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1 Appendix

A.1 Proof of Proposition 3

First a standard application of the partitioned inverse theorem and using the fact thateD0
jt = 0 for j > N1,
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Now consider each piece in turn.
First Assumption 1 states that
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The mixing component of Assumption 1 implies that:
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Consider the `th element of the vector eDjt (`) ,
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A generic (`, k) o↵ diagonal term can be written as
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eXjt = 0 as shown in the proof of Proposition 1.
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Consistency for b� follows upon plugging the pieces back into (A-1) and applying Slutsky’s
theorem.
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From the normal equation for b↵j it is straightforward to show that
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and b� is consistent, the last term of this expression converges to zero.
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where bA(`) and A(`) are the `th component of bA and A respectively.

This gives the result.

A.2 Individual Data

The use of individual-level data has three complications relative to the model in Section 2.
We need to worry about a) the fact that b� is estimated, b) the term 1

|M(j,t)|
P

i2M(j,t) Z 0
i which

can change with the sample size, and c) the error term involving "i. None of these issues
are particularly di�cult to deal with, but do require verifying that the proofs still hold. We
consider each case in turn. However, we first define some notation which is analogous to our
earlier notation. Define:
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It is straight forward to verify that
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A.2.1 Preliminary Lemma

Extending the proof of Proposition 2 to this case takes a bit more work because we can not
directly apply the Lemma from Newey and McFadden (1994). Instead to prove the result
we directly follow the proof of Lemma 1 of Tauchen (1985).
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where ⌘m = (⌘m1, ..., ⌘mT ). Since the distribution of ⌘mt is continuous, limu(⌘i, ✓, d) = 0
as d ! 0 with ✓ fixed almost surely. Applying this means we can define d (wj, ✏) so that
E [u(⌘i, ✓, 2d(wj, ✏))] < ✏ where we take ✏ as given.
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Let B(✓) denote an open interval of radius d (✓, ✏) about ✓. By compactness we can form
an oven covering Bk = B(✓k, ✏) for k = 1, ...,K. Let dk = d (✓k, ✏) and µk = E(u(Yi, ✓k, 2dk)).
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Now let ✓ 2 Bk and consider
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whenever N0 � Nk(✏) almost surely, by applying twice the strong law of large numbers and
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is iid and converges

almost surely to zero so the first term converges to zero.
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whenever n � maxk Nk(✏) almost surely which proves the result.

A.2.2 Proof of Proposition 4

The first part of this proof is virtually identical to the proof of Proposition 1 while the second
is very similar to that of Proposition 2.

Consistency of b� follows immediately from the standard OLS argument.
A standard application of the partitioned inverse theorem makes it straight forward to
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show that
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since this last expression involves a finite number of terms and e"jt
p! 0.

Consistency for b� follows upon plugging the pieces back into (A-2) and applying Slutsky’s
theorem.

From the normal equation for b↵ it is straightforward to show that
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where bFj(·,b�, b�) is the empirical c.d.f. one gets from the residuals using the control states
only. That is more generally
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converges to �j(wj, �,�) uniformly over w. The final part of the proof that b�(w) is a consis-
tent estimate of �(w) is identical to that argument in the proof of Proposition 2.

Following the same line as the proof of Proposition 2, let

b!j =
TX

t=1

⇢jt

⇣
⌘mt � Z

0
t

⇣
� � b�⌘�X

0
t

⇣
� � b�⌘+ "t

⌘
.

Let ⌦ be a compact parameter space for wj, and ⇥ a compact subset of the parameter

space for
⇣b!j, b�, b�⌘ in which (0, �,�) is an interior point.

We use the notation
P

m rather than
PN1+N0

m=N1+1 in order to get the expression to fit on a
page.

First, for each j = 1, ..., N1 consider the di↵erence between bFj(wj, b�, b�) and �j(wj, �,�)
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sup
wj2⌦

| bFj(wj,b�, b�)� �j(wj, �,�)|

= sup
wj2⌦

�����
1

N0

X
m

1

 
TX

t=1

↵jt

✓
e⌘mt � eZ 0

mt

⇣
� � b�⌘� eX 0

mt

⇣
� � b�⌘+ e"mt

◆
< wj

!
� �j (wj, �,�)

�����
= sup

wj2⌦

�����
1

N0

X
m

1

 
TX

t=1

↵jt

⇣
⌘mt � Z

0
mt

⇣
� � b�⌘�X 0

mt

⇣
� � b�⌘+ "mt

⌘
< wj + b!j

!
� �j (wj, �,�)

