
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 are presented in Table II. Again, we present both weighted and unweighted results. The results
 are similar to those in Table I: fairly small negative effects that are borderline significant. The
 point estimates suggest that workers who earn 0.5 log wage points less than the median worker
 experience wage growth that is about one percentage point higher. This is nontrivial, but we
 interpret it as a fairly small effect.

 There is some concern that the cov(ft , ?t) may be different for men and women. To address

 this, Table III presents results of a regression of A!',r atT""1 on ?al wages and wages
 1 year out stratified by gender. In this case the point estimates are closer to zero for women than
 for men. However, the differences are not statistically significant. Given that much precision is
 lost when we separate women from men, we continue to use the pooled sample. We should note
 that although we do not report all of the results, we tried many specifications comparing women
 to men. Across specifications cov(ft, ?i) was consistently a larger negative number for men than
 for women, but the difference was not typically significant.

 6. GENERALIZED METHOD OF MOMENTS APPROACH

 We now move to the main approach that focuses on estimation using equation (7). A major
 advantage of this approach relative to the regression approach in the previous section is that we
 can address the sample selection problem more formally by using data from anyone with at least

 Table II. Regression of wage growth per year of actual experience3 on initial wages seven or more years
 since labor force entry (standard errors in parentheses)b

 Variable  (1)  (2)c  (3)  (4)c  (5)  (6)c  (7)  (8)c

 -0.0082
 (0.0067)

 First period wage

 Second period wage

 White male

 White female

 Black male

 Black female

 Hispanic male

 Hispanic female

 Number of observations
 Wage differences 10,112
 Individuals 2,464

 -0.00258 -0.0106
 (0.0126) (0.0068)

 0.0466
 (0.0135)
 0.0425
 (0.0132)
 0.0402
 (0.0133)
 0.0228
 (0.0132)
 0.0418
 (0.0142)
 0.0351
 (0.0151)

 10,112
 2,464

 10,112
 2,464

 -0.0053
 (0.0129)

 0.0335
 (0.0259)
 0.0306
 (0.0251)
 0.0325
 (0.0251)
 0.0089
 (0.0248)
 0.0345
 (0.0263)
 0.0259
 (0.0292)

 10,112
 2,464

 -0.0099
 (0.0052)

 -0.0099
 (0.0082)

 11,589
 2,827

 11,589
 2,827

 -0.0123
 (0.0054)
 0.0487
 (0.0113)
 0.0504
 (0.0110)
 0.0406
 (0.0113)
 0.0311
 (0.0110)
 0.0542
 (0.0119)
 0.0399
 (0.0127)

 11,589
 2,827

 -0.0471
 (0.0226)

 -0.0125
 (0.0107)
 0.0497
 (0.0214)
 0.0396
 (0.0216)
 0.0273
 (0.0211)
 0.0565
 (0.0229)
 0.0430
 (0.0278)

 11,589
 2,827

 aThe dependent variable in these regressions is log wage differences divided by experience differences, i.e.,
 (Wit - Wjt-i)

 (AEff - AE|,_i)'
 b The standard errors are robust Huber/White standard errors for panel data.
 c Regression is weighted so that each individual gets equal weight.
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 Table III. Regression of wage growth per year of actual experience3 on initial wages seven or more years
 since labor force entry by gender (standard errors in parentheses)15

 Variable  Men  Women

 (1)  (2)c  (3)  (4)c  (1)  (2)c  (3)  (4)c

 First period wage

 Second period wage

 White

 Black

 Hispanic

 -0.0188
 (0.0111)

 0.0668
 (0.0216)
 0.0713
 (0.0218)
 0.0487
 (0.0231)

 -0.0146
 (0.0148)

 0.0518
 (0.0293)
 0.0602
 (0.0297)
 0.0390
 (0.0298)

 -0.0238
 (0.0101)
 0.0748
 (0.0208)
 0.0720
 (0.0203)
 0.0656
 (0.0225)

 -0.0243
 (0.0138)
 0.0726
 (0.0291)
 0.0735
 (0.0308)
 0.0655
 (0.0308)

 -0.0144
 (0.0201)

 0.0467
 (0.0371)
 0.0359
 (0.0371)
 0.0495
 (0.0367)

 -0.0136
 (0.0269)
 0.0345
 (0.0499)
 0.0272
 (0.0488)
 0.0326
 (0.0483)

 -0.0167
 (0.0137)
 0.0578
 (0.0262)
 0.0497
 (0.0276)
 0.0692
 (0.0287)

 Number of observation
 Wage differences 5884
 Individuals 1452

 0.0639
 (0.0469)
 0.0656
 (0.0459)
 0.0848
 (0.0544)

 -0.0258
 (0.0236)

 6615
 1640

 3470
 927

 4085
 1092

 aThe dependent variable in these regression is log wage differences divided by experience differences, i.e.,
 (wit ~ Wit-l)

 (AEit - AE/,_i)'
 b The standard errors are robust Huber/White standard errors for panel data.
 c Regression is weighted so that each individual gets equal weight.

 three wages. In particular, we do not have to assume that all early wages are uncorrelated with
 later wage gains in order to obtain a consistent estimate.

