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Appendix D Identification

In this section we provide the details regarding section 4 in the paper. We begin with Lemma

D.1 in section D.1. The proof of theorem 1 is presented in D.2. Section D.3 gives the proof

for Theorem 2. To give intuition it begins with the proof for a much simplified version of the

model. D.4 gives the proof of Theorem 3. Sections D.5 and D.6 respectively present Theorems

D.1 and D.2 and prove them. These theorems are the analogues of Theorems 1 and 2 but

modify the model and data by allowing heterogeneity in δi but require the econometrician to

have an infinitely long time span to view the data. These proofs are very similar to the proofs

of Theorems 1 and 2. The proof of Theorem 3 goes through exactly with the assumptions of

Theorem D.2 so we do not explicitly show that.

D.1 Lemma D.1

Suppose that the hazard function takes the form

h (τ) =aw (τ) + b [1− w (τ)] ,

where

w (τ) =
1

1 + ce−λτ
,

and λ 6= 0 and c > 0 then a, b, c, and λ are all identified from the hazard function.

Proof of Lemma D.1

First, note that

1− w (τ)

w (τ)
=ce−λτ.

We first show that this relationship and the hazard function equation identifies a and b.

Suppose not, suppose there exists another a∗ 6= a and/or b∗ 6= b that has this same property.

In that case there is a function w(τ; a∗, b∗) for which

h(τ) =a∗w(τ; a∗, b∗)) + b∗ (1− w(τ; a∗, b∗)) ,

and

1− w(τ; a∗, b∗)
w(τ; a∗, b∗)

=c∗e−λ∗τ,

for some λ∗and c∗.
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Since

w(τ; a∗, b∗) =
h(τ)− b∗

a∗ − b∗
,

then

1− w(τ; a∗, b∗)
w(τ; a∗, b∗)

=
1− h(τ)−b∗

a∗−b∗
h(τ)−b∗

a∗−b∗

=
a∗ − h (τ)
h (τ)− b∗

=
a∗ − a 1

1+ce−λτ − b ce−λτ

1+ce−λτ

a 1
1+ce−λτ + b ce−λτ

1+ce−λτ − b∗

=
a∗
(
1 + ce−λτ

)
− a− bce−λτ

a + bce−λτ − b∗ (1 + ce−λτ)

=
(a∗ − a) + (a∗ − b) ce−λτ

(a− b∗) + (b− b∗) ce−λτ
,

does not take the functional form above unless b = b∗ and a = a∗.1 To derive this expression

we first plug in the derivation of w(τ; a∗, b∗), then simplify, then plug in the true value of h (τ),

then multiply top and bottom by
(
1 + ce−λτ

)
, and then simplify.

Thus a and b are identified.

Since

ce−λτ =
h(τ)− b

a− b
,

c and λ are clearly identified once a and b have been identified.

D.2 Proof of Theorem 1

We show this in three pieces. We first show identification of λn
A and λn

B, then P∗, δ, λe
B, λe

A, and

P(BA)/P (AB), and finally P (AB) , P (BA) , P(0), P(A0), and P(B0).

Identification of λn
A and λn

B

Condition on workers with the following job history: they are initially non-employed, start

at either type firm, become non-employed, start at a B type firm, become non-employed, and

then start at an A type firm. We know these are either AB types or BA types. The probability

that the first firm is a B type firm is

PB ≡
λn

B
λn

A + λn
B

,

1To see this note that the derivative of the log will depend on τ otherwise while at (a∗, b∗) = (a, b) it would be
constant.

D -2



and this can be directly identified from the data.

We define PA in an analogous manner. Let T1 be the duration of the first non-employment

spell, T2 be the duration of the first employment spell, T3 the duration of the second non-

employment spell, T4 the duration of the second employment spell, and T5 the duration of the

third non-employment spell. For any values
(
ta
1, tb

1, t2, t3, t4, t5
)

we can identify

Pr (T1 > ta
1, T2 ≤ t2,T3 ≤ t3, T4 ≤ t4, T5 ≤ t5)

Pr
(
T1 > tb

1, T2 ≤ t2,T3 ≤ t3, T4 ≤ t4, T5 ≤ t5
) =

e−(λn
A+λn

B)ta
1

e−(λn
A+λn

B)tb
1

.

Clearly, λn
A + λn

B is identified as long as we pick values such that ta
1 6= tb

1. From this sum and the

definition of PB we can identify λn
A and λn

B. Note, that we need to worry about t2, ..., t5 because

we condition on people who experience both A and B type firms before the period ends.

Identification of P∗, δ, λe
B, λe

A, and P(BA)/P (AB)

First, we establish identification of P∗. This is simplified by continuing to condition on people

for whom we know either Ci = AB or Ci = BA. We do this by conditioning on individuals

who start at a type B job, leave to non-employment and then start a type A job at t1. We derive

the hazards of those moving from A to B and from A to non-employment at time t1 + τ. Since

they have accepted offers from both jobs we know that Ci ∈ {AB, BA}. The events that put

one into this conditioning set are independent of type, so the relative proportion of Ci = AB

versus to Ci = BA will be the same as it is in the population.

The hazard rate out of job A and into job B is

δP∗PB.

for the AB types and

δP∗PB + λe
B.

for the BA types. We can write the unconditional hazard rate out of job A and into job B as a

weighted average of the two where the weights are the survivor functions in job A

P (AB) e−δ[1−P∗PA]τδP∗PB + P (BA) e−λe
Bτe−δ[1−P∗PA]τ [δP∗PB + λe

B]

P (AB) e−δ[1−P∗PA]τ + P (BA) e−λBτe−δ[1−P∗PA]τ
.

Note first, that if P (AB) = 0 or P (BA) = 0 the hazard will be constant, otherwise it will not

be (since λe
B > 0). Thus if the hazard is not constant we know ˙P(AB) > 0 and P(BA) > 0. If it

is constant we know either P (AB) = 0 or P (BA) = 0, but not distinguish between these two

cases from the hazard rate above.
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In the case in which both P(AB) and P(BA) are greater than zero, this is a special case of

the hazard in Lemma D.1 above with

a =δP∗PB

b =δP∗PB + λe
B

c =
P (BA)

P (AB)
λ =λe

B.

This allows us to identify λe
B, P (BA) /P (AB), and δP∗ (since PB is identified)

We can also identify the conditional hazard of movements to non-employment at time t1 +

τ. This is

P (AB) e−δ[1−P∗PA]τδ [1− P∗] + P (BA) e−λe
Bτe−δ[1−P∗PA]τδ [1− P∗]

P (AB)
´

e−δ[1−P∗PA]τ + P (BA) e−λe
Bτe−δ[1−P∗PA]τ

=δ [1− P∗] .

Thus, δ = δ [1− P∗] + δP∗ is identified as is P∗.

Since the model is symmetric we can use the analogous argument to identify λe
A.

Next, consider the case in which either P (AB) = 0 or P (AB) = 0. If P (AB) = 0 the

hazard rate from A to B will be δP∗PB and the hazard rate from B to A will be δP∗PA + λe
B. If

P(BA) = 0 the hazard rate from A to B will be δP∗PB + λe
A and the rate from B to A will be

δP∗PA. Note that the ratio of the second to the first will be

δP∗PA + λe
B

δP∗PB
>

PA

PB
,

in the first case and

δP∗PA

δP∗PB + λe
A
<

PA

PB
,

in the second case, so these are separately identified. In the first case we can identify P∗ and

λe
B, while in the second we can identify P∗ and λe

A.

Identification of P (AB) , P (BA) , P(0), P(A0), and P(B0)

First, consider the hazard rate into non-employment for people who start at an A job in their

first job. This is similar to the case above except we no longer condition on having held a B job.

This now includes three groups BA, AB, and A0.

To identify the P (A0) group we use the same argument we used for identification of P∗

except that we no longer condition on having a B spell prior to the A spell. We condition on

all individuals who’s first spell is a type A spell which starts at t1 and condition on how it

D -4



ends. Now three preference groups can experience the A spell: AB,BA, and A0. The hazard of

moving from job A to job B at time τ is

P (AB) e−δ[1−P∗PA]τδP∗PB + P (BA) e−λe
Bτe−δ[1−P∗PA]τ [δP∗PB + λe

B]

P (AB) e−δ[1−P∗PA]τ + P (BA) e−λBτe−δ[1−P∗PA]τ + P (A0) e−δ[1−P∗PA]τ

=
e−δ[1−P∗PA]τδP∗PB + P(BA)

P(AB) e−λe
Bτe−δ[1−P∗PA]τ [δP∗PB + λe

B]

e−δ[1−P∗PA]τ + P(BA)
P(AB) e−λBτe−δ[1−P∗PA]τ + P(A0)

P(AB) e−δ[1−P∗PA]τ
.

We have identified everything in this expression other than P(A0)
P(AB) , so it must be identified.

An analogous argument will identify P(B0)
P(AB) . To simplify the expression define

ρBA =
P (BA)

P (AB)

ρA0 =
P (A0)
P (AB)

ρB0 =
P (B0)
P (AB)

,

where the values of ρ are all identified. Then we know that

1 =P (0) + [1 + ρBA + ρA0 + ρB0] P (AB) ,

and we can also identify the probability that someone has not found a job yet at time τ which

is

P (0) +
[
ρA0e−λn

Aτ + ρB0e−λn
Bτ + (ρBA + 1) e−[λ

n
A+λn

B]τ
]

P (AB) ,

from which we can easily solve for P (AB) and then the rest of the probability

D.3 Theorem 2

The proof of theorem 2 is very tedious because there are many pieces. To get an intuition for

how this proof will work we first consider an even simpler version of our model. We then

present the proof.

Intuition using Simplified Model

We simplify to one job, no human capital, no measurement error, and that all workers take

the job when it is offered (which means selection is not a problem). There are only two rele-

vant wages, the one received right after non-employment, Ri0, and the one received when the

worker gets a competitive outside offer. This will be πi since both firms are willing to pay this
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wage. Our goal is to estimate the joint distribution of (Ri0, πi), which we do by identifying the

joint characteristic functions

E [exp (i (s1Ri0 + s2πi))] ,

for any s1 and s2. To do this we need two periods of wages measured at time 1 and time 2. The

complication is that during each of the two periods we do not know whether the worker has

received an outside offer or not (i.e. the second period wage could be Ri0 or it could be πi). To

solve this problem we condition on people who are working continuously at the same firm in

both time periods and we vary the start time of that spell. Specifically, let 1− d be the time at

which the job spell starts. There are three possibilities

• The worker receives an outside offer before time 1. This happens with probability
(
1− e−λd)

• The worker receives an outside offer between time 1 and 2. This happens with probability

e−λd − e−λ(d+1)

• The worker does not receive an outside offer before time 2. This happens with probability

e−λ(d+1) .

Then we can write the overall characteristic function as

E [exp (i (s1Wi1 + s2Wi1)) | d]

=
(

1− e−λd
)

E [exp (i (s1πi + s2πi))] +
(

e−λd − e−λ(d+1)
)

E [exp (i (s1Ri0 + s2πi))]

+ e−λ(d+1)E [exp (i (s1Ri0 + s2Ri0))] .

For any s1 and s2, we can move d continuously, so we are generally overidentified as we

have many equations and only 3 unknowns: E [exp (i (s1πi + s2πi))], E [exp (i (s1Ri0 + s2πi))],

and E [exp (i (s1Ri0 + s2Ri0))]. Thus, intuitively this is identified-and it is pretty clear in this

case that since
(
1− e−λd) is nonlinear, we should be able to find values of d to identify it as the

model seems clearly over-identified.

To show identification formally, we consider some special cases of d. First, consider the

first time period only ˙(s2 = 0). Note that

limd↓0E [exp (i (s1Wi1)) | d] =limd↓0
[(

1− e−λd
)

E [exp (i (s1πi))] + e−λdE [exp (i (s1Ri0))]
]

=E [exp (i (s1Ri0))]

which is the characteristic function of Ri0 and it is identified for any value of s1.
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Use this same equation but take any other value of d then

E [exp (i (s1πi))] =
E [exp (i (s1Wi1))]− e−λdψR (s1)

(1− e−λd)
,

is also identified for any value of s1.

Finally, note that

E [exp (i (s1Ri0 + s2πi))]

=
E [exp (i (s1Wi1 + s2Wi1))]−

(
1− e−λd) E [exp (i (s1πi + s2πi))]− e−λ(d+1)E [exp (i (s1Ri0 + s2Ri0))](

e−λd − e−λ(d+1)
)

=
E [exp (i (s1Wi1 + s2Wi1))]−

(
1− e−λd) E [exp (i (s12πi))]− e−λ(d+1)E [exp (i (s12Ri0))](

e−λd − e−λ(d+1)
)

where s12 ≡ s1 + s2. Since everything on the right hand side is identified, the left is as well.

Proof of Theorem 2

To shorten some of the expressions we will use shorthand notation vij`h0h which we define as

vij`h0h ≡ log
(

Rij`h0 ψh
)

.

Identification of Distribution of Measurement Error (ξit)

First, we identify the distribution of measurement error and then the arrival rate of human

capital, λh. We condition on a group who

• Are non-employed until time 1− d1

• Start working in job A at time 1− d1 and leave to non-employment at 1 + d2

• Are non-employed until time 2− d3 when they start again at a type A firm and they stay

through period 2

We assume that the dj’s are sufficiently small, so spells do not overlap.

We can identify the joint distribution of (wi1, wi2) conditional on the events above for alter-

native values of d1, d2, and d3.

Taking limits of the above object as d1 ↓ 0, d2 ↓ 0, and d3 ↓ 0, we can identify the conditional

distribution of

(viA000 + ξi1, viA000 + ξi2) ,

for our conditioning group. The first component of these wages will correspond to riA00, be-

cause the workers have not had enough time to accumulate human capital or get an outside
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offer. Notice, that since ψ0 = 1 then RiA00 = WiA00, i.e. the rental rate is equal to the wage

paid. Using Kotlarski’s lemma (Kotlarski 1967) we can identify the the marginal distributions

of both the measurement error and viA000.

Identification of λh

Next, we show identification of λh. To economize on notation we will use E (· | d) to denote

the expectation conditional on the events described above at values of d = (d1, d2, d3). We use

the same conditioning group as in the Measurement Error section and continue to send d1 ↓ 0

and d3 ↓ 0, but allow d2 to vary. We can identify the conditional characteristic function

lim
d1,d3↓0

E (eıswi2 | d)
φξ(s)

= lim
d1,d3↓0

[
e−λhd2 E (eısviA000 | d) +

(
1− e−λhd2

)
E (eısviA011 | d)

]
.