�����
 sup

wj2⌦

�����
1

N0

X
m

1

 
TX

t=1

↵jt

⇣
⌘mt � Z

0
mt

⇣
� � b�⌘�X 0

mt

⇣
� � b�⌘+ "mt

⌘
< wj + b!j

!
� �j

⇣
wj + b!j,b�, b�⌘

�����
+ sup

wj2⌦

����j

⇣
wj + b!j,b�, b�⌘� �j (wj,�)

���

 sup
wj2⌦

(!j ,g,b)2⇥

�����
1

N0

N0X
m

1

 
TX

t=1

↵jt

⇣
⌘mt � Z

0
mt (� � g)�X 0

mt (� � b) + "mt

⌘
< wj + !j

!
� �j (wj + !j, g, b)

�����
+ Pr

⇣⇣b!j,b�, �̂,
⌘

/2 ⇥
⌘

+ sup
wj2⌦

����j

⇣
wj + b!j,b�, b�⌘� �j (wj, �,�)

��� .
First consider supwj2⌦

����j

⇣
wj + b!j,b�, b�⌘� �j (wj, �,�)

��� . Using a standard mean-value ex-

pansion of �, for some
⇣e!j,e�, e�⌘

sup
wj2⌦

����j

⇣
wj + b!j,b�, b�⌘� �j (wj, �,�)

���

= sup
wj2⌦

������
@�j

⇣
wj + e!j,e�, e�⌘

@wj
(b!j) +

@�j

⇣
wj + e!j,e�, e�⌘

@�
(b� � �) +

@�j

⇣
wj + e!j,e�, e�⌘

@�

⇣b� � �
⌘������ .

The proof that
@�j(wj+e!j ,e�,e�)

@� is bounded is analogous to that in the proof of Proposition 2.

Thus supwj2⌦

����j

⇣
wj + b!j,b�, b�⌘� �j (wj, �,�)

���converges to zero since b� is consistent. The

same argument holds for the other two pieces.

Since
⇣b!j,b�, b�⌘ converges in probability to (0, �,�) which is an interior point of ⇥,

Pr
⇣⇣b!j,b�, b�⌘ 2 ⇥

⌘
converges in to zero.

Next consider the term

sup
wj2⌦

(!j ,g,b)2⇥

�����
1

N0

N0X
m

1

 
TX

t=1

↵jt

⇣
⌘mt � Z

0
mt (� � g)�X 0

mt (� � b) + "mt

⌘
< wj + !j

!
� �j (wj + !j, g, b)

����� .

Since wj and !j enter the expression in identical ways we can combine these into one pa-
rameter and expand the compact parameter set appropriately and apply Lemma A.1 from
section A.2.1 to show that this term converges to zero.
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Then putting the three pieces together,

sup
wj2⌦

| bF (wj,b�, b�)� �(wh, �,�)| p! 0.

Finally, the final step of the proof that b� (w) converges to �(w) is identical to that of
Proposition 2.

A.2.3 Results for |M(j, t)| fixed

We now consider the case in which |M(j, t)| is fixed. This is a straight forward extension
of the proofs of Propositions 1 and 2 in which group by time error term becomes ⌘jt + "jt

rather than just ⌘jt. We replace Assumption 3 with

Assumption A.1 "i is IID and orthogonal to [ Zi Ii ], which is full rank. |M(j, t)| is fixed
with the sample size and for all j1, j2, and t

|M(j1, t)| = |M(j2, t)| .
Note that without loss of generality we can essentially incorporate e"jt into e⌘jt and repeat

what we have done.

Proposition A.1 Under Assumptions 1 and A.1,

b� p! �b� p! �

b↵ p! ↵ + W

as N0 !1 where

W =

PN1

j=1

PT
t=1

�
djt � dj

� �
⌘jt + "jt � ⌘j � "j

�
PN1

j=1

PT
t=1

�
djt � dj

�2 .