 Recall that in Section 3 we defined R as the set of (T, r) that we consider. For reasons we will
 discuss below we focus on the following set:

 R = {T, x : T < 9, x {1, 2, 3}, T - x > 5}.

 We refer to the initial wage as 0, so that t = 9 is actually the tenth wage potentially observed
 after the individual entered the labor force. Since we use no wage before period 5, when r = 1
 we use w>6 ? W5, wq ? n>6, wg ? u>7, and wg ? wg; when r = 2 we use w-j ? W5, ws ? w>6, and
 W9 ? vv7, and when x = 3 we use wg ? w5 and vv9 ? w6. Formally, we can justify this with the
 m-dependence assumption defined in equation (3) with h* = 4.

 In Tables IV and V we present the covariance of initial wage and wage growth for potential
 and actual experience, respectively. We build up to the main result by first presenting results
 using more restrictive sets. In the first column we present results using initial wages and 1-year
 wage differences (i.e., R = {T, r : T < 9, x = l,T ? x > 5}); in the second column we use 2-year
 wage differences; in the third column we use 3-year wage differences; and in the final column
 we aggregate 1-, 2- and 3-year wage differences. The first row presents the covariance of initial
 wage with wage differences. As robustness checks, the second row presents the covariance of the
 first-year wage with wage differences, and the third row presents combines the covariances of
 initial- and first-period wages with wage differences.

 Our main result for all cases is a small negative point estimate of the covariance that is usually
 statistically insignificant. In some cases, the point estimate is significantly different from zero,
 particularly when using three period wage differences. However, when we use the larger sample

 Copyright ? 2009 John Wiley & Sons, Ltd.  J. Appl. Econ. 24: 914-932 (2009)
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 Table IV. Co variance of wage growth per year of potential experience on initial wage using alternative
 moments five or more years since labor force entry3 (standard errors in parentheses)

 First difference Second difference Third difference Combined

 First period wage -0.0017 -0.0022 -0.0033 -0.0016
 (0.0020) (0.0015) (0.0012) (0.0016)

 Second period wage -0.0035 -0.0020 -0.0031 -0.0030
 (0.0018) (0.0014) (0.0012) (0.0015)

 Combined -0.0017 -0.0021 -0.0028 -0.0016
 (0.0017) (0.0012) (0.0010) (0.0014)

 a These covariances represent the relationship between wage growth and initial wage levels. Each entry in this table
 represents a different specification. So, for example, first period wage/first difference is estimated using cov(w,-/ -
 w/f-i, Wio) and second period wage/third difference is estimated using cov(v% - >%_3, wn).

 Table V. Co variance of wage growth per year of actual experience on initial wage using alternative moments
 five or more years since labor force entry3 (standard errors in parentheses)

 First difference Second difference Third difference Combined

 First period wage 0.0018 -0.0084 -0.0069 -0.0021
 (0.0039) (0.0030) (0.0033) (0.0037)

 Second period wage -0.0032 -0.0026 -0.0039 -0.0020
 (0.0033) (0.0027) (0.0031) (0.0032)

 Combined 0.0011 -0.0045 -0.0049 -0.0003
 (0.0033) (0.0025) (0.0032) (0.0034)

 3 These covariances represent the relationship between wage growth and initial wage levels. Each entry in
 this table represents a different specification. So, for example, first period wage/first difference is estimated using

 cov ^Ag" t? w/o) and second period wage/third difference is estimated using cov (^y?*/ ? AE~3 3 ' W/1)'

 of individuals by combining the data in the fourth column, the point estimate approaches zero and
 the effect is no longer significant.

 Comparing the fourth column with the first three reveals the relevance of sample selection bias.
 The combined result in the fourth column is not a simple average of the first three columns because
 to deal with the sample selection bias we are weighting by individual, not by wage observations.
 In general, the estimated effect controlling for sample selection is smaller than the estimated effect
 using fewer individuals as in columns (l)-(3).