By varying d2 we can identify λh.2 Intuitively, varying d2 varies the time that the worker has

to receive a human capital shock.

Identification of ψ1, δ, and the Distribution of Wages for the AB types

We now consider identification of ψ1 and demonstrate identification of the full wage distribu-

tion for the AB type. Identification of the latter is complicated, so we will do this in steps by

showing identification of expanding subsets of the full distribution.

For the AB types there are the seventeen different labor market statuses possible

2To see how, take the ratio of the derivatives of this function in terms of d2 at two different values of d2 and it
will be a known function of λh. First note that the derivative with respect to d2 is

lim
d1,d3↓0

[
−λhe−λhd2 E (eısriA00 | d) + λhe−λhd2 E (eısriA01 | d)

]
=λhe−λhd2 [E (eısriA00 | A)− E (eısriA01 | A)]

where the notation E(· | A) means the expected value conditional on taking an A job first. Now take the ratio of
this at two different values of d2 say da

2 and db
2 then

∆(da
2, db

2) ≡
λhe−λhda

2 [E (eısriA00 | A)− E (eısriA01 | A)]

λhe−λhdb
2 [E (eısriA00 | A)− E (eısriA01 | A)]

=eλh(db
2−da

2).

∆(da
2, db

2) is directly identified from the data and

λh =
log
(

∆(da
2, db

2)
)

db
2 − da

2
.
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Table D1
Labor Market Statuses for AB workers

j(i, t) h(i, t) `(i, t) h0(i, t) Wage Log(Wage)
A 0 0 0 RiA00 viA000
A 0 B 0 RiAB0 viAB00
A 0 A 0 πiA viAA00
A 1 0 0 RiA00ψ1 viA001
A 1 B 0 RiAB0ψ1 viAB01
A 1 A 0 πiAψ1 viAA01
A 1 0 1 RiA01ψ1 viA011
A 1 B 1 RiAB1ψ1 viAB11
A 1 A 1 πiAψ1 viAA11
B 0 0 0 RiB00 viB000
B 0 B 0 πiB viBB00
B 1 0 0 RiB00ψ1 viB001
B 1 B 0 πiBψ1 viBB01
B 1 0 1 RiB01ψ1 viB011
B 1 B 1 πiBψ1 viBB11
0 0 NA NA NA NA
0 1 NA NA NA NA

where as a reminder j(i, t) is the current job, h(i, t) is the current level of human capital, and

`(i, t) and h0(i, t) are respectively the outside option and level of human capital when the

current hmuna capital rental rate was negotiated.

From Table D1 one can see that for an AB worker’s wages depend on the joint distribution

of eight objects (in addition to ψ1)

(RiA00, RiAB0, πiA, RiB00, πiB, RiA01, RiAB1, RiB01)

The model is overidentified so there are multiple ways to show identification. We focus on a

particular set of transitions and show identification by taking limits. We emphasize that this is

sufficient to show identification, we do not think it is necessary. We assume that workers start

their labor market career in non-employed and receive their first job at 1− d1. The following

table shows the transition path.
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Transition Time
Start at A 1− d1
Move to non-employment 1 + d2
Start at B 2− d3
Move to non-employment 2 + d4
Start at B 3− d5 − d6
Move to A 3− d6
Move to non-employment 3 + d7
Start at A 4− d8
Move to non-employment 4 + d9
Start at B 6− d10
Move to non-employment 6 + d11
Start at B 8− d12 − d13
Move to A 8− d13
Move to B 8 + d14

with dj ≥ 0 for j = 1, ..., 14. We assume that the dj’s are sufficiently small such that the above

spells do not overlap. The goal here will be to look at the joint distribution of wages

conditional on the dj’s. Analogous to above, we use the notation E [· | d] to mean the

conditional expectation conditioning on events occurring at times denoted by d1 − d14.

Identification of Distribution of (wi1, ..., wi8) conditional on (d, Ci = AB).

In going forward we condition on functions of wages from the first eight periods f (wi1, ..., wi8).

Since we observe these workers at both firm types, we know they are either AB types or BA

types. For any function f (wi1, ..., wi8) notice that

E ( f (wi1, ..., wi8) | d) =P [AB | d] E [ f (wi1, ..., wi8) | d, AB]

+ P [BA | d] E [ f (wi1, ..., wi8) | d, BA] .

The last value d14 will play a crucial roll in distinguishing between these expressions. As it is

not realized until after period 8 it does not affect either E [ f (wi1, ..., wi8) | d, AB] or E [ f (wi1, ..., wi8) | d, BA].

However, it does influence P [AB | d], because a BA type can move from A to B directly ei-

ther because they got an outside offer from a B firm or because the they were laid off and

got an immediate offer. For an AB type it can only be due to the latter event. It is straight

forward to show that given the result of Theorem 1, P [AB | d] is a known function of d.
3

3It is

P [AB | d] =
a

a + b
,

where

a = P (AB) E
(

e−(λ
e
A+δi)(d5+d12)−δi(d13+d14) [δiP∗PA + λe

A]
2 δiP∗PB

)
b = P(BA)E

(
e−δi(d5+d12)−(λe

B+δi)(d13+d14) [δiP∗PA]
2 [δiP∗PB + λe

B]
)

.
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Notice then for any distribution of wages, f (·), and any values of d1, ..., d13, by moving d14

we can separately identify E [ f (wi1, ..., wi8) | d, AB] from E [ f (wi1, ..., wi8) | d, BA]. We refrain

from making this argument repeatedly but just condition on types implicitly assuming that

E [ f (wi1, ..., wi8) | d, AB] is identified.

While in principle we could show full identification of the eight dimensional distribution

all at once, it is very complicated so instead we show it in pieces. We start with 3 parts.

Identification of joint distribution of (RiA00, RiB00, RiAB0) for the AB types

We start by sending d1...d6 ↓ 0 and look at the joint distribution of (wi1, wi2, wi3) . A com-

plication is that at time 3− d6 individuals who moved directly from B to A could have either

gotten an outside offer from an A firm or been laid off and found a new job immediately. De-

fine ρ3(d) to be the probability that it is a voluntary transition. This a complicated but known

expression since it involves only transition parameters which we showed are identified in The-

orem 1.

Then for any values of s1 − s3 we can identify

lim
d1...,d6↓0

E [exp (i (s1wi1 + s2wi2 + s3wi3)) | d, AB]
φξ (s1) φξ (s2) φξ (s3)

=

[
lim

d1...,d6↓0
ρ3 (d)

]
E [exp (i (s1viA000 + s2viB000 + s3viAB00)) | AB]

+

[
lim

d1...,d6↓0
(1− ρ3 (d))

]
E [exp (i ((s1 + s3)viA000 + s2viB000)) | AB] . (E.2.1)

We will use the same basic argument for identification of the model throughout this section.

We will be explicit about it here, but not as explicit in what follows (which will involve many

more terms).

1. limd1...,d6↓0 ρ3 (d) is identified as it is a known function of parameters that we have shown

are identified.

2. By setting s3 = 0 we can identify E [exp (i (s1viA000 + s2viB000)) | AB] from the expres-

sion above.

3. Once this is identified, E [exp (i ((s1 + s3)viA000 + s2viB000)) | AB] is identified as we

vary s3.

4. Everything in the expression (E.2.1) above is identified except

E [exp (i (s1viA000 + s2viB000 + s3viAB000)) | AB] so we can solve for this expression as

well.
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5. E [exp (i (s1viA000 + s2viB000 + s3viAB00)) | AB] is the characteristic function of

(viA000, viB000, viAB00), so since this is identified, the joint distribution of (RiA00, RiB00, RiAB0)

conditional on Ci = AB is identified.

Identification of (RiA00, RiB00, RiAB0, RA01, RiB01, RiAB1) for the AB types

Now we extend the argument to include the joint distribution of

(RiA00, RiB00, RiAB0, RA01, RiB01, RiAB1) ,

for the AB types by adding wages for periods 4, 6, and 8. We will now vary d7 which will

allow for the possibility that human capital evolves between time 3 and 3 + d7 but send other

values of d towards 0. There are 8 possible indistinguishable events that can occur in the data;

(the job-to-job transition to job A at time 3− d6 is voluntary/involuntary) ×(human capital

evolves or does not evolve between period 3 and 3 + d7)× (the job-to-job transition to job A at

time 8− d13 is voluntary/involuntary). Let ρ3 and ρ8 be the limit as d1..., d6, d8, ..., d13 ↓ 0 of the

conditional probability that the job-to-job transitions are voluntary at time 3− d6 and 8− d13,

respectively. These are identified as they depend on transition parameters that we have shown

are identified.
For any value of s1 − s6 we can identify

lim
d1...,d6,d8,...,d13↓0

E [exp (i (s1wi1 + s2wi2 + s3wi3 + s4wi4 + s5wi6 + s6wi8)) | d, AB]
φξ (s1) φξ (s2) φξ (s3) φξ (s4) φξ (s5) φξ (s6)

=e−λhd7 [ρ3ρ8] E [exp (i ((s1 + s4)viA000 + (s2 + s5)viB000 + (s3 + s6)viAB00)) | AB]

+ e−λhd7 [ρ3 (1− ρ8)] E [exp (i ((s1 + s4 + s6)viA000 + (s2 + s5)viB000 + s3viAB00)) | AB]

+ e−λhd7 [(1− ρ3) ρ8] E [exp (i ((s1 + s3 + s4)viA000 + (s2 + s5)viB000 + s6viAB00)) | AB]

+ e−λhd7 [(1− ρ3) (1− ρ8)] E [exp (i ((s1 + s3 + s4 + s6)viA000 + (s2 + s5)viB000)) | AB]

+
(

1− e−λhd7
)
[ρ3ρ8] E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viB011 + s6viAB11)) | AB]

+
(

1− e−λhd7
)
[ρ3 (1− ρ8)] E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s6)viA011 + s5viB011)) | AB]

+
(

1− e−λhd7
)
[(1− ρ3) ρ8] E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viB011 + s6viAB11)) | AB]

+
(

1− e−λhd7
)
[(1− ρ3) (1− ρ8)] E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s6)viA011 + s5viB011)) | AB] .

We showed above that the first four expressions are identified. Thus, we have four new ex-

pressions to identify:
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(a)E exp [i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viB011 + s6viAB11) | AB]

(b)E exp [i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s6)viA011 + s5viB011) | AB]

(c)E exp [i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viB011 + s6viAB11) | AB]

(d)E exp [i ((s1 + s3)viA000 + s2viB000 + (s4 + s6)viA011 + s5viB011) | AB]

We use the same approach as above. If we evaluate at s3 = s6 = 0 these expressions are the

same and thus E [i (s1viA000 + s2viB000 + s4viA011 + s5viB011 | AB)] is identified. This identifies

(d) for any values of s1 − s6.

Again, using the same type of argument, given (d), keeping s3 = 0 but varying the other

values of sj identifies (c), and setting s6 = 0 but varying the others gives (b). Then everything

in the large equation above is identified other than (a), so it is identified by varying all values

of sj.

Identification of ψ1

Next, we consider identification of ψ1 which we can do from E [log (Wi7) | d, AB] alone. In
order to do this we condition on 1 < d11 < 2, so that we observe wi7 and we will vary d2 but
send the rest of the dj ↓ 0 (except d14 as usual). For this case there are three possibilities: human
capital has not evolved before period 7, human capital evolves between time 1 and time 1+ d2,
and human capital evolves between periods 6 and 7.

lim
d1,d3,...,d13↓0

E [log (wi7) | d, AB] =

e−λh [1+d2]
(

e−λe
B E [viB000 | AB] +

(
1− e−λe

B

)
E [viBB00 | AB]

)
+
(

1− e−λhd2
) (

e−λe
B E [viB011 | AB] +

(
1− e−λe

B

)
(E [viBB11 | AB])

)
+
(

e−λhd2 − e−λh [1+d2]
) (

e−λe
B E [viB001 | AB] +

(
1− e−λe

B

)
E [viBB11 | AB]

)
+ E (ξi7)

=e−λh [1+d2]
(

e−λe
B E [viB000 | AB] +

(
1− e−λe

B

)
E [log (πiB) | AB]

)
+
(

1− e−λhd2
) (

e−λe
B E [viB011 | AB] +

(
1− e−λe

B

)
(E [log (πiB) + log (ψ1) | AB])

)
+
(

e−λhd2 − e−λh [1+d2]
) (

e−λe
B E [viB000 + log (ψ1) | AB] +

(
1− e−λe

B

)
E [log (πiB) + log (ψ1) | AB]

)
+ E (ξi7)

=e−λhd2 e−λe
B E [viB000 | AB] +

(
1− e−λhd2

)
e−λe

B E [viB011 | AB] + E (ξi7)

+
(

1− e−λA
)

E [log (πiB) | AB] +
[(

1− e−λA
)
+
(

e−λhd2 − e−λh [1+d2]
)]

log (ψ1) .

Everything is identified in this expression except E [log (πiB) | AB] and log (ψ1) , so by varying

d2 they can be separately identified.

Identification of (RiA00, RiAB0, RiB00, RiA01, RiAB1, RiB01, πiA, πiB) conditional on AB

Now we assume that 1 < d11 < 2 and 1 < d9 < 2, so that we observe wages at all times

1,...,8. Using an analogous argument to the discussion of identification conditional on AB
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above, by varying d7, we can identify the expected value of f (wi1, ..., wi8) conditional on d and

human capital arriving between time 3 and 3 + d7 (write this conditioning as Hi4 = 1). To

simplify the notation we define

viA ≡ log(πiA)

viB ≡ log(πiB).

We will send the rest of the dj’s to zero (other than d7, d9, d11, and d14). Since we condition

on human capital arriving between period 3 and 3 + d7, we know that the wage in the first

period will be approximately RiA00, the second period RiB00, the fourth RiA01, and the sixth

RiB01. As before for the third and the eighth period the wage can take two values depending

on whether the job-to-job transition was voluntary or not (RiA00 or RiAB0 in 3 and RiA01or RiAB1

in 8). For period 5 the wage can take 3 values depending on outside offers: either RiA01 if no

outside offers, RiAB1 if an offer from a B type only, or πiA if an offer from an A type. Similarly in

period 7 the wage can take 2 values depending on whether there was no outside offer (RiB01)

or an outside offer from a B firm (πiB).4 This gives a total of 2 × 2 × 3 × 2 = 24 different

possibilities.

Analogous to above, we define ρ3 and ρ8 be the limit as d1, ..., d6, d8, d10, d12, d13 ↓ 0 of the

conditional probability that the job-to-job transitions are voluntary at time 3−d6 and 8− d13,

respectively.

Putting this together can identify the complicated expression with the relevant 24 terms.