Proof.
This is virtually identical to the proof of Proposition 1.
Consistency of b� follows directly from the standard argument for consistency of parame-

ters in fixed e↵ects models.
First a standard application of the partitioned inverse theorem makes it straight forward

to show that

b� = � +

0
@
PN0+N1

j=1

PT
t=1

eXjt
eX 0

jt

N0 + N1
�

hPN0+N1

j=1

PT
t=1
edjt
eXjt

i hPN0+N1

j=1

PT
t=1
edjt
eX 0

jt

i
(N0 + N1)

PN0+N1

j=1

PT
t=1
ed2
jt

1
A
�1

⇥

0
@
PN0+N1

j=1

PT
t=1

eXjt

⇣e⌘jt + e"jt

⌘
N0 + N1

�

hPN0+N1

j=1

PT
t=1
edjt
eXjt

i hPN0+N1

j=1

PT
t=1
edjt

�
⌘jt + "jt

�i
(N0 + N1)

PN0+N1

j=1

PT
t=1
ed2
jt

+

PN0+N1

j=1

PT
t=1

eXjt
eZ 0

jt

⇣b� � �
⌘

N0 + N1
�

hPN0+N1

j=1

PT
t=1
edjt
eXjt

i hPN0+N1

j=1

PT
t=1
edjt
eZjt

⇣b� � �
⌘i

(N0 + N1)
PN0+N1

j=1

PT
t=1
ed2
jt

1
CA .
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We have two new pieces to consider relative to the proof of Proposition 1. First consider

PN0+N1

j=1

PT
t=1

eXjt
eZ 0

jt

⇣b� � �
⌘

N0 + N1
.

Since eZjt is independent across j,
PN0+N1

j=1

PT
t=1

eXjt
eZ0

jt

N0+N1
converges in probability to its mean so

by Slutzky, PN0+N1

j=1

PT
t=1

eXjt
eZ 0

jt

⇣b� � �
⌘

N0 + N1

p�! 0.

Now consider the term"
N0+N1X

j=1

TX
t=1

edjt
eZjt

⇣b� � �
⌘#

=
N1X
j=1

TX
t=1

�
djt � dj

� eZ 0
jt

⇣b� � �
⌘

+
TX

t=1

�
d� dt

� "N1+N0X
j=1

eZ 0
jt

#⇣b� � �
⌘

=
N1X
j=1

TX
t=1

�
djt � dj

� eZ 0
jt

⇣b� � �
⌘

p! 0

since this last expression involves a finite number of terms and
⇣b� � �

⌘
p! 0.

Consistency for b� follows upon plugging the pieces back into the expression for b� above
and applying Slutsky’s theorem.

From the normal equation for b↵ it is straightforward to show that

b↵ = ↵ +

PN0+N1

j=1

PT
t=1
fdjt
eZ 0

jt

⇣b� � �
⌘

PN0+N1

j=1

PT
t=1
fdjt

2

+

PN0+N1

j=1

PT
t=1
fdjt

⇣e⌘jt + e"jt

⌘
PN0+N1

j=1

PT
t=1
fdjt

2 +

2
4
PN0+N1

j=1

PT
t=1
fdjt
eX 0

jtPN0+N1

j=1

PT
t=1
fdjt

2

3
5 (� � b�).

We showed in the proof to Proposition 1 that2
4
PN0+N1

j=1

PT
t=1
fdjt
eX 0

jtPN0+N1

j=1

PT
t=1
fdjt

2

3
5 (� � b�)

p! 0.

and that
N0+N1X

j=1

TX
t=1

edjte⌘jt
p!

N1X
j=1

TX
t=1

�
djt � dj

� �
⌘jt � ⌘j

�
.

By the same logic

N0+N1X
j=1

TX
t=1

edjt

⇣e⌘jt + e"jt

⌘
p!

N1X
j=1

TX
t=1

�
djt � dj

� �
⌘jt + "jt � ⌘j � "j

�
.
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Finally, we showed above that

N0+N1X
j=1

TX
t=1

edjt
eZ 0

jt

⇣b� � �
⌘

p! 0.

Putting the terms together the result stands.

Proposition A.2 Under Assumptions 1, 2, and A.1, b�(a) converges uniformly to �(a).

Proof.
Note that

b� (w) ⌘
✓

1

N0

◆N1 N1+N0X
`1=N1+1

...
N1+N0X

`N1=N1+1

1

0
BB@
PN1

j=1

PT
t=1

�
djt � dj

�✓eb�`jt � eX 0
`jt�̂

◆
PN1

j=1

PT
t=1

�
djt � dj

�2 < w

1
CCA

=

✓
1

N0

◆N1 N1+N0X
`1=N1+1

...
N1+N0X

`N1=N1+1

1

0
BB@
PN1

j=1

PT
t=1

�
djt � dj

�✓e⌘`jt � eZ 0
`jt

⇣
� � b�⌘� eX 0

`jt

⇣
� � �̂

⌘◆
PN1

j=1

PT
t=1

�
djt � dj

�2 < w

1
CCA .

Thus one can see that this result follows directly from the proof of Proposition 2 where

we just reinterpret
h eZ 0

jt
eX 0

jt

i
as “ eX 0

jt” ,
⇥

�0 �0
⇤

as “�0” and
eb�jt as “eYjt” in that proof.