 One issue that arises is in judging the magnitude of the result. Our preferred estimate of the
 covariance of initial wage and wage growth, presented in Table V (column 4 row 1), is -0.0021,

 which seems like a small number, but judging the magnitude of a covariance is difficult. As an
 informal method to get a sense of the magnitude of the covariance, we posit the following linear
 approximation:

 E(?i\Oi) = Yo + nOi.

 This implies that
 cov(0f,ft)

 Copyright ? 2009 John Wiley & Sons, Ltd.  /. Appl Econ. 24: 914-932 (2009)
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 928  T. GLADDEN AND C. TABER

 where aj is the variance of 0f. To judge the magnitude, ask the following question: how much
 more wage growth would we expect from an individual whose ability is one standard deviation
 above the mean? This effect can be written as

 E(?i\0i = ixe + oe) - E(?i\0i = ?e) = y\ae

 = cov(0f,ft)

 We can calculate this effect as long as we jointly estimate 0% along with cov(0;, ?i).
 It turns out that estimation of Oq can be handled in a manner that is analogous to estimation of

 cov(0,-, ?i). First consider the potential experience case. In general, we can identify 0% using the
 fact that

 o] = cov(w/0, wiT) - PEiT X COV(0/, ?i)

 In practice, we construct moments using data from all periods that are available for each
 individual. Moments for actual experience are constructed analogously, although the algebra is
 a bit more complicated.9

 In practice we estimate the three parameters cov(ft, and cr| with three moments: the
 moment we have been using for estimation of cov(0/, ?i) defined in equation (5), the moments
 just presented for estimation (presented explicitly in footnote 9), and the sample mean of w/o to
 estimate fiQ (i.e., ?(w/o ? ?e) = 0). The results from this estimation procedure are presented in
 Table VI. Note that the first row of the table corresponds exactly to the analogous numbers in
 Table V.

 In the fourth row of Table VI we combine the results from the other rows to get an estimate

 0f coy(fy' @l\ For potential experience the point estimate suggests that a one standard deviation
 increase in unobserved ability is associated with average wage growth of 0.61% less per year.
 For actual experience a one standard deviation increase in unobserved ability is associated with a
 decrease in average wage growth of 0.87 of a percentage point per full year of work. Neither of
 these results is statistically significant.

 Another way of judging the magnitude of this coefficient is by measuring its contribution to
 the wage variance. It is well known that the variance of log wages is increasing both over the

 9 The moments actually used to estimate Oq are described below. Let In be a dummy variable indicating whether w/j is
 observed for individual i at time T. Assume that eov(w,0, k,t) = 0 for T > tl, and that the return to experience is linear
 between tl and tu. We can then use the moment condition

 / _ tU \

 J2T=tt /it[(w/o - /^o)wlT - PEltcov(0/, ?i)] \ ^ m I (

 ore compli

 (s,r)eR \ AEis - AEis

 For the actual experience model, the expression is more complicated: (8)

 /
 (w,'0 - ?o)  AE/7

 Copyright ? 2009 John Wiley & Sons, Ltd.  7. Appl. Econ. 24: 914-932 (2009)
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 Table VI. Estimates of covariance between ability and growth, high school graduates and high school
 dropouts, first 10 years of potential experience, GMM method (standard errors in parentheses)

 Potential experience Actual experience

 Covariance ability and growth (cov(0/, ?i)f -0.0016 -0.0021
 (0.0017) (0.0038)

 Mean ability (?(6>,))b 1.7908 1.7915
 (0.0081) (0.0081)

 Variance ability (var(<9*))c 0.0658 0.0661
 (0.0217) (0.0279)

 cov(0i,?i)/a9d -0.0061 -0.0087
 (0.0061) (0.0149)

 p-value, x2 test le 0.3153 0.4769
 p-value, x2 test 2e 0.6097 0.5217
 Sample size (individuals) 2906 2889

 a These covariances are calculated using wage growth and initial wage level, as in row 1, column 4 of Table IV (potential
 experience) and Table V (actual experience).
 b Calculated as the sample mean of w/o.
 c Calculated using the moment given in equation (6) for potential experience and in equation (7) for actual experience.
 d The effect of ability on wage growth in the linear model: ?\ ? yo + Y\&i + ?/
 e The standard GMM test of overidentification restrictions. We treat the model as a GMM problem with a separate moment

 condition E j^wn ? ?o) (AEy ? AE-^ )] = C0V(A"' f?r eacn ^ anc* T- Test * ignores sample selection. Test 2 deals
 with sample selection by using the mean value across t for each individual.

 life cycle and over time (during the period of this sample). This makes the negative coefficient on
 the covariance surprising. To gauge the importance of this covariance in log wages we focus on
 potential experience and note that following specification (2)

 var(wl7|PE/f) = var(ft) + var(ft)PE?, + cov(ft, ft)PE/f + var(?/f |PEl7).