4Since we are considering AB types they could not have gotten an offer from an A firm or they would have left.
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We now have sixteen new terms that have not been previously identified.
(a)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s5)viA011 + s6viB011 + s7viBB11 + s8viAB11)) | AB]
(b)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viAA11 + (s6 + s7)viB011 + s8viAB11)) | AB]
(c)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viAA11 + s6viB011 + s7viBB11 + s8viAB11)) | AB]
(d)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + (s6 + s7)viB011 + (s5 + s8)viAB11)) | AB]
(e)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s5 + s8)viA011 + (s6 + s7)viB011)) | AB]
( f )E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s8)viA011 + s5viAA11 + (s6 + s7)viB011)) | AB]
(g)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s8)viA011 + s5viAA11 + s6viB011 + s7viBB11)) | AB]
(h)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s8)viA011 + s5viAB11 + s6viB011 + s7viBB11viB)) | AB]
(i)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s5)viA011 + s6viB011 + s7viBB11 + s8viAB11)) | AB]
(j)E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viAA11 + (s6 + s7)viB011 + s8viAB11)) | AB]
(k)E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viAA11 + s6viB011 + s7viBB11 + s8viAB11)) | AB]
(l)E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + (s5 + s8)viAB11 + s6viB011 + s7viBB11)) | AB]
(m)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s5 + s8)viA011 + s6viB011 + s7viBB11)) | AB]
(n)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s8)viA011 + s5viAA11 + (s6 + s7)viB011)) | AB]
(o)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s8)viA011 + s5viAA11 + s6viB011 + s7viBB11viB)) | AB]
(p)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s8)viA011 + s5viAB11 + s6viB011 + s7viBB11)) | AB]

We use the same basic approach as above: We set various values of sj to zero we can identify

the components. To see how to identify all of these terms, setting s3 = s8 = s5 = 0 all of the

terms simplify to either

E exp [i (s1viA000 + s2viB000 + s4viA011 + s6viB011 + s7viBB11) | AB]

or

E exp [i (s1viA000 + s2viB000 + s4viA011 + (s6 + s7)viB011) | AB] .

However, we have already shown identification of latter of these terms, which means the for-

mer is identified. Identification of this gives identification of term (m). Using a similar argu-

ment, setting s3 = s8 = s7 = 0 we can identify term (n). Given these setting s3 = s5 = 0 we

can show that (p),(i) and (l) are identified. Setting s3 = s8 = 0 we can identify (o), s3 = s7 = 0

gives (j), s5 = s8 = 0 gives (e), and s7 = s8 = 0 gives ( f ). Now with these setting s3 = 0 gives

(k), s8 = 0 gives (g), s5 = 0 gives (a), (d), and (h), and s7 = 0 gives (b). This leaves only term

(c) which is identified by varying all 8 terms given knowledge of all the other terms. This is the

characteristic function for the joint distribution. Thus, we have shown that the joint distribu-

tion of wages for type AB workers can be non-parametrically identified since the characteristic

function uniquely determines the distribution.

Identification of the Distribution of Wages for the Other Types

Using a symmetric argument reversing A and B we can show that the distribution of

(RiA00, πiA, RiBA0, RiB00, πiB, RiA01, RiBA1, RiB01)
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for the BA types is also identified.

Next consider the A0 types. We will use an argument similar to above, though it will be

much simpler as there are fewer labor market statuses to worry about.

Table D2
Labor Market Statuses for A0 workers

j(i, t) h(i, t) `(i, t) h0(i, t) Wage log(Wage)
A 0 0 0 RiA00 viA000
A 0 A 0 πiA viAA00
A 1 0 0 RiA00ψ1 viA000
A 1 A 0 πiAψ1 viAA01
A 1 0 1 RiA01ψ1 viA011
A 1 A 1 πiAψ1 viAA11

From Table D2 one can see that for an A0 worker wages depend on the joint distribution of

just three objects (in addition to ψ1)

(RiA00, πiA, RiA01).

Since there are three objects to identify, we only need to use the first three periods. We

consider the following the transition path. Individuals begin non-employed at time zero and

we will take d4 > 1

Transition Time
Start at A 1− d1
Move to non-employment 1 + d2
Start at A 2− d3
Move to non-employment 2 + d4

We can identify

E exp [i (s1wi1 + s2wi2 + s3wi3) | d] =P(AB | d)E exp [i (s1wi1 + s2wi2 + s3wi3) | AB, d]

+ P(BA | d)E exp [i (s1wi1 + s2wi2 + s3wi3) | BA, d]

+ P(A0 | d)E exp [i (s1wi1 + s2wi2 + s3wi3) | A0, d] .

Since everything else in this expression is identified, we can identify

E exp [i (s1wi1 + s2wi2 + s3wi3) | A0, d] .

Furthermore, analogous to the argument above using d7, we now vary d2 to identify the

expected value of f (wi1, ..., wi3) conditional on d and human capital arriving between time 1

and 1 + d2 (write this conditioning as Hi2 = 1). Then we can identify

E exp [i (s1wi1 + s2wi2 + s3wi3) | A0, d, Hi2 = 1] .
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In this case there is only one thing to worry about-whether the worker received and offer

from another A firm between periods 2 and 3. Thus, taking d1 ↓ 0 and d3 ↓ 0 we can identify

lim
d1,d3↓0

E exp [i (s1wi1 + s2wi2 + s3wi3) | A0, d, δ, Hi2 = 1]
φξ (s1) φξ (s2) φξ (s3)

=e−λA E exp [i (s1viA000 + [s2 + s3]viA011) | A0]

+
(

1− e−λA
)

E exp [i (s1viA000 + s2viA011 + s3viAA11) | A0] .

Set s3 = 0 and we can identify E exp [i (s1viA000 + s2viA011) | A0, δ] . Knowledge of this gives

knowledge of E exp [i (s1viA000 + [s2 + s3]viA011) | A0, δ] and then allowing s3 to vary means

we can identify E exp [i (viA000 + s2viA011 + s3viAA11) | A0, δ] and thus the joint distribution of

(RiA00, πiA, RiA01) conditional on δ for Ci = A0.

An analogous argument gives identification of the joint distribution of (RiB00, πiB, RiB01)

conditional on δ for Ci = B0.

Thus, we have shown that wages, turnover parameters, and type proportions are identi-

fied.

D.4 Proof of Theorem 3

The proof here is general enough to cover both the homogeneous δ/finite time case and the

heterogeneous δi/infinite time case.

In Assumption 4, we have assumed that Pr(Ci = AB) + Pr(Ci = BA) > 0, so there are

at least one of these two groups. The AB and BA types are symmetric with each other as are

the A0 and B0 types-so we only show the results for the A0 and AB types with the B0 and

BA being analogous. This proof is done in four steps. The first two steps focus on the first

part of Theorem 3, where we consider the case in which wages are not bargained (or where

workers are indifferent, so bargaining does not matter). First, we do this for Ci = A0 and then

for Ci = AB. The final two steps show that β is not identified. Likewise, we first show this for

Ci = A0 and then for Ci = AB.

We will continue to use the notation from Theorem 2 that

vij`h0h ≡ log
(

Rij`h0 ψh
)

First part of proof for Ci = A0

For this group there are four potential wages (RiA00, RiAA0, RiA01, RiAA1) . However, RiAA0 and

RiAA1 are trivially equal to πiA, so only the two relevant endogenous wages are RiA00 and
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RiA01. They are determined by the following conditions

(ρ + δi + λe
A + λh) [βViA0(πiA) + (1− β)Vi00] (E.3.1)

=uiA (RiA00) + λe
AViA0(πiA)

+ δV∗i00 + λhViA1 (RiA00)

(ρ + δi + λe
A)ViA1 (RiA00) (E.3.2)

=uiA (RiA00ψ1) + λe
AViA1(πiAψ1) + δV∗i01

(ρ + δ + λe
A) [βViA1(πiA) + (1− β)Vi01] (E.3.3)

=uiA (RiA01ψ1) + λe
AViA1(πiA) + δV∗i01,

and we also know that ViA0(πiA) and ViA1(πiA) are determined by

(ρ + δi + λh)ViA0(πiA) =uiA (πiA) + δiV∗i00 + λhViA1(πiA) (E.3.4)

(ρ + δ)ViA1(πiA) =uiA (πiAψ1) + δiV∗i01. (E.3.5)

Using equations (E.3.1), (E.3.2), (E.3.4), and (E.3.5) through algebra one can show

(ρ + δi + λe
A + λh) (1− β) [ViA0(πiA)−Vi00] = [uiA (πiA)− uiA (RiA00)] (E.3.6)

+ [uiA (πiAψ1)− uiA (RiA00ψ1)]
λh

ρ + δi + λe
A

.

From which we can see that: (a) if β = 1 then the left hand side of (E.3.6) is zero so RiA00 = πiA,

because utility is strictly increasing in wages. (b) if Vi00 = ViA0(πiA) then the left hand side of

(E.3.6) is also zero so RiA00 = πiA. (c) if β < 1 and ViA0(πiA) > Vi00 then the left hand side of

(E.3.6) is positive, so the right hand side must be as well. This implies that RiA00 < πiA.

This means that if β = 1 then RiA00 = πiA with probability one. Thus, RiA00 < πiA implies

that β < 1. Secondly, if RiA00 = πiA with probability one then either β = 1 or Vi00 = ViA0(πiA)

with probability one.

Similarly, from equations (E.3.3) and (E.3.5) we can show

(ρ + δi + λe
A + λh) (1− β) [ViA1(πiA)−Vi01] = uiA (πiA00ψ1)− uiA (RiA01ψ1) . (E.3.7)

This is equivalent so if β = 1 then RiA01 = πiA with probability one. Thus RiA01 < πiA implies

that β < 1. If RiA00 = πiA then either β = 1 or Vi01 = ViA1(πiA) with probability one.

This completes the first part of the proof for Ci = A0.
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First part of proof for Ci = AB

This has very much the same structure as the first proof, but is more complicated in that now

there are 6 different endogenous potential wages RiB00, RiB01, RiA00, RiA01, RiAB0 and RiAB1.5
Four of these wages are straight forward to deal with (RiB00, RiB01, RiA01, RiAB1). Going

through similar algebra as for the Ci = A0 case, it is straight forward to show

(ρ + δ + λe
B + λe

A) (1− β) [ViB1(πiB)] =uiB (πiBψ1)− uiB (RiB01ψ1)

(ρ + δ + λe
B + λe

A) (1− β) [ViA1(πiA)] =uiA (πiAψ1)− uiA (RiA01ψ1) + λe
B (1− β) [ViA1(πiA)−ViB1(πiB)]

(ρ + δ + λe
A) (1− β) [ViA1(πiA)] =uiA (πiAψ1)− uiA (RiAB1ψ1)

(ρ + δ + λA + λh) (1− β) [ViB0(πiA)−Vi00] =uiB (πiB)− uiB (RiB00) + λh
uiB (πiBψ1)− uiB (RiB00ψ1)(

ρ + δ + λe
B + λe

A
) .

So using the same argument as for the Ci = A0 case, since utility is strictly increasing in

wages, when β = 1 then the left hand side of all of these equations is zero, so RiB01 = πiB,

RiA01 = πiA, RiAB1 = πiA and RiB00 = πiB. Thus if any of these equalities does not hold with

positive probability, then β < 1. Finally, if these equalities hold then either β = 1 or workers

are indifferent between all relevant outcomes.

The RiAB0 and RiA00 cases are more complicated because the shape of the utility function

dictates whether the worker would use an offer from a B firm to renegotiate the wage after

their human capital augments. We will go over them in more detail.

• Rental rate is RiA00 and worker has augmented human capital and an offer from B: In

general we would expect that since B is preferred to non-employment one would prefer

the B job, but it depends on the utility function. It is possible that the terms negotiated

from non-employment when h0 = 0 are preferable to those negotiated when the outside

offer is B and h0 = 1.

• Rental rate is RiAB0 and worker has augmented human capital and an offer from B: The

indeterminacy in this case is clearer and is also dependent on the utility function. In the

separable/log case it does not matter because the income and substitution cancel out, so

workers are indifferent between using the offer to renegotiate or ignoring it, but in other

cases they will not be indifferent.

Since in both cases it is undetermined whether or not to use the offer from B to renegotiate the

wage, we can not obtain simple expressions like the one above. We consider each of these two

rental rates.

RiA00: The solution depends on whether the worker wants to use an offer from B to renego-

tiate after human capital increases. I.e. there are two different cases depending on the whether

5For the others we know RiAA0 = RiAA1 = πiA and RiBB0 = RiBB1 = πiB.
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there is renegotiation.

Case 1: Workers prefers to renegotiate which happens when [βViA1(πiA) + (1− β)ViB1(πiB)] ≥

ViA1 (RiA00)

Working through the algebra one can show

(ρ + δ + λe
B + λe

A + λh) (1− β)ViA0(πiA) (E.3.8)

=uiA (πiA)− uiA (RiA00) + (1− β) [ViA0(πiA)−ViB0(πiB)]

+ λh
uiA (πiAψ1)− uiA (RiA00ψ) + λe

B (1− β) [ViA1(πiA) + ViB1(πiB)]

ρ + δ + λe
B + λe

A
.

Case 2: Workers do not renegotiate which happens when [βViA1(πiA) + (1− β)ViB1(πiB)] <

ViA1 (RiA00).

We can solve the model to show

(ρ + δ + λe
B + λe

A + λh) (1− β)ViA0(πiA) =uiA (πiA)− uiA (RiA00) + (1− β) [ViA0(πiA)−ViB0(πiB)]

(E.3.9)

+ λh
uiA (πiAψ1)− uiA (RiA00ψ)

ρ + δ + λe
A

.

RiAB0: Here again the solution depends on whether the worker wants to use an offer from

B to renegotiate.

Case 1: Workers do not renegotiate: ViA1 (RiAB0) ≥ βViA1(πiA) + (1− β)ViB1(πiB)

(ρ + δ + λh) (1− β)ViA0(πiA) = uiA (πiA)− uiA (RiAB0) + λh
uiA (πiAψ1)− uiA (RiAB0ψ1)

ρ + δ + λe
A

.

(E.3.10)

Case 2: Workers do renegotiate: ViA1 (RiAB0) < βViA1(πiA) + (1− β)ViB1(πiB)

(ρ + δ + λe
A + λh) (1− β)ViA0(πiA) =uiA (πiA)− uiA (RiAB0) (E.3.11)

+λh
uiA (πiAψ1)− uiA (RiAB0ψ) + λe

B (1− β) [ViA1(πiA)−ViB1(πiB)]

ρ + δ + λe
B + λe

A
.