A.2.4 Estimation with Population Weighted Regression

Now we consider estimation of the model directly. That is we imagine that one directly runs
the regression

Yi = ↵djt + Z 0
i� + ✓j + �t + ⌘jt + "i

using state dummies and time dummies. Note that the distinction between Zi and Xjt is no
longer necessary so we have just incorporated X 0

j(i)t(i)� into Z 0
i�.

We first need to formally define what these objects are. For a generic variable Zi define

Zj =

PT
t=1

P
i2M(j,t) ZiPT

t=1 |M(j, t)|
.

Since in general, the number of individuals varies across (j, t) cells, derivation of the
di↵erence in di↵erences operator requires additional notation. We need to formally define
the full set of indicators for groups {g`i}N1+N0

`=1 and time periods, {p⌧ i}T�1
⌧=1 so that

g`i ⌘ 1(` = j(i)) (A-3)

p⌧ i ⌘ 1(⌧ = t(i)). (A-4)
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Further define Gi and Pi as the vectors of these dummy variables,

Gi ⌘
⇥

g1i g2i . . . gNo+N0,i

⇤0
(A-5)

Pi ⌘
⇥

p1i p2i . . . pT�1,i

⇤0
. (A-6)

Then for any individual-specific random variable Zi, let eZi be the residual from a linear
regression of Zi on {g`i}N1+N0

`=1 and {p⌧ i}T�1
⌧=1 . That is

eZi ⌘ Zi �


Gi

Pi

�00@N1+N0X
j=1

TX
t=1

X
h2M(j,t)


Gh

Ph

� 
Gh

Ph

�01A
�10
@N1+N0X

j=1

TX
t=1

X
h2M(j,t)


Gh

Ph

�
Zh

1
A .

We need to strengthen Assumption 1 somewhat. In the two stage approach one does not need
to take a stand on the relationship between Zi and ⌘j(i)t(i) because we can obtain consistent
estimates of � via fixed e↵ects. This is no longer the case if we estimate the model in one
step. We use the assumption

Assumption A.2
��

⌘j1, {Zi : i 2M(j, 1)}
�
, ...,

�
⌘jT , {Zi : i 2M(j, T )}

��
is stationary and

strong mixing across groups;
�
⌘j1, ..., ⌘jT

�
is expectation zero conditional on (dj1, ..., djT ),{Zi :

i 2 [t=1,...,TM(j, t)} and all random variables have finite second moments. Further "i is i.i.d.
in uncorrelated with all other random variables in the model.

We need a regularity condition to guarantee enough degrees of freedom that regressions
upon time and group indicators can be run.

Assumption A.3PN1+N0

j=1

PT
t=1

P
i2M(j,t) PiP 0

iPN1

j=1

PT
t=1 |M(j, t)|

�

PN1+N0

j=1

PT
t=1

P
i2M(j,t) PiG0

i

⇣PN1+N0

j=1

PT
t=1

P
i2M(j,t) GiG0

i

⌘�1PN1+N0

j=1

PT
t=1

P
i2M(j,t) GiP 0

iPN1

j=1

PT
t=1 |M(j, t)|

p! ⌦

where ⌦ is of full rank.

Under this condition, we can rewrite the model as:

eYi = ↵edj(i)t(i) + eZ 0
i� + e⌘j(i)t(i) + e"i. (A-7)

We estimate ↵ and � in equation (A-7) by OLS, letting b↵ and b� denote the corresponding
estimators. This requires the usual OLS rank condition stated as

Assumption A.4 PN0+N1

j=1

PT
t=1

P
i2M(j,t)

eZi
eZ 0

iPN0+N1

j=1

PT
t=1 |M(j, t)|

p! ⌃z

where ⌃z is finite and of full rank.
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Finally since the asymptotic weights for the treatment groups will enter the expression
we put more structure on the way in which groups grow

Assumption A.5 For each j = 1, ..., N0 + N1, |M(j, t)| grows at the same rate as N1. For
all j and t, defining

�jt ⌘ lim
N1!1

|M(j, t)|PN0

j=1

PT
t=1 |M(j, t)|

,

we assume that where �jt > 0 and bounded from above. For all t,defining

�t ⌘ lim
N1!1

1

N0 + N1

N0+N1X
j=1

|M(j, t)|PN0

j=1

PT
t=1 |M(j, t)|

,

we assume that 0 < �t <1.