 To gauge the importance of the term cov(ft , ft )PE,,, in Figure 1 we plot both var(u>If |PE,-f) and
 [var(w/f |PE|,) ? cov(0,-, ft)PEjr] versus PE^. Since our panel is aging the increase in the variance
 is due to changes both over time and over age. One can see that both the gross and net variance
 of wages do increase over the life cycle. While the negative effect is not trivial, it offsets only a
 fraction of the overall life cycle increase in variance.

 One potential criticism is the specification of the model. There are two major assumptions that
 we have made:

 log wages are linear in experience over the first 10 years following labor force entry;
 cov(w;o, Uit) ~ 0 for t > T ? r.

 We view the first problem as a question of whether T is small enough. It is well known that
 life cycle earnings are concave and decline later in life. However, they are approximately linear in
 the first part of the life cycle, so that a linear specification should fit the data for sufficiently
 small T. We view the second problem as a question of whether T - x is far enough away
 from 0 that the errors are approximately uncorrelated. A natural way of testing our specification
 relative to both of these potential problems is to test the overidentification condition as to whether

 varies across T.

 Copyright ? 2009 John Wiley & Sons, Ltd. J. Appl Econ. 24: 914-932 (2009)
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 Figure 1. Variance of log wage over time. This figure is available in color online at www.interscience.
 wiley.com/journal/jae.

 With the sample selection problem, the model is not overidentified in the classic sense that
 we cannot obtain consistent estimates of all of the moments conditional on t and r. That is,
 without this problem we could treat the model as a GMM problem with a separate moment
 condition:

 for each T and r. We could estimate this model and use the standard GMM test of overidentification
 restrictions.

 We address the sample selection problem in two different ways. First, we ignore it by
 only using the observations we have to estimate each of these moments. The /?-value from
 this test is presented in the fifth row of Table VI. One can see that we do not reject either
 the potential or actual experience model. Our second approach is to use the average value / VV't ? W'T_ \
 from the observations we do have on i when we do not have data on -ac~t
 (i.e., rrij defined in equation (6)). While the unrestricted model would not be consistent, this
 is still valid as an overidentification test. The results from this approach our presented in
 the sixth row of Table VI. As before, we fail to reject either specification. We have exper
 imented with alternative assumptions and chose this one based on this test. For example,
 increasing tu to 10 leads to a rejection of the potential experience model at the 10% level.

 However, the basic result of little relationship between wage levels and growth is very
 robust.
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 7. CONCLUSIONS

 The primary goal of this paper is to estimate the relationship between wage growth and wage levels
 for low-skill workers. We do so by taking advantage of panel data in a random coefficient Mincer
 style wage model. We allow both the intercept and slope coefficient to be arbitrarily correlated

 with actual experience. Our results here generally confirm our previous results that there is little
 relationship between skill level and wage growth. Our point estimates suggest that a one standard
 deviation increase in permanent ability reduces the return to annual potential experience by 0.61
 of a percentage point. The analogous point estimate for actual experience is a reduction of 0.87
 of a percentage point. These estimates indicate that the rate of wage growth with work experience
 should be at least as high for low-skill workers as for medium-skill workers. Neither of these
 effects is statistically significant at conventional levels.

 There are a number of caveats to keep in mind. First, we are measuring the effects of experience
 on log wage increases, not level increases. If low-wage workers have similar levels of log wage
 growth, then their gains in wage levels would be smaller than for higher-wage workers. Second,
 the magnitude of these effects is not huge. A full year of labor force experience leads to wage
 gains of approximately 4%. This is nontrivial, but it would not have a huge effect on earnings
 inequality or poverty rates. Finally, the workers we study are not necessarily representative of the
 type of workers who would respond to particular policy changes. Sample size (and endogeneity)
 does not allow us to condition on welfare mothers as one might like.

 While no particular specification that we use is perfect, our results are robust across a number of
 different underlying assumptions. Measured by covariances, wage growth among low-skill workers
 is similar to or perhaps somewhat higher than wage growth among higher-skill workers.
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