Thus, for RiAB0 and RiA00 we have the four equations (E.3.8)-(E.3.11). While the expressions

are more complicated, we get the same result. If β = 1 then RiA00 = RiAB0 = πiA with

probability one and if RiA00 = RiAB0 = πiA then either β = 1 or workers are indifferent

between all relevant options.
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Second part when Ci = A0

The value β is irrelevant for the turnover decision and the parameters governing those deci-

sions are identified, so we focus on the wage equations. It is very messy, but straight forward to

derive the wages (formal derivation is available from the authors). After normalizing Ui00 = 0,

the two endogenous wages can be written as

viA000 =Γ0u (β, δi)Ui01 + Γ0π (β, δi)πiA + Γi0v (β, δi) viA + Γ0ψ (β, δi) log (ψ1)

viA011 =Γ1u (β, δi)Ui01 + Γ1π (β, δi)πiA + Γi1v (β, δi) viA + Γ1ψ (β, δi) log (ψ1) ,

where the Γ are very messy terms which depend on parameters that we have shown are iden-

tified up to β. We have also identified ψ1 and the distribution of πiA.

To see that this model is not identified note that for any β̃ ∈ [0, 1), we can generically6

find a value Ũi01

(
β̃
)

and ṽiA

(
β̃
)

that give the same wages. They are the solution to the two

equations

viA000 =Γ0u

(
β̃, δi

)
Ũi01

(
β̃
)
+ Γ0π

(
β̃, δi

)
πiA + Γ0v

(
β̃, δi

)
ṽiA

(
β̃
)
+ Γ0ψ (β, δi) log (ψ1)

viA011 =Γ1u

(
β̃, δi

)
Ũi01

(
β̃
)
+ Γ1π

(
β̃, δi

)
πiA + Γ1v

(
β̃, δi

)
ṽiA

(
β̃
)
+ Γ1ψ (β, δi) log (ψ1) ,

so as long as there is a solution to these equations, the model can not be identified.
The parameters take the form

Γ0u

(
β̃, δi

)
=

d1 (δi)
[(

d0 (δi) β− λe
A
)

a0u (β, δi) + (d0 (δi) (1− β)− δi) b0u (β, δi)
]
+ λh

[
λe

Aa1u (β, δi) + δici1u (β)
]

d1 (δi) + λh

Γ0π

(
β̃, δi

)
=

d1 (δi)
[(

d0 (δi) β− λe
A
)

a0π (β, δi) + (d0 (δi) (1− β)− δi) b0π (β, δi)
]
+ λh

[
λe

Aa1π (β, δi) + δici1π (β)
]

d1 (δi) + λh

Γ0π

(
β̃, δi

)
=− 1 +

d1 (δi)
[(

d0 (δi) β− λe
A
)

a0π (β, δi) + (d0 (δi) (1− β)− δi) b0π (β, δi)
]
+ λh

[
λe

Aa1π (β, δi) + δici1π (β)
]

d1 (δi) + λh

Γ0ψ (β, δi) =
d1 (δi)

[(
d0 (δi) β− λe

A
)

a0ψ (β, δi) + (d0 (δi) (1− β)− δi) b0ψ (β, δi)
]
+ λh

[
1 + λe

Aa1ψ (β, δi) + δici1ψ (β)
]

d1 (δi) + λh

Γ1u (β) =− δic1u (β, δi) + [di1β− λe
A] a1u (β, δi) + di1 (1− β) b1u (β, δi)

Γ1π (β) =− δic1π (β, δi) + [di1β− λe
A] a1π (β, δi) + di1 (1− β) b1π (β, δi)

Γ1v (β) =− 1− δic1π (β, δi) + [di1β− λe
A] a1ψ (β, δi) + di1 (1− β) bi1π (β)

Γ1ψ (β) =− δic1ψ (β, δi) + [di1β− λe
A] ai1ψ (β) + di1 (1− β) b1ψ (β, δi) ,

6By generically we mean that as long as the two equations are not linearly dependent. There is no reason why
they should be, so generically they will not but we can not rule out very special cases where they are linearly
dependent.
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with

ã1π (δi) =
1

ρ + δi

ã1V (δi) =
δi

ρ + δi

b̃1u (β) =
1

ρ + βλn
A

b̃1π (β, δi) =
λn

Aβã1π (δi)(
ρ + βλn

A
)

b̃1V (β, δi) =
λn

Aβã1V (δi)(
ρ + βλn

A
)

P∗A =P∗
λn

A
λn

A + λn
A

c1u (β, δi) =

(
1− P∗Aβ

)
b̃1u (β)

1− P∗Aβã1V (δi)−
(
1− P∗Aβ

)
b̃1V (β, δi)

c1π (β, δi) = c1ψ (β, δi) =
P∗Aβãi1π +

(
1− P∗Aβ

)
b̃1π (β, δi)

1− P∗Aβã1V (δi)−
(
1− P∗Aβ

)
b̃1V (β, δi)

b1u (β, δi) =b̃1u (β) + b̃1V (β, δi) c1u (β, δi)

b1π (β, δi) = b1ψ (β, δi) =b̃1π (β, δi) + b̃1V (β, δi) c1π (β, δi)

a1u (β, δi) =ã1V (δi) c1u (β, δi)

a1π (β, δi) = a1ψ (β, δi) =ã1π (δi) + ã1V (δi) c1π (β, δi)

ã0π (δi) =
1

ρ + δi + λh

ã0V (δi) =
δi

ρ + δi + λh

b̃0π (β, δi) =
λn

Aβã0π (δi)(
ρ + βλn

A
)

b̃0V (β, δi) =
λn

Aβã0V (δi)(
ρ + βλn

A
)

c̃0 (β, δi) =
P∗Aβã0π (δi) +

(
1− P∗Aβ

)
b̃0π (β, δi)

1− P∗Aβã0V (δi)−
(
1− P∗Aβ

)
b̃0V (β, δi)

c0u (β, δi) =c̃0 (β, δi) λha1u (β, δi)

c0π (β, δi) =c̃0 (β, δi) [1 + λha1π (β, δi)]

c0ψ (β, δi) =c̃0 (β, δi) λha1ψ (β, δi)

b0u (β, δi) =
[
b̃0π (β, δi) + b̃0V (β, δi) c̃0 (β, δi)

]
λha1u (β, δi)

b0π (β, δi) =
[
b̃0π (β, δi) + b̃0V (β, δi) c̃0 (β, δi)

]
(1 + λha1π (β, δi))

b0ψ (β, δi) =
[
b̃0π (β, δi) + b̃0V (β, δi) c̃0 (β, δi)

]
λha1ψ (β, δi)

a0u (β, δi) = [ã0π (δi) + ã0V (δi) c̃0 (β, δi)] λha1u (β, δi)

a0π (β, δi) = [ã0π (δi) + ã0V (δi) c̃0 (β, δi)] (1 + λha1π (β, δi))

a0ψ (β, δi) = [ã0π (δi) + ã0V (δi) c̃0 (β, δi)] λha1ψ (β, δi)

d1 (δi) =ρ + δi + λe
A

d0 (δi) =ρ + δi + λe
A + λh.

However, there is a loose end. We also need to show that the new model with
(

β̃, ṽiA

(
β̃
)

, Ũi01

(
β̃
))

produces the same choice ordering as the base model with (β, viA, Ui01). That is, even though

the taste components are different, the worker would remain a Ci = A0 worker.
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First, we show that this is the case for human capital equal to 1. To see this, we can write

(ρ + δ + λe
A) [βViA1(πiA) + (1− β)ViA1(πiA)] = log (πiA) + log(ψ1) + viA + λe

AViA1(πiA) + δiV∗i01

(ρ + δ + λe
A) [βViA1(πiA) + (1− β)Vi01] =viA011 + viA + λe

AViA1(πiA) + δiV∗i01,

so

(ρ + δ + λe
A) (1− β) [ViA1(πiA)−Vi01] = log (πiA) + log(ψ1)−viA011,

so ViA1(πiA) > Vi01 implies log (πiA) + log(ψ1) > viA011.

We can use the same argument in reverse to get the following result. That is define ṼiA1

(
πiA; β̃

)
and Ṽi01

(
β̃
)

to be the value functions implied by the alternative model, since this is just a dif-

ferent parameterization of the same model, it must be the case that

(ρ + δ + λe
A)
(

1− β̃
) [

ṼiA1

(
πiA; β̃

)
− Ṽi01

(
β̃
)]

= log (πiA) + log(ψ1)−viA011,

so log (πiA) + log(ψ1) > viA011 implies ṼiA1

(
πiA; β̃

)
> Ṽi01

(
β̃
)

.

Now consider the case without augmented human capital. We can solve the model to show

(ρ + δi + λe
A + λh) (1− β) [ViA0 (πiA)−Vi00 (β)] =

ρ + δi + λe
A + λh

ρ + δi + λe
A

[log (πiA)−viA000] .

Thus, ViA0 (πiA) > Vi00 (β) implies log (πiA) > viA000 .

Again, we show the inverse. The new model is an alternative parameterization of the old

one so we can write

(ρ + δi + λe
A + λh)

(
1− β̃

) [
ṼiA0

(
πiA; β̃

)
− Ṽi00

(
β̃
)]

=
ρ + δi + λe

A + λh

ρ + δi + λe
A

[log (πiA)−viA000] ,

and thus ṼiA0

(
πiA; β̃

)
> Ṽi00

(
β̃
)

and the choice ordering is the same in the case without

augmented human capital.

This completes the second part of the proof for the Ci = A0 case. Substituting A with B

gives the proof for the Ci = B0 case.
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Second part when Ci = AB

In this case there are 6 endogenous wages viA000, viAB00, viA011, viAB11, viB000, and viB011. Work-

ing through the model (details available on request from the authors) one can show

viAB00 = log (πiA)− (ρ + δi + λe
A) (1− β)

[
∆i

ρ + δi + βλe
A

]
(E.3.12)

= log (πiA) + ΓAB0∆ (β, δi)∆i (E.3.13)

viAB11 =viAB00 + log (ψ1) (E.3.14)

viA011 =ΓA01u (β, δi)Ui01 + ΓA01π (β, δi) log (πiA)

+ ΓA01v (β, δi) viA + ΓA01ψ (β, δi) log(ψ1) + ΓA01∆ (β, δi)∆i (E.3.15)

viA000 =ΓA00u (β, δi)Ui01 + ΓA00π (β, δi) log (πiA)

+ ΓA00v (β, δi) viA + ΓA00ψ (β, δi) log(ψ1) + ΓA00∆ (β, δi)∆i (E.3.16)

viB011 = log (πiB)−viAB11 + viA011 + log (ψ1) (E.3.17)

viB000 = log (πiB)−viAB00 + viA000 + log (πiB)−viAB00 + viA000, (E.3.18)

where
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and

ã1π (δi) =
1

ρ + δi
, ã1V (δi) =

δi
ρ + δi

, ã1∆ (δi) =
1

ρ + δi + βλe
A

b̃10 (β) =
1

ρ + βΛn , b̃1π (β, δi) =
Λnβã1π (δi)

ρ + βΛn , b̃1V (β, δi) =
Λnβã1V (δi)

ρ + βΛn , b̃1∆ (β, δi) =
λn

Bβã1∆ (δi)

ρ + βΛn

c1u (β, δi) =
(1− βP∗) b̃10 (β)

1− P∗βã1V (δi)− (1− βP∗) b̃1V (β, δi) (β)

c1π (β, δi) = c1ψ (β, δi) =
P∗βã1π (δi) + (1− βP∗) b̃1π (β)

1− P∗βã1V (δi)− (1− βP∗) b̃1V (β, δi)

ci1∆ (β, δi) =
λn

B
Λn βã1∆ (δi) + (1− βP∗) b̃1∆ (β, δi)

1− P∗βã1V (δi)− (1− βP∗) b̃1V (β, δi)

b1u (β, δi) =b̃1u (β) + b̃1V (β, δi) c1u (β, δi)

b1π (β, δi) = b1ψ (β, δi) =b̃1π (β, δi) + b̃1V (β, δi) c1π (β, δi)

b1∆ (β, δi) =b̃1∆ (β, δi) + b̃1V (β, δi) c1∆ (β, δi)

a1u (β, δi) =ãi12ci10 (β)

a1π (β) = a1ψ (β) =ã1π (δi) + ã1V (δi) c1π (β, δi)

a1∆ (β) =ã1V (δi) c1∆ (β, δi)

ã0π (δi) =
1

ρ + δi + λh
, ã0V (δi) =

δi
ρ + δi + λh

, ã0∆ (δi) =
1

ρ + δi + βλe
A

b̃0π (β, δi) =
Λnβã0π (δi)

ρ + βΛn , b̃0V (β, δi) =
Λnβã0V (δi)

ρ + βΛn , b̃0∆ (β, δi) =
λn

Bβã0∆ (δi)

ρ + βΛn

c̃0π (β, δi) =
P∗βã0π (δi) + (1− βP∗) b̃0π (β, δi)

1− P∗βã0∆ (δi)− (1− βP∗) b̃0V (β, δi)

c̃0∆ (β, δi) =
λn

B
Λn βã0∆ (δi) + (1− βP∗) b̃0∆ (β, δi)

1− P∗βã0∆ (δi)− (1− βP∗) b̃0V (β, δi) (β)

c0u (β, δi) =c̃0π (β, δi) λha1u (β, δi)

c0π (β, δi) =c̃0π (β, δi) (1 + λha1π (β))

c0ψ (β, δi) =c̃0π (β, δi) λha1ψ (β)

c0∆ (β, δi) =c̃0π (β, δi) λha1∆ (β) + c̃0∆ (β, δi)

b0u (β, δi) =
[
b̃0π (β, δi) + b̃0V (β, δi) c̃0π (β, δi)

]
λha1u (β, δi)

b0π (β, δi) =
[
b̃i01 (β) + b̃i02 (β) c̃i01 (β)

]
(1 + λha1π (β))

b0ψ (β, δi) =
[
b̃i01 (β) + b̃i02 (β) c̃i01 (β)

]
λha1ψ (β)

b0∆ (β, δi) =
[
b̃i01 (β) + b̃i02 (β) c̃i01 (β)

]
λha1∆ (β) + b̃0∆ (β, δi) + b̃0V (β, δi) c̃0∆ (β, δi)

a0u (β, δi) = [ã0π (β, δi) + ã0V (β, δi) c̃0π (β, δi)] λha1u (β, δi)

a0π (β, δi) = [ã0π (β, δi) + ã0V (β, δi) c̃0π (β, δi)] (1 + λha1π (β))

a0ψ (β, δi) = [ã0π (β, δi) + ã0V (β, δi) c̃0π (β, δi)] λha1ψ (β)

a0∆ (β, δi) = [ã0π (β, δi) + ã0V (β, δi) c̃0π (β, δi)] λha1∆ (β) + b̃0∆ (β, δi) + b̃0V (β, δi) c̃0∆ (β, δi)

d1 (δi) = (ρ + δi + Λe) .