We will make use of the following Lemma

Lemma A.2 Consider a regression of dj(i)t(i) on group dummies (Gi) and time dummy
variables (Pi) as defined in equations (A-3)-(A-6). Let bat be coe�cient on the time variable
for time period t = 1, .., T � 1 and baT ⌘ 0. Under Assumptions A.2-A.5,

edj(i)t(i) = dj(i)t(i) � dj(i) �
 
bat(i) �

PT�1
⌧=1 |M(j(i), ⌧ |ba⌧PT

⌧=1 |M(j(i), ⌧ |

!

and ba⌧ = Op(
1

N0
), ⌧ = 1, ..., T � 1.

Proof. To streamline the notation, let
P

i denote
PN0+N1

j=1

PT
t=1

P
i2M(j,t) and let

m0 ⌘
N1X
j=1

TX
t=1

|M(j, t)|

m1 ⌘
N0+N1X
j=N1+1

TX
t=1

|M(j, t)|

m ⌘ m0 + m1

Note that m0 is fixed but m1 and m get large as N0 !1. We will use this notation in the
proof of Proposition A.3.

Now consider a regression of dj(i)t(i) on group dummies and time dummies. We will write
this regression equation as

dj(i)t(i) = P 0
iba + G0

i
bb + edj(i)t(i)

where Pi and Gi are as defined equations (A-3)-(A-6).
The first part of our lemma is a standard regression result with dummy variables. Note

that we can rewrite this regression equation as

dj(i)t(i) � bat(i) = G0
i
bb + edj(i)t(i).
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Since edj(i)t(i) is orthogonal to Gi we could construct residuals by regressing dj(i)t(i) � bat(i) on
a full set of group dummies and taking residuals. However, it is well known that this will
lead to taking deviations of the left hand side variable from group means so that

edj(i)t(i) =
�
dj(i)t(i) � bat(i)

�
�
PT

⌧=1

P
`2M(j(i),⌧)

�
dj(`)⌧ � bat(`)

�
PT

⌧=1 |M(j(i), ⌧)|

=
�
dj(i)t(i) � dj(i)

�
�
 
bat(i) �

PT�1
⌧=1 |M(j(i), ⌧)|ba⌧PT

⌧=1 |M(j(i), ⌧)|

!
.

Next consider the derivation of ba. Using the partitioned inverse theorem,

ba =
1

m

0
@ 1

m

X
i

PiP
0
i �

1

m

X
i

PiG
0
i

 X
i

GiG
0
i

!�1X
i

GiP
0
i

1
A
�1

⇥

2
4X

i

Pidj(i)t(i) �
X

i

PiG
0
i

 X
i

GiG
0
i

!�1X
i

Gidj(i)t(i)

3
5 .

Assumption A.3 implies that we can rewrite this as

ba =
1

m
(⌦ + op(1))�1

2
4X

i

Pidj(i)t(i) �
X

i

PiG
0
i

 X
i

GiG
0
i

!�1X
i

Gidj(i)t(i)

3
5 .

Now consider the last term,
P

PiG0
i (
P

GiG0
i)
�1PGidj(i)t(i). It is straightforward to show

that this is a (T � 1)⇥ 1 vector with generic element t

N1+N0X
j=1

|M(j, t)|
PT

⌧=1 |M(j, ⌧)| dj⌧PT
⌧=1 |M(j, ⌧)|

=
N1+N0X

j=1

|M(j, t)| dj.

Thus the (T � 1) ⇥ 1 vector
⇥P

Pidj(i)t(i) �
P

PiG0
i (
P

GiG0
i)
�1PGidj(i)t(i)

⇤
has generic t

element

N1+N0X
j=1

|M(j, t)| djt �
N1+N0X

j=1

|M(j, t)| dj =
N1+N0X

j=1

|M(j, t)|
�
djt � dj

�

=
N1X
j=1

|M(j, t)|
�
djt � dj

�
.