To show the model is not identified note that for any β̃ ∈ [0, 1), we can generically find

values Ũi01

(
β̃
)

, ṽiA

(
β̃
)

, and ṽiB

(
β̃
)

that give the same wages. They are the solution to the
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linear equations

viAB00 = log (πiA) + ΓAB0∆

(
β̃, δi

)
∆i (E.3.19)

viA011 =ΓA01u

(
β̃, δi

)
Ũi01

(
β̃
)
+ ΓA01π

(
β̃, δi

)
log (πiA) + ΓA01v

(
β̃, δi

)
ṽiA

(
β̃
)

+ ΓA01ψ

(
β̃, δi

)
log(ψ1) + ΓA01∆

(
β̃, δi

)
∆i (E.3.20)

viA000 =ΓA00u

(
β̃, δi

)
Ũi01

(
β̃
)
+ ΓA00π

(
β̃, δi

)
log (πiA) + ΓA00v

(
β̃, δi

)
ṽiA

(
β̃
)

+ ΓA00ψ

(
β̃, δi

)
log(ψ1) + ΓA00∆

(
β̃, δi

)
∆i (E.3.21)

∆̃i = log(πiA) + ṽiA

(
β̃
)
− log(πiB)− ṽiB

(
β̃
)

. (E.3.22)

The other three wages are still determined by (E.3.14), (E.3.18), and (E.3.18), which do not

directly include β or values of the non-pecuniary benefits (i.e. the v’s).

This shows that the model produces the same wages. We also need to show it produces the

same choice ordering. That is, with the different non-pecuniary benefits (i.e. ṽ’s), we need to

show that the worker would make the same choices.

As above define ṼiA0

(
πiA; β̃

)
, ṼiB0

(
πiB; β̃

)
, Ṽi00

(
β̃
)

, ṼiA1

(
πiA; β̃

)
, ṼiB1

(
πiB; β̃

)
and Ṽi01

(
β̃
)

to be the value functions implied by the alternative model, with all parameters remaining the

same except β̃ , Ũi01

(
β̃
)

, ṽiA

(
β̃
)

, and ṽiB

(
β̃
)

. We need to show that

Ṽi00

(
β̃
)
≤ṼiB0

(
πiB; β̃

)
≤ ṼiA0

(
πiA; β̃

)
Ṽi01

(
β̃
)
≤ṼiB1

(
πiB; β̃

)
≤ ṼiA1

(
πiA; β̃

)
.

One result of the model is that

ViA0 (πiA)−ViB0 (πiB) =
∆i

ρ + δi + βλe
A

,

which implies that ∆i = log(πiA) + viA − log(πiB) − viB ≥ 0. Combined with (E.3.12) this

implies that viAB00 ≤ log (πiA). When we plug this into (E.3.19) it implies that ∆̃i = πiA +

ṽiA

(
β̃
)
− πiB − ṽiB

(
β̃
)
≥ 0 and the model also implies that

ṼiA0

(
πiA; β̃

)
− ṼiB0

(
πiB; β̃

)
=

∆̃i

ρ + δi + β̃λe
A

,

ṼiA1

(
πiA; β̃

)
− ṼiB1

(
πiB; β̃

)
=

∆̃i

ρ + δi + β̃λe
A

,

and thus ṼiA0

(
πiA; β̃

)
≥ ṼiB0

(
πiB; β̃

)
and ṼiA1

(
πiA; β̃

)
≥ ṼiB1

(
πiB; β̃

)
.

To show that Ṽi01

(
β̃
)
≤ ṼiB1

(
πiB; β̃

)
, we use the fact that the model implies that

(ρ + δ + λe
A + λe

B) (1− β) [ViB1(πiB)−Vi01] =viAB11 −viA011.

D -29



Thus, ViB1(πiB) ≥ Vi01 implies viAB11 ≥ viA011. But then the version of this equation with β̃ is

(ρ + δ + λe
A + λe

B)
(

1− β̃
) [

ṼiB1

(
πiB; β̃

)
− Ṽi01

(
β̃
)]

=viAB11 −viA011,

so viAB11 ≥ viA011 implies ṼiB1

(
πiB; β̃

)
≥ Ṽi01

(
β̃
)

.

We use an analogous argument to show that Ṽi00

(
β̃
)
≤ ṼiB0

(
πiB; β̃

)
. We can show that

(ρ + δ + λe
B + λe

A + λh) (1− β) [ViB0(πiB)−Vi00] =viAB00 −viA000

+ λh
viAB00 −viA000

ρ + δ + λe
B + λe

A
,

so ViB0(πiB) ≥ Vi00 implies viAB00 ≥ viA000. We can then write the analogue of this expression

with the β̃ alternative

(ρ + δ + λe
B + λe

A + λh)
(

1− β̃
) [

ṼiB0

(
πiB; β̃

)
− Ṽi00

(
β̃
)]

=viAB00 −viA000

+ λh
viAB00 −viA000

ρ + δ + λe
B + λe

A
,

which implies ṼiB0

(
πiB; β̃

)
≥ Ṽi00

(
β̃
)

. Thus, we have proven that

Ṽi00

(
β̃
)
≤ṼiB0

(
πiB; β̃

)
≤ ṼiA0

(
πiA; β̃

)
Ṽi01

(
β̃
)
≤ṼiB1

(
πiB; β̃

)
≤ ṼiA1

(
πiA; β̃

)
,

and thereby both wages and choices are the same and thus the model with β , Ui01, viA ,

and viB can not be distinguished from the model with β̃ , Ũi01

(
β̃
)

, ṽiA

(
β̃
)

, and ṽiB

(
β̃
)

.

D.5 Theorem D.1

Assumption D.2 The econometrician observes the full history of job type spells with start and stop

dates as well as the value of j at each job. The econometrician does not record job switches within job

type.

Theorem D.1 Under Assumptions 1, D.2, and 4 with the data generated by the model exposited in

the general model section , we can identify λn
A, λn

B, P∗, the distribution of Ci, and the distribution of δi

conditional on Ci over the support of Ci for which Ci 6= 0 . If Pr (Ci = AB) > 0 we can identify λe
A

and if Pr (Ci = BA) > 0 we can identify λe
B.

Proof

This is very similar to the proof of Theorem 1. We leave this as largely self contained, so it

repeats many of the arguments we make in that proof.
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We start by showing that we can identify λn
A, λn

B, λe
A, λe

B, P∗, the sample probabilities of Ci, and

the distribution of δi (denote it Fδ) without using data on wages. A major complication is P∗

because when we observe a job-to job-transition, we do not know whether it was voluntary or

involuntary.

We will use P(c) as shorthand notation for Pr(Ci = c) with c ∈ (0, B0, A0, BA, AB).

Identification of λn
A and λn

B

This is easier than in the base case. Since we observe workers forever, we know the ones who

would accept both A and B jobs from non-employment (because they will eventually work for

both). Condition on Ci ∈ {AB, BA}. The probability that the first firm is a B type firm is

PB ≡
λn

B
λn

A + λn
B

.

We define PA in an analogous manner.

Continue to condition on Ci ∈ {AB, BA}. The hazard rate to the first job is λn
A + λn

B, so it is

identified. From λn
A + λn

B and PB, we can identify λn
A and λn

B.

Identification of P∗, P (AB|AB, BA), λe
A, λe

B, and the distribution of δi conditional on Ci =
AB and on Ci = BA

For this part of the proof, we will make use of three different employment spells. We can condi-

tion on individuals whose first three spells satisfy these conditions. Note that by employment

spells we mean that there is a period of non-employment between them.

• The first begins at an A type firm and we follow it until the firm (type) spell ends. This

can end with a job to job move to a B or with a non-employment spell. Let v1i be the

hazard rate of this spell ending (through either channel) for individual i, and let T1i be

the duration of this spell.

• The second begins at an B type firm and we follow it until the firm (type) spell ends. As

above this can end with either a job to job move or to non-employment spell. Let v2i be

the hazard rate of this spell ending for individual i, and let T2i be the duration of this

spell.

• The third can begin at either type of firm and we follow the employment spell until it

ends at non-employment. Let v3i be the hazard rate to non-employment.
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To be in this sample, the worker must be willing to take both an A type job and a B type job,

so either Ci = AB or Ci = BA. Since P(AB) + P(BA) > 0 we know that the sequence above

can be observed in the data.

From data on the joint duration we can estimate the joint survivor function

Pr (T1i ≥ t1, T2i ≥ t2, T3i ≥ t3) =

ˆ
e−v1it1−v2it2−v3it3 dG (vi) ,

where G is the conditional distribution of vi ≡ (v1i, v2i, v3i) . Note that this is the Laplace trans-

form of G and one can invert the Laplace transform to identify G.

This is a random sample of BA and AB types because the two groups receive offers from

A and B at the same rate. Thus in this sample

P (AB|AB, BA) ≡ P(AB)
P(AB) + P(AB)

.

When Ci = AB,

v1i = δi [1− P∗PA] ,v2i = δi [1− P∗PB] + λe
A, v3i = δi [1− P∗] ,

and when Ci = BA

v1i = δi [1− P∗PA] + λe
B,v2i = δi [1− P∗PB] , v3i = δi [1− P∗] .

Taking the ratios of v1i and v3i we get

v1i

v3i
=

{
1−P∗PA

1−P∗ Ci = AB
1−P∗PA

1−P∗ +
λe

B.
δi [1−P∗] Ci = BA.

Given that we have shown that the joint distribution of vi is identified then the distribution

of v1i/v3i also must be identfified. If P(AB) > 0 then this distribution will have point mass at
1−P∗PA

1−P∗ that occurs with probability P (AB|AB, BA). Note as well that since the support of δi is

the real line, then v1i/v3i is strictly greater than (1− P∗PA) / (1− P∗) for the Ci = BA types.

In that case, P(AB|AB, BA) and P∗ are identified from the probability and the value at the

minimum of the support (since we showed above that PA is identified).7 If instead P(AB) = 0

then we can use the ratios of v2i and v3i to identify P∗ in a similar fashion.8

7As a practical matter in the estimation we use additional information as we observe the fraction of job-to-
job transitions that are voluntary directly from survey data. Here we show that we can identify P∗ without that
knowledge.

8The only potential complication is the case in which either P(AB) = 0 or P(BA) = 0 and δi takes on only a
single value. In that case both v1i/v3i and v2i/v3i will take only a single value, so from this alone we can not tell
whether P(AB) = 0 or P(BA) = 0. However, we show that when we take into account the values of the identified
hazard rates, we can tell which case we are in. To see this, suppose that were not the case and that the true model
has P (BA) = 0 and let δ be the single value of δi. We would have to have another model with P(AB) = 0 and an
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If both P(BA) > 0 and P(AB) > 0, since P∗ is identified, we can identify the distribution

of δi conditional on AB and BA as

Pr (δi ≤ d | Ci = AB) =Pr
(

v3i

1− P∗
≤ d | v1i

v3i
=

1− P∗PA

1− P∗

)
Pr (δi ≤ d | Ci = BA) =Pr

(
v3i

1− P∗
≤ d | v2i

v3i
=

1− P∗PB

1− P∗

)
.

Let Med(· | ·) denote the conditional median (though any quantile will work) we know

that

Med
(

v2i |
v1i

v3i
=

1− P∗PA

1− P∗

)
=Med (v2i | Ci = AB)

=Med (δi [1− P∗PB] + λe
A | Ci = AB)

so we can write

λe
A = Med

(
v2i |

v1i

v3i
=

1− P∗PA

1− P∗

)
− [1− P∗PB] Med

(
δi |

v1i

v3i
=

1− P∗PA

1− P∗

)
.

we have shown that everything on the right hand side is identified, so λe
A must be as well.

From an analogous argument we can show

λe
B =Med

(
v1i |

v1i

v3i
>

1− P∗PA

1− P∗

)
− [1− P∗PA] Med

(
δi |

v1i

v3i
>

1− P∗PA

1− P∗

)
,

so λe
B is identified as well.

When P(BA) = 0, we can use the same approach to get Pr (δi ≤ d | Ci = AB) and λe
A, but

λe
B is not identified in this case. Likewise, when P(AB) = 0, we can use this approach to

identify Pr (δi ≤ d | Ci = BA) and λe
B, but λe

A is not identified. This is quite natural, since in

the former case no one prefers B to A, so there is no way of identifying λe
B. Notice, that it

is identified from wage data, since λe
B affects wages for both Ci = BA and Ci = B0 type of

alternative value of δ̃, P̃∗, and λ̃e
B that satisfy the three equations

δ̃
[
1− P̃∗PA

]
+ λ̃e

B =δ [1− P∗PA]

δ̃
[
1− P̃∗PB

]
=δ [1− P∗PB] + λe

A

δ̃
[
1− P̃∗

]
=δ [1− P∗] .

But since PA + PB = 1, if we subtract the third equation from the first two we can show

λ̃e
B =

[
δP∗ − δ̃P̃∗

]
PB

λe
A =

[
δ̃P̃∗ − δP∗

]
PA,

but then λe
A > 0 implies δP∗ < δ̃P̃∗ which implies that λ̃e

B < 0 which is not in the parameter space and thus we
have a contradiction. Thus we can distinguish between these two cases and determine whether P(AB) = 0 or
P(BA) = 0.

D -33



workers. Also, when we increase the number of job types, J, from two to more types, all that

we require for identification of λe
k is that there are some individuals preferring k to other jobs

that they would also take. This seems like a very reasonable assumption.

Identification of P (AB) , P (BA) , P(0), P(A0), and P(B0)

This is trivial given the previous result and infinite time. P (0) is identified directly from the

data as those that never work, P(A0) as those that only work at an A type firm and P(B0) as

those that only work for a B type firm. Since we know P(AB|AB, BA) and the probability of

working both jobs, P(AB) and P(BA) are also identified.

Identification of the distribution of δi conditional on Ci = A0 and on Ci = B0

This is simpler than the cases above, since we can just take the survivor function of just a single

spell for each of these. As long as P(A0) > 0 we can identify the duration for the first A firm

type spell we observe (for everyone who would take an A type job). Let this value be Ti.

This is

Pr (Ti ≥ t) =Pr (Ti ≥ t | A0) Pr (A0) + Pr (Ti ≥ t | AB) Pr (AB)

+ Pr (Ti ≥ t | BA) Pr (BA) .

We have shown everything in this expression other than Pr (Ti ≥ t | A0) is identified, so this

term must also be identified. It is the conditional Laplace transform for the hazard rate out of

the job for this group which is δi [1− P∗PA] . Since P∗and PA are identified, Pr (δi ≤ d | A0) is

as well.

The analogous argument gives Pr (δi ≤ d | B0).

D.6 Theorem D.2

This proof is virtually identical the base model but we leave it essentially self contained. The

main difference is that we include δi as part of the joint distribution we identify.

We need the following alternative assumption

Assumption D.2’ The econometrician observes

1. The full history of job type spells with start and stop dates as well as the value of j at each job.

2. If the individual is working, wages observed at the integers 1.0...,2.0..., for at least 8 periods.
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Theorem D.2 Under Assumptions 1,D.2’, and 4-6 with the data generated by the model exposited in

the general model section above, we can identify

1. The distribution of measurement error ξit

2. LBD human capital ψ1

3. The joint distribution of (RiA00, RiAB0, πiA, RiB00, πiB, RiA01, RiAB1, RiB01, δi) conditional on Ci =

AB if Pr (Ci = AB) > 0.

4. The joint distribution of (RiA00, πiA, RiBA0, RiB00, πiB, RiA01, RiBA1, RiB01, δi) conditional on Ci =

BA if Pr (Ci = BA) > 0.

5. The joint distribution of (RiA00, πiA, RiA01, δi) conditional on Ci = A0 if Pr (Ci = A0) > 0.

6. The joint distribution of (RiB00, πiB, RiB01, δi) conditional on Ci = B0 if Pr (Ci = B0) > 0.

Proof

To shorten some of the expressions we will use shorthand notation vij`h0h which we define as

vij`h0h ≡ log
(

Rij`h0 ψh
)

.

Identification of Distribution of Measurement Error (ξit)

First, we identify the distribution of measurement error. We condition on a group who

• Are non-employed until time 1− d1

• Start working in job A at time 1− d1 and leave to non-employment at 1 + d2

• Are non-employed until time 2− d3 when they start again at a type A firm and they stay

through period 2

We assume that the dj’s are sufficiently small (and non-negative), so spells do not overlap.

We can identify the joint distribution of (wi1, wi2) conditional on the events above for alter-

native values of d1, d2, and d3.

Taking limits of the above object as d1 ↓ 0, d2 ↓ 0, and d3 ↓ 0, we can identify the conditional

distribution of

(viA000 + ξi1, viA000 + ξi2) ,

for our conditioning group. Notice, that since ψ0 = 1 then RiA00 is just the wage paid. Un-

der assumption 5 using Kotlarski’s lemma (Kotlarski 1967), we can identify the the marginal

distributions of both the measurement error and viA000.
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Identification of λh

Next, we show that λh is identified. To economize on notation we will use E (· | d) to denote

the expectation conditional on the events described above at values of d = (d1, d2, d3) . We use

the same conditioning group as in the Measurement Error section and continue to send d1 ↓ 0

and d3 ↓ 0, but allow d2 to vary. This allows human capital to augment between period 1 and

1 + d2. We can identify the conditional characteristic function

lim
d1,d3↓0

E (eıswi2 | d)
φξ(s)

= lim
d1,d3↓0

[
e−λhd2 E (eısviA000 | d) +

(
1− e−λhd2

)
E (eısviA011 | d)

]
.

By varying d2 we can identify λh.9 Intuitively, varying d2 varies the time that the worker has

to receive a human capital shock.

Identification of joint wage distribution for AB group

We now consider identification of the full wage distribution for the AB group conditional on

δi. Identification is complicated, so to make this easier to follow we will do this in steps by

showing identification of expanding subsets of the full distribution. We are implicitly assum-

ing that P(AB) > 0 in what follows. If this is not the case we of course cannot identify the

wage distribution for this group. One can use the same logic for the BA group exchanging A

and B.

Conditioning set for Main Identification Result

For the AB types there are the seventeen different labor market statuses possible

9To see how, take the ratio of the derivatives of this function in terms of d2 at two different values of d2 and it
will be a known function of λh. First, note that the derivative with respect to d2 is

lim
d1,d3↓0

[
−λhe−λhd2 E

(
eısviA000 | d

)
+ λhe−λhd2 E

(
eısviA011 | d

)]
=λhe−λhd2

[
E
(
eısviA000 | A

)
− E

(
eısviA011 || A

)]
,

where the notation E(· | A) means the expected value conditional on taking an A job first. Now take the ratio of
this at two different values of d2 say da

2 and db
2 then

∆(da
2, db

2) ≡
λhe−λhda

2 [E (eısviA000 | A)− E (eısviA011 || A)]

λhe−λhdb
2 [E (eısviA000 | A)− E (eısviA011 | A)]

=eλh(db
2−da

2).

∆(da
2, db

2) is directly identified from the data and

λh =
log
(

∆(da
2, db

2)
)

db
2 − da

2
.
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Table D3
Labor Market Statuses for AB workers

j(i, t) h(i, t) `(i, t) h0(i, t) Wage Log(Wage)
A 0 0 0 RiA00 viA000
A 0 B 0 RiAB0 viAB00
A 0 A 0 πiA viAA00
A 1 0 0 RiA00ψ1 viA001
A 1 B 0 RiAB0ψ1 viAB01
A 1 A 0 πiAψ1 viAA01
A 1 0 1 RiA01ψ1 viA011
A 1 B 1 RiAB1ψ1 viAB11
A 1 A 1 πiAψ1 viAA11
B 0 0 0 RiB00 viB000
B 0 B 0 πiB viBB00
B 1 0 0 RiB00ψ1 viB001
B 1 B 0 πiBψ1 viBB01
B 1 0 1 RiB01ψ1 viB011
B 1 B 1 πiBψ1 viBB11
0 0 NA NA NA NA
0 1 NA NA NA NA

where j(i, t) is the current job type, h(i, t) is the current human capital, `(i, t) is the outside

option when wages were negotiated, and h0(i, t) is the level of human capital when wages

were negotiated.

From Table D3 one can see that for an AB worker’s wage depend on the joint distribution

of eight objects (in addition to ψ1)

(RiA00, RiAB0, πiA, RiB00, πiB, RiA01, RiAB1, RiB01).

The model is overidentified so there are multiple ways to show identification. We focus on a

particular set of transitions and show identification by taking limits. We emphasize that this is

sufficient to show identification, we do not think it is necessary. We assume that workers start

their labor market career in non-employed and receive their first job at 1− d1. The following

table shows the transition path.
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Transition Time
Start at A 1− d1
Move to non-employment 1 + d2
Start at B 2− d3
Move to non-employment 2 + d4
Start at B 3− d5 − d6
Move to A 3− d6
Move to non-employment 3 + d7
Start at A 4− d8
Move to non-employment 4 + d9
Start at B 6− d10
Move to non-employment 6 + d11
Start at B 8− d12 − d13
Move to A 8− d13
Still Employed 8
Start at A from non-employment After 8
Start another job from non-employment After 8

with dj ≥ 0 for j = 1, ..., 13. We also assume that the dj’s are sufficiently small such that the

above spells do not overlap. The goal here will be to look at the joint distribution of wages

conditional on the dj’s. Analogous to above, we use the notation E [· | d] to mean the

conditional expectation conditioning on events occurring at times denoted by d1 − d13.

Identification of Distribution of (wi1, ..., wi8) conditional on (d, Ci = AB, δi).

In going forward, we condition on wages from the first eight periods (wi1, ..., wi8). The

last two spells will be analogous to the first and third type of spells we use in the first part

of Theorem 1. Let Y1i be the duration of the job spell at the A type firm for the first spell

after period 8. This can end either in a transition to a B type firm or to non-employment. To

mirror the notation in Theorem 1 let Y3i the the duration of the last employment spell, i.e. from

hiring until non-employment. From the last two spells in the transition table we use only the

duration. Using well known results (see e.g. (French and Taber 2011)), we can write these

durations as

log (Y1i) =v1i + ω1i

log (Y3i) =v3i + ω3i,

where v1i and v3i are the hazards from the two spells, and ω1i and ω3i have extreme value

distribution. Let φω (t) be the characteristic function of the extreme value distribution, then

we can identify the characteristic function of (wi1, ..., wi8, v1i, v3i) as
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E [exp (i (s1wi1 + s2wi2 + s3wi3 + s4wi4 + s5wi5 + s6wi6 + s5wi5 + s6wi6 + s7wi7 + s8wi8 + s9Y1i + s10Y3i
φω (s9) φω (s10)

.

+s6wi6 + s7wi7 + s8wi8 + s9Y1i + s10Y3i)) | d]
φω (s9) φω (s10)

.

Since this characteristic function is identified then the joint distribution of (wi1, ..., wi8, v1i, v3i)

is identified. As shown in the proof of Theorem 1, we know Ci = AB when

v1i

v3i
=

1− P∗PA

1− P∗
,

and all the terms on the right hand side are identified. We also know that in this case vi1 =

δi [1− P∗PA] and[1− P∗PA] is identified, so the joint distribution of (wi1, ..., wi8) conditional on

d, δi and Ci = AB is identified from the joint distribution of (wi1, ..., wi8, v1i, v3i) conditional on

d as is the distribution of (wi1, ..., wi8) conditional on d, v1i = δi [1− P∗PA] and v3i = δi [1− P∗] .

While in principle we could show full identification of the eight dimensional distribution

all at once, it is very complicated so instead we show it in pieces. We start with 3 parts.

Identification of joint distribution of (RiA00, RiB00, RiAB0) for the AB types

We start by sending d1...d6 ↓ 0 and look at the joint distribution of (wi1, wi2, wi3) . A compli-

cation is that at time 3− d6 individuals who moved directly from B to A could have either have

gotten an outside offer from an A firm or been laid off and found a new job at an A firm imme-

diately. Define ρ3(d) to be the probability that it is a voluntary transition. This a complicated

but known expression since it involves only transition parameters, which we have shown are

identified.

Then for any values of s1 − s3 we can identify

lim
d1...,d6↓0

E [exp (i (s1wi1 + s2wi2 + s3wi3)) | d, AB, δi]

φξ (s1) φξ (s2) φξ (s3)

=

[
lim

d1...,d6↓0
ρ3 (d)

]
E [exp (i (s1viA000 + s2viB000 + s3viAB00)) | AB, δi]

+

[
lim

d1...,d6↓0
(1− ρ3 (d))

]
E [exp (i ((s1 + s3)viA000 + s2viB000)) | AB, δi] . (E.2′.1)

We will use the same basic argument for identification of the model throughout this section.

We will be explicit about it here, but not as explicit in what follows (which will involve many

more terms).

1. Letting limd1...,d6↓0 identifies ρ3 (d) as it is a known function of parameters that we have

shown are identified.
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2. By setting s3 = 0 we can identifyE [exp (i (s1viA000 + s2viB000)) | AB] from the expression

above.

3. Once this is identified, E [exp (i (s1 + s3)viA000 + s2viB000) | AB] is identified as we vary

s3.

4. Everything in the expression (E.2′.1) above is then identified except

E [exp (i (s1viA000 + s2viB000 + s3viAB00)) | AB], so we can solve for this expression as

well.

5. E [exp (i (s1viA000 + s2viB000 + s3viAB00)) | AB] is the characteristic function of

(viA000, viB000, viAB00), so since this is identified, the joint distribution of (RiA00, RiB00, RiAB0)

conditional on Ci = AB and δi is identified.

Identification of (RiA00, RiB00, RiAB0, RA01, RiB01, RiAB1) for the AB types

Now, we extend the argument to include the joint distribution of

(RiA00, RiB00, RiAB0, RA01, RiB01, RiAB1) ,

for the AB types by adding wages from periods 4, 6, and 8. We will now vary d7, which will

allow for the possibility that human capital evolves between time 3 and 3 + d7 but send other

values of d towards 0. There are 8 possible indistinguishable events that can occur in the data

(after sending the other values of d arbitrarily close to zero); (the job-to-job transition to job A at

time 3− d6 is voluntary/involuntary)×(human capital evolves or does not evolve between pe-

riod 3 and 3+ d7)× (the job-to-job transition to job A at time 8− d13 is voluntary/involuntary).

Let ρ3 and ρ8 be the limit as d1..., d6, d8, ..., d13 ↓ 0 of the conditional probability that the job-

to-job transitions are voluntary at time 3−d6 and 8− d13, respectively. These are identified as

they depend on transition parameters that we have shown are identified.
For any value of s1 − s6 we can identify

lim
d1...,d6,d8,...,d13↓0

E [exp (i (s1wi1 + s2wi2 + s3wi3 + s4wi4 + s5wi6 + s6wi8)) | d, AB, δi]

φξ (s1) φξ (s2) φξ (s3) φξ (s4) φξ (s5) φξ (s6)

=e−λhd7 [ρ3ρ8] E [exp (i ((s1 + s4)viA000 + (s2 + s5)viB000 + (s3 + s6)viAB00)) | AB, δi]

+ e−λhd7 [ρ3 (1− ρ8)] E [exp (i ((s1 + s4 + s6)viA000 + (s2 + s5)viB000 + s3viAB00)) | AB, δi]

+ e−λhd7 [(1− ρ3) ρ8] E [exp (i ((s1 + s3 + s4)viA000 + (s2 + s5)viB000 + s6viAB00)) | AB, δi]

+ e−λhd7 [(1− ρ3) (1− ρ8)] E [exp (i ((s1 + s3 + s4 + s6)viA000 + (s2 + s5)viB000)) | AB, δi]

+
(

1− e−λhd7
)
[ρ3ρ8] E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viB011 + s6viAB11)) | AB, δi]

+
(

1− e−λhd7
)
[ρ3 (1− ρ8)] E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s6)viA011 + s5viB011)) | AB, δi]

+
(

1− e−λhd7
)
[(1− ρ3) ρ8] E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viB011 + s6viAB11)) | AB, δi]

+
(

1− e−λhd7
)
[(1− ρ3) (1− ρ8)] E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s6)viA011 + s5viB011)) | AB, δi] .
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We showed above that the first four expressions are identified. Thus we have four new ex-

pressions to identify:

(a)E exp [i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viB011 + s6viAB11) | AB, δi]

(b)E exp [i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s6)viA011 + s5viB011) | AB, δi]

(c)E exp [i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viB011 + s6viAB11) | AB, δi]

(d)E exp [i ((s1 + s3)viA000 + s2viB000 + (s4 + s6)viA011 + s5viB011) | AB, δi] .

We use the same approach as above. If we evaluate at s3 = s6 = 0 these expressions are the

same and thus E [i (s1viA000 + s2viB000 + s4viA011 + s5viB011 | AB)] is identified. This identifies

(d) for any values of s1 − s6.