We can write

â =
1

N1 + N0
(⌦ + op(1))�1⇥2

4N1 + N0

m

X
i

Pidj(i)t(i) �
N1 + N0

m

X
i

PiG
0
i

 X
i

GiG
0
i

!�1X
i

Gidj(i)t(i)

3
5 .
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As above the last term in brackets is a (T � 1)⇥ 1 vector with a generic element t that can
be written as

N1 + N0

m

N1X
j=1

|M(j, t)|
�
djt � dj

�
=

PN1

j=1 |M(j, t)|
�
djt � dj

�
1

N1+N0

PN1+N0
j=1

PT
t=1|M(j,t)|

=

PN1

j=1
|M(j,t)|PN1

`=1

PT
⌧=1 |M(`,⌧)|

�
djt � dj

�

1
N1+N0

PN1+N0
j=1

PT
t=1

 
|M(j,t)|PN1

`=1
PT

⌧=1 |M(`,⌧)|

!

p!
PN1

j=1 �jt

�
djt � dj

�
PT

t=1 �t

which is Op(1).

Proposition A.3 Under Assumptions A.2-A.5,

b� p! �

b↵ p! ↵ +

PN1

j=1

PT
t=1 �jt

�
djt � dj

�
(⌘jt � ⌘j)PN1

j=1

PT
t=1 �jt

⇣
djt � d

2
j

⌘

as N0 !1.

Proof:
In this proof we make use of the notation defined in the proof of the Lemma A.2.
First a standard application of the partitioned inverse theorem makes it straightforward

to show that

b� = � +

0
@ 1

m

X
i

eZi
eZ 0

i �
m0

m

h
1

m0

P
i
edj(i)t(i)

eZi

i h
1

m0

P
i
edj(i)t(i)

eZ 0
i

i
1

m0

P
i
ed2
j(i)t(i)

1
A
�1

⇥

0
@ 1

m

X
i

eZi

�e⌘j(i)t(i) + e"i

�
� m0

m

h
1

m0

P
i
edj(i)t(i)
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Now consider each piece in turn.
Assumption A.4 states that

1

m

X
i

eZi
eZ 0

i
p! ⌃z.

Using Assumptions A.2-A.3 and invoking the law of large numbers,

1
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Define bat as in the statement of Lemma A.2 and then define
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!
.
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Lemma A.2 states that edj(i)t(i) = dj(i)t(i)�dj(i)�beaj(i)t(i). Note also that for j > N1, djt�dj = 0.
Thus
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This result follows because
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Next consider the object
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We used the fact that eZi is the residual from a regression on time and state dummies soPN1+N0
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An analogous argument gives
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The last term follows because for any ⌧ = 1, .., T E
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Putting all the objects into the expression for b�, one can see that b� is consistent.
Now consider b↵. It is straight forward to show that
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We have shown that
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Thus we are left with:
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This gives the result.

A.3 Cross Sectional Dependence and Heteroskedasticity

This section provides a specific example model replacing the IID assumption for ⌘ of As-
sumption 2.

Consider a model that builds up ⌘jt from two Gaussian processes µjt and vjt that are
independent of each other with the first capturing dependence and the second heteroskedas-
ticity:

⌘jt = µjt + vjt.

Suppose the µ process is expectation zero and stationary across both space and time, po-
tentially spatially and temporally correlated. The covariance between µit and µks depends
on a time-invariant observed ‘economic’ distance, denoted distik, and the time lag t � s.
Thus a covariance function for µ can be defined as Cov(µit, µks) = f(distik, t � s; ✓µ), for
some finite-dimensional parameter ✓µ. The function f can be chosen to be a valid covariance
function for any ✓µ parameter value. See e.g. Cressie and Huang (1999) or Ma (2003) for
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classes of valid families for f. One simple example parameterization with ✓µ = (✓1, ✓2, ✓3) > 0
is:

Cov(µit, µks) = ✓1 exp{�✓2distik � ✓3|t� s|}.
Further suppose that the second component vjt of this process is independent across groups
and time with a variance that is a function g(popjt; ✓v) of observed group population, popjt,
so that:

vjt ⇠ N [0, g(popjt; ✓v)].

These specifications for the components of ⌘jt imply that the probability limit of residuals
in equation (5), (⌘jt� ⌘̄j), is Gaussian process with a known parametric covariance structure
that depends on the data, {distik}all ik and {popjt}all jt, and the parameters ✓µ and ✓v. It
is straightforward to consistently estimate ✓µ and ✓v by spatial GMM (Conley, 1999) using
covariances and variances of residuals in equation (5) as moment conditions. The ‘plug-in’
estimator of the joint distribution of (⌘jt � ⌘̄j) using GMM estimators of ✓µ and ✓v will be
consistent and can directly be used to estimate the distribution of W .1
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