Again using the same type of argument, given (d), keeping s3 = 0 but varying the other

values of sj identifies (c) and setting s6 = 0 but varying the others gives (b). Then everything

in the large equation above is identified other than (a), so it is identified by varying all values

of sj.

Identification of ψ1

Next, we consider identification of ψ1 which we can do from E [log (Wi7) | d, AB] alone. In
order to do this we condition on 1 < d11 < 2 so that we observe wi7 and we will vary d2, but
send the rest of the dj ↓ 0. For this case there are three possibilities involving human capital:
human capital has not evolved before period 7, human capital evolves between time 1 and
time 1 + d2, and human capital evolves between periods 6 and 7. In addition, for each of these
cases workers may or may not have gotten an outside offer from a B type firm between period
6 and 7.

lim
d1,d3,...,d13↓0

E [log (wi7) | d, AB, δi] =

e−λh [1+d2]
(

e−λe
B E [viB000 | AB, δi] +

(
1− e−λe

B

)
E [viBB00 | AB, δi]

)
+
(

1− e−λhd2
) (

e−λe
B E [viB011 | AB, δi] +

(
1− e−λe

B

)
(E [viBB11 | AB, δi])

)
+
(

e−λhd2 − e−λh [1+d2]
) (

e−λe
B E [viB001 | AB, δi] +

(
1− e−λe

B

)
E [viBB11 | AB, δi]

)
+ E (ξi7)

=e−λh [1+d2]
(

e−λe
B E [viB000 | AB, δi] +

(
1− e−λe

B

)
E [log (πiB) | AB, δi]

)
+
(

1− e−λhd2
) (

e−λe
B E [viB011 | AB, δi] +

(
1− e−λe

B

)
(E [log (πiB) + log (ψ1) | AB, δi])

)
+
(

e−λhd2 − e−λh [1+d2]
) (

e−λe
B E [viB000 + log (ψ1) | AB, δi] +

(
1− e−λe

B

)
E [log (πiB) + log (ψ1) | AB, δi]

)
+ E (ξi7)

=e−λhd2 e−λe
B E [viB000 | AB, δi] +

(
1− e−λhd2

)
e−λe

B E [viB011 | AB, δi] + E (ξi7)

+
(

1− e−λA
)

E [log (πiB) | AB, δi] +
[(

1− e−λA
)
+
(

e−λhd2 − e−λh [1+d2]
)]

log (ψ1) .

Everything is identified in this expression except E [log (πiB) | AB, δi] and log (ψ1) , so by vary-

ing d2 they can be separately identified.
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Identification of (RiA00, RiAB0, RiB00, RiA01, RiAB1, RiB01, πiA, πiB) conditional on AB

Now we assume that 1 < d11 < 2 and 1 < d9 < 2 so that we observe wages at all times

1,...,8. By varying d7, we can identify the expected value of f (wi1, ..., wi8) conditional on d, δi,

and human capital arriving between time 3 and 3 + d7 (write this conditioning as Hi4 = 1).

We will send the rest of the dj’s to zero (other than d7, d9, and d11). Since we condition on

human capital arriving between period 3 and 3+ d7, we know that the wage in the first period

will be approximately RiA00, the second period RiB00, the fourth RiA01,and the sixth RiB01. As

before for the third and the eighth period the wage can take two values depending on whether

the job-to-job transition was voluntary or not (RiA00 or RiAB0 in 3 and RiA01or RiAB1 in 8). For

period 5 the wage can take 3 values depending on outside offers: either RiA01 if no outside

offers, RiAB1 if an offer from a B type only, or πiA if an offer from an A type. Similarly in period

7 the wage can take 2 values depending on whether there was no outside offer (RiB01) or an

outside offer from a B firm (πiB).10 This gives a total of 2× 2× 3× 2 = 24 different possibilities.

Analogous to above we define ρ3 and ρ8 be the limit as d1, ..., d6, d8, d10, d12, d13 ↓ 0 of the

conditional probability that the job-to-job transitions are voluntary at time 3−d6 and 8− d13,

respectively.

Putting this together can identify the complicated expression with the relevant 24 terms.

10Since we are considering AB types they could not have gotten an offer from an A firm or they would have left
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We now have sixteen new terms that have not been previously identified.
(a)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s5)viA011 + s6viB011 + s7viBB11 + s8viAB11)) | AB, δi]

(b)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viAA11 + (s6 + s7)viB011 + s8viAB11)) | AB, δi]

(c)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + s5viAA11 + s6viB011 + s7viBB11 + s8viAB11)) | AB, δi]

(d)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + s4viA011 + (s6 + s7)viB011 + (s5 + s8)viAB11)) | AB, δi]

(e)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s5 + s8)viA011 + (s6 + s7)viB011)) | AB, δi]

( f )E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s8)viA011 + s5viAA11 + (s6 + s7)viB011)) | AB, δi]

(g)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s8)viA011 + s5viAA11 + s6viB011 + s7viBB11)) | AB, δi]

(h)E [exp (i (s1viA000 + s2viB000 + s3viAB00 + (s4 + s8)viA011 + s5viAB11 + s6viB011 + s7viBB11viB)) | AB, δi]

(i)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s5)viA011 + s6viB011 + s7viBB11 + s8viAB11)) | AB, δi]

(j)E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viAA11 + (s6 + s7)viB011 + s8viAB11)) | AB, δi]

(k)E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + s5viAA11 + s6viB011 + s7viBB11 + s8viAB11)) | AB, δi]

(l)E [exp (i ((s1 + s3)viA000 + s2viB000 + s4viA011 + (s5 + s8)viAB11 + s6viB011 + s7viBB11)) | AB, δi]

(m)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s5 + s8)viA011 + s6viB011 + s7viBB11)) | AB, δi]

(n)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s8)viA011 + s5viAA11 + (s6 + s7)viB011)) | AB, δi]

(o)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s8)viA011 + s5viAA11 + s6viB011 + s7viBB11viB)) | AB, δi]

(p)E [exp (i ((s1 + s3)viA000 + s2viB000 + (s4 + s8)viA011 + s5viAB11 + s6viB011 + s7viBB11)) | AB, δi] .

We use the same basic approach as above. When we set various values of sj to zero we can

identify the components. To see how to identify all of these terms, setting s3 = s8 = s5 = 0 all

of the terms simplify to either

E exp [i (s1viA000 + s2viB000 + s4viA011 + s6viB011 + s7viBB11) | AB, δi] ,

or

E exp [i (s1viA000 + s2viB000 + s4viA011 + (s6 + s7)viB011) | AB, δi] .

However, we have already shown identification of latter of these terms, which means the for-

mer is identified. Identification of this gives identification of term (m). Using a similar argu-

ment, setting s3 = s7 = s8 = 0 we can identify term (n). Given these setting s3 = s5 = 0 we

can show that (p),(i) and (l) are identified. Setting s3 = s8 = 0 we can identify (o), s3 = s7 = 0

gives (j), s5 = s8 = 0 gives (e), and s7 = s8 = 0 gives ( f ). Now with these setting s3 = 0

gives (k), s8 = 0 gives (g), s5 = 0 gives (a), (d), and (h), and s7 = 0 gives (b). This leaves

only term (c) which is identified by varying all 8 terms given knowledge of all the other terms.

This is the characteristic function for the joint distribution. Thus, we have shown that the

joint distribution of wages for type AB workers can be non-parametrically identified, since the

characteristic function uniquely determines the distribution.

Identification of the Distribution of Wages for the Other Types

Using a symmetric argument reversing A and B we can show that the distribution of

(RiA00, πiA, RiBA0, RiB00, πiB, RiA01, RiBA1, RiB01)
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conditional on Ci = BA.

Next, consider the A0 types. We will use an argument similar to above, though it will be

much simpler as there are fewer labor market statuses to worry about.

Table D4
Labor Market Statuses for A0 workers

j(i, t) h(i, t) `(i, t) h0(i, t) Wage log(Wage)
A 0 0 0 RiA00 viA000
A 0 A 0 πiA viAA00
A 1 0 0 RiA00ψ1 viA000
A 1 A 0 πiAψ1 viAA01
A 1 0 1 RiA01ψ1 viA011
A 1 A 1 πiAψ1 viAA11

From Table D4 one can see that for an A0 worker wages depend on the joint distribution of

just three objects (in addition to ψ1)

(RiA00, πiA, RiA01).

Since there are three objects to identify we only need to use the first three periods. We

consider the following the transition path. People begin non-employed at time zero and we

will take d4 > 1

Transition Time
Start at A 1− d1
Move to non-employment 1 + d2
Start at A 2− d3
Move to non-employment 2 + d4
Still Working 3
Spell starting at A type firm after 3

Let Ti be the duration of the spell with the hazard rate vi.
We can identify

E exp [i (s1wi1 + s2wi2 + s3wi3 + s4Ti) | d]
ψw (s4)

=P(AB | d)E exp [i (s1wi1 + s2wi2 + s3wi3 + s4vi) | AB, d]

+ P(BA | d)E exp [i (s1wi1 + s2wi2 + s3wi3 + s3vi) | BA, d]
+ P(A0 | d)E exp [i (s1wi1 + s2wi2 + s3wi3 + s4vi) | A0, d] .

Since everything else in this expression is identified, we can identify

E exp [i (s1wi1 + s2wi2 + s3wi3 + s4vi) | A0, d].

Furthermore, analogous to the argument above using d7, we now vary d2 to identify the

expected value of (wi1, wi2, wi3, δi) conditional on d and human capital arriving between time

1 and 1 + d2 (write this conditioning as Hi2 = 1). Then we can identify

E exp [i (s1wi1 + s2wi2 + s3wi3 + s4δi [1− P∗PA]) | A0, d, Hi2 = 1] .
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In this case there is only one thing to worry about - whether the worker received and offer

from another A firm between periods 2 and 3. Thus taking d1 ↓ 0 and d3 ↓ 0 we can identify

lim
d1,d3↓0

E exp [i (s1wi1 + s2wi2 + s3wi3) | A0, d, δi, Hi2 = 1]
φξ (s1) φξ (s2) φξ (s3)

=e−λA E exp [i (s1viA000 + [s2 + s3]viA011) | A0, δi]

+
(

1− e−λA
)

E exp [i (s1viA000 + s2viA011 + s3viAA11) | A0, δi] .

Set s3 = 0 and we can identify E exp [i (s1viA000 + s2viA011) | A0, δi] . Knowledge of this gives

knowledge of E exp [i (s1viA000 + [s2 + s3]viA011) | A0, δi] and then allowing s3 to vary means

we can identify E exp [i (viA000 + s2viA011 + s3viAA11) | A0, δi] and thus the joint distribution

of (RiA00, πiA, RiA01) conditional on δi for Ci = A0.

An analogous argument gives identification of the joint distribution of (RiB00, πiB, RiB01)

conditional on δi for Ci = B0.

Thus, we have shown that wages, turnover parameters, and type proportions are identi-

fied.
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Appendix E Robustness and Identification in Practice

Here we provide more details on the exercises discussed in Section 9 of the paper. In Section

9, we discussed five different checks. The main results were presented in the paper, but the

details of four of the checks were not. We present the details in this section. We also present

some more details on the exercise in Section 9.1.

E.1 Alternative Auxiliary Parameters

We discuss this in more detail in the main text of the paper in Section 9.1, but here we show

how the estimated parameter values differ across the specifications.

Table E.1: Estimation under Alternative Auxiliary Parameters: Sensitivity of Structural Param-
eters

Baseline Alternative 1 Alternative 2 Alternative 3

Eθ Mean worker productivity 4.263 3.1% 0.9% 3.6%

σθ Std dev of worker productivity 0.217 1.6% 1.0% -1.9%

σvp Std dev of match productivity 0.212 -5.7% -0.6% -0.8%

α Weight on log wage 3.574 -39.5% 88.7% 2.7%

β Bargaining power 0.848 2.2% 2.1% -2.6%

P∗ Probability of imm offer upon job dest 0.391 -4.2% 6.0% -1.3%

λn Non-employment job offer arrival rate 0.993 -22.6% 0.4% -7.2%

λe Employment job offer arrival rate 2.076 -36.2% -4.6% -3.7%

µδ Mean of log job destruction dist -2.950 -17.1% -1.2% 0.6%

σδ Std dev of log job destruction dist 2.273 -31.0% -6.6% -0.1%

b1 × 100 Coef on linear term (human capital) 0.209 -468.1% 181.6% 36.1%

b2 × 100 Coef on quadratic term (human capital) 0.094 117.0% -32.2% 26.3%

σξ Std dev of measurement error 0.139 -0.2% 0.7% 0.0%

fu Firm utility parameter 2.185 -25.9% 155.4% -17.9%

fp Firm productivity parameter 0.141 2.1% -11.9% -5.3%

fu,p ×100 Firm utility×productivity parameter 0.370 1709.9 % -6867.5% -3746.1 %

σν Std dev of idiosyncratic non-emp utility 0.352 52.7 % 11.1 % -13.3 %

γθ Worker ability cont to flow utility -0.274 72.1 % -6.8 % -141.4 %

E.2 Estimation Under Alternative Restricted Models

In this subsection, we discuss our estimates of restricted versions of the main model. In each

model we eliminate one of the proposed drivers of wage variance and see how this affects the

fit of the model, the structural parameters obtained, and most importantly the counter-factual

scenarios.11

11For search frictions we do not quite eliminate it, but make it much weaker.
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Table E.2 show the results from seven different restrictions on the model. Given the compu-

tational time in doing this exercise, we use fewer worker simulations. In our base estimates we

simulate 1,580,000 worker histories, but in these cases we use 158,000. The simulation error is

small relative to the differences in the counterfactuals. For this reason, the results for the base

model do not exactly correspond to the estimates in the main results in the paper, but one can

see they are very close. In the rows with the auxiliary parameters, the first column shows the

data values and then each column show the percentage difference between the real and sim-

ulated data starting with the baseline estimation. In the rows with the structural parameters,

the column with the baseline model shows the parameters obtained previously and all other

rows show the percentage difference. Finally, the counterfactuals are presented in the bottom

of the table.

In the first restricted model in Table E.2, we eliminate human capital accumulation via

learning by doing (b1 = b2 = 0). This model fits well except for the parameters of the estimated

wage equation (experience, experience2, and tenure2). The counterfactuals are very similar.

This is not surprising. Human capital operates fairly orthogonal to the other mechanisms in

the model.12 We next eliminate bargaining by setting β = 1. In this case, surprisingly, we

can actually fit the tenure squared auxiliary parameter, but one can see that this is done by

changing the human capital parameters (b1 and b2) such that we do not match those auxiliary

parameters. This makes very little difference to the counterfactuals in the end. The fact that

this fit is relatively good is in large part because the coefficient on tenure squared is relatively

small. This means that we can fit it in a model without bargaining. This is also clear from the

next subsection, where we measure the sensitivity of the auxiliary and counterfactuals to the

structural parameters, the link between the bargaining parameter and the coefficient on tenure

squared is clear.

Eliminating premarket skills across jobs (σvp = 0) causes the model to miss wildly on the

between job variance. The reason that the model does not generate more between job variance

by increasing fp is that this would cause E(w̃itw̃−it) to overshot. Eliminating all variation in

premarket skills (γθ = σθ = σvp = 0), the model misses in both the between job and between

person variances.

Next, we eliminate preferences for non-pecuniary aspects of jobs. First, we set the variance

of the prefence across workers within a job to zero by setting var(vu
ij) = 0. In the baseline

estimation α was estimated instead of var(vu
ij), which we normalized to 1. We now fix α = 1

instead. This leads the model to miss in many dimensions. The two most important ones
12Except that is of course interacts with frictions, since workers need to be employed to accumulate it.
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Table E.2: Estimation under Alternative Models: Sensitivity of Auxiliary Parameters, Struc-
tural Parameters, and Counterfactuals

Base No No No Pre. No Pre. No Tastes No Tastes λn = 10.0

Model LBD Monop. Across Total Across Total λe = 10.0

Avg. Length Emp. Spell 377 0.1% -2.5% 2.1% -0.3% -7.5% 11.6% 2.4% 10.4%

Avg. Length Nonnemp. Spell 91.4 -0.3% -1.8% 1.6% -0.6% 4.7% -34.9% -37.5% -34.4%

Avg. Length Job 106 -0.0% -1.3% -1.2% -2.4% -10.9% -7.2% -16.7% -26.0%

Sample mean wi`jt 4.50 0.0% 0.0% -0.1% 0.0% -1.1% 2.1% -0.4% 0.0%

Between Persons×100 8.03 0.2% -5.0% 0.5% -0.5% -81.5% -18.6% -23.3% 5.5%

Between Jobs×100 2.87 -0.2% -1.7% -0.4% -58.7% -55.6% -10.5% -13.2% -10.7%

Within Job×100 1.49 0.1% 0.5% -0.5% 9.7% 8.6% 7.3% -0.1% 2.9%

E
(

w̃i`jw̃−i`j

)
× 100 0.77 0.1% -3.0% -21.2% 6.9% 9.9% -24.3% -41.2% 0.8%

E
(

r̃−i`jw̃i`j

)
× 100 0.69 -0.1% 3.7% -5.5% 0.4% 14.1% 8.7% 33.3% 10.7%

cov(r̃−i`j , S̃i`j)× 100 8.18 0.6% -8.5% 0.6% 3.6% -5.8% -30.7% -77.0% -52.5%

Fraction Wage Drops 0.400 -1.8% 1.5% 4.2% 6.5% 4.2% -27.1% -41.2% -9.8%

Coeff Exper×100 2.48 -0.4% -31.1% -23.4% 6.2% 15.8% 9.7% 11.9% 17.2%

Coeff Exper2 × 1000 -0.291 -0.4% -61.9% 16.2% -0.2% 21.7% -6.6% -0.6% 6.0%

Coeff Tenure2 × 1000 -0.460 0.2% 34.0% -2.2% 4.5% -0.9% 28.5% 16.4% 6.1%

Var(Nonemployment) 16000 1.4% 6.7% -1.2% 2.5% 1.7% 6.3% 17.3% 75.8%

Cov(wi , Non-employment) -3.42 -0.1% 5.1% 0.3% -0.5% -85.4% 16.2% -1.0% -5.3%

Var(Employment Dur) 102000 1.0% 0.4% -0.3% 0.4% -5.4% 2.7% 0.4% 2.7%

Invol Job to Job 0.205 0.0% -0.2% 1.3% 0.5% 3.8% -24.3% -7.5% 7.7%

Eθ 4.263 1.9% -2.9% 4.2% 2.2% -2.3% -6.6% -6.6%

σθ 0.217 4.3% 4.0% 20.8% - -2.5% -6.1% 7.5%

σvp 0.212 2.0% 1.6% - - -0.1% 0.0% 8.0%

α 3.574 -2.4% -22.5% -14.4% -4.7% - - 35.0%

β 0.848 -7.6% - -3.1% 0.1% -31.6% -31.7% -15.6%

P∗ 0.391 0.4% 5.7% 2.2% -0.2% -0.0% -0.0% 39.9%

λn 0.993 26.4% -16.4% -1.7% -17.9% 146.8% 227.4% -

λe 2.076 11.3% 1.2% 6.4% 5.2% 112.5% 134.8% -

µδ -2.950 -2.0% -0.3% -1.9% -16.5% 20.1% 2.9% 16.5%

σδ 2.273 1.3% -6.7% -1.3% -12.1% -0.1% -0.0% 3.8%

b1 × 100 0.209 - 2969.5% -393.7% -175.1% 19.0% 20.3% 27.7%

b2 × 100 0.094 - -618.1% 92.1% 84.4% -18.6% 9.6% 33.2%

σξ 0.139 0.6% 2.6% 3.9% 6.2% 0.0% 0.0% -0.2%

fu 2.185 -6.1% -11.8% -8.2% -20.9% -90.7% - -16.3%

fp 0.141 8.1% -14.9% -1.9% -1.0% -0.0% -0.0% 43.7%

fu,p ×100 0.370 2783.0% 116.3% -2419.8% -2823.7% 0.2% 0.2% 4780.3%

σν 0.352 -4.0% 29.1% 12.8% 6.2% -86.5% -86.5% -6.0%

γθ -0.274 16.7% 56.2% -174.3% -408.5% 36.5% 36.5% 365.3%

Full Model 0.105 0.100 0.104 0.087 0.022 0.088 0.082 0.106

No Learning by Doing 0.096 0.100 0.098 0.081 0.013 0.081 0.074 0.096

No LBD/Monopsony 0.093 0.096 0.098 0.077 0.008 0.071 0.065 0.091

No LBD/Monop./Premarket Across 0.049 0.050 0.053 0.077 0.008 0.032 0.025 0.041

No LBD/Monop./Premarket Total 0.008 0.008 0.006 0.008 0.008 0.006 0.006 0.010

No LBD/Monop./Search 0.086 0.090 0.093 0.078 0.007 0.059 0.050 0.085

No LBD/Monop./Nonpecuniary 0.087 0.091 0.091 0.074 0.004 0.068 0.065 0.084

No LBD/Monop./Pre. Across/Search 0.049 0.049 0.053 0.077 0.008 0.031 0.024 0.039

No LBD/Monop./Pre. Total/Search 0.007 0.006 0.005 0.007 0.007 0.005 0.004 0.007

No LBD/Monop./Pre. Across/NonPec. 0.048 0.049 0.052 0.074 0.004 0.031 0.025 0.039

No LBD/Monop./Pre. Total/Nonpec. 0.006 0.007 0.005 0.003 0.004 0.006 0.006 0.009

No LBD/Monop./Search/Nonpec. 0.061 0.068 0.066 0.072 0.000 0.054 0.050 0.070

No LBD/Monop./Pre. Across/Search/Nonpec. 0.047 0.047 0.051 0.072 0.001 0.030 0.024 0.038



are the fraction of wage drops and the correlation across workers in tastes of jobs E(S̃i`jr̃−i`j).

Trying to fit these, the model misses on other auxiliary parameters as well. Including the non-

employment rate and the correlation of wages with coworkers.

We next eliminate preferences for non-pecuniary aspects of jobs completely by setting the

variances of firm and match specific non-pecuniary terms to zero ( fu = var(vu
ij) = 0).13 Thus,

workers now chose jobs simply by maximize wages. In addition to the two auxiliary parame-

ters from before the correlation between the preference for the job and wages, E(w̃itr̃−it), is off

as is E(w̃itw̃−it), since the parameters that determine it are related to the first.

We cannot completely eliminate search as in that case all individuals would start at their

favorite job immediately and never leave making the model not very interesting and making

it impossible to even measure many of our auxiliary parameters. Instead, we just increase

the value of the arrival rates to 10. As predicted we are way off on-the-job length auxiliary

parameters, but the counterfactuals change very little.

E.3 Sensitivity of Auxiliary Parameters and Counterfactuals to Alternative Struc-
tural Parameters

In the following three tables (E.3a-E.3c) we change the structural parameters to alternative

values to see what happens to the counterfactuals and the auxiliary parameters.

In each of the tables the first row shows the value we change the structural parameters to.

The first column show the main specification estimated in section 8 of the paper.

13Again, we fix α = 1.
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There are a lot of parameters, so we avoid a full discussion. Our view is that generally

the identification map in Table 2 of the paper does quite well in giving an intuition of where

identification is coming from. Some of the minor changes have to do with selection in terms of

who works.

It should be pointed out that the identification map in Table 2 is overly simplified. This is

because a lot of the parameters interact. For example, since human capital affects the relative

taste for leisure when we eliminate human capital the moments related to duration of non-

employment spells increase. This does not mean human capital helps identify this parameter

in practice, though, because the arrival rate of jobs from non-employment would adjust to fit

that moment.

E.4 Sensitivity of Results to Alternative “Normalization”

Recall, that in our main specification we made two “normalizations.” However, given our

functional form assumptions those are not precisely normalizations. Non-parametrically they

would be, but once we have restricted the distribution of the error terms to be jointly normal, it

is not formally innocuous. In this subsection, we show that if we use a very different “normal-

ization” where we fix β = 0 and α = 1 and then estimate var(vu
ij) together with cov

(
vu

ij, vp
ij

)
,

we get the same main results, while the parameter estimates of course differ.

To understand the issues, consider our parametric model

log(πij) = θi + µ
p
j + vp

ij

uij(πijψh) = α(θi + log(ψh)) +
(

αµ
p
j + µu

j

)
+
(

αvp
ij + vu

ij

)
ui0t = α [E(θi) + γθ (θi − E(θi)) + νn

io] .

If we ignored the bargaining (i.e. β = 1) part there are two normalizations that would be

needed.

• A scale normalization on utility since utility is only identified up to scale. We essentially

impose this in estimation by normalizing the variance of vu
ij to be one.

• The second is to note that once we have the scale, we can identify

cov
(

vp
ij, αvp

ij + vu
ij

)
=ασ2

p + cov
(

vp
ij, vu

ij

)
,

so one can see that we cannot separately identify α from cov
(

vp
ij, vu

ij

)
. Loosely speaking,

we have two pieces of information from the data. The first is wages from which we

E -8



can identify πij and the second is revealed preferences from which we can identify the

ranking of jobs. There are two reasons why the two rankings (productivity and utility)

do not coincide. First, the strength of the covariance between the two in the joint offer

distribution and second the value of α. We deal with this in the main specification by

normalizing cov
(

vp
ij, vu

ij

)
= 0, so α is identified from this covariance (which has the

nice interpretation as the relative weight one puts on wages relative to non-pecuniary

aspects).

In the non-parametric framework, we showed that β is not formally identified. When we in-

clude bargaining some of these normalizations are not quite normalizations anymore, because

we are assuming parametric distributions on the error terms and with bargaining wages are

nonlinear. Intuitively, once we have made the “normalizations” above, β should be identified

from the growth of wages on-the-job, since we have essentially pinned down the scale of the

analogue of ViA − Vi0. But intuitively, the value of β depends very much on these normaliza-

tions and a different normalization would lead to a different β.

To explore this, we try a different parameterization (which we think of as a normalization,

but formally is not). We estimate the model fixing β = 0 and α = 1, but we relax our other two

assumptions by allowing the variance of vu
ij to be free as well as cov

(
vp

ij, vu
ij

)
.

We use the specific parameterization

log(πij) = θi + µ
p
j + σpvp

ij

uij(πijψh) = (θi + log(ψh)) +
(

µ
p
j + µu

j

)
+
(

a1vp
ij + a2vu

ij

)
,

where the v′s are both standard normal and uncorrelated with each other. Since they are jointly

normal, it is a general way to do this. Thus, σ2
p is the variance of the productivity error term,

σpa1 is the covariance between the productivity and the taste error terms and a2
1 + a2

2 is the

variance of the taste error term.

This proved to be a challenging exercise. In the base model, β was pinned down by the

magnitude of the tenure effect (proxied by the coefficient on tenure squared). Setting β = 0 to

get a similar low level of tenure effect requires a model in which workers are much closer to

indifferent between all jobs. This requires the variance of the error term in the utility function(
a1vp

ij + a2vu
ij

)
to be very small. When that happens, the model is going to be sensitive to other

parameters and hard to estimate. We simplified the model further by assuming γθ = 1 and the

variance of νn
io in the utility for non-employed to be zero and we no longer try to fit the vari-

ance of non-employment durations or the correlation between wages and non-employment
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durations. In practice, these parameters are very hard to pin down, but not important for the

counterfactuals, so we do not lose much by ignoring them.

The second issue is human capital. This is another reason why one can get bargaining to

be important. Since the value of human capital is higher on-the-job than off-the-job when high

human capital workers get hired they get a very low initial wage leading to a substantial return

to tenure when they subsequently get outside offers.

Our estimate of this model is presented in Table E.4.

We make a few comments about the results:

• The fit is not as good as in our base case. The main issue is human capital. The proposed

model cannot fit both the human capital profile, which we understate, and the magnitude

of the returns to tenure, which we overstate.

• The small values of a1 and a2 indicate the main part of the trade off. The variance of the

vu
ij terms is very low, so workers are close to being indifferent between the different jobs.

• Most importantly the main results of the counterfactual simulations are quite similar to

our main model.

• The one odd exception is learning by doing. In this case, inequality goes up when we

eliminate it. The reason is because we eliminate heterogeneity by allowing people to

learn instantly, everyone has the maximum value. That increases inequality because it

makes the bargaining more important (high human capital workers with an outside offer

earn much more than high human capital workers directly hired from non-employment).

If we eliminated human capital the other way-by assuming you never learn at all-we find

that inequality decreases.
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Table E.4: Sensitivity of Results to Alternative “Normalization”
Base New

Data Model Model
Avg. Length Emp. Spell 377 377 377
Avg. Length Nonnemp. Spell 91.4 91.2 95.9
Avg. Length Job 106 106 107
Sample mean wi`jt 4.50 4.50 4.41
Between Persons×100 8.03 8.00 7.60
Between Jobs×100 2.87 2.88 3.04
Within Job×100 1.49 1.49 1.42
E
(
w̃i`jw̃−i`j

)
× 100 0.77 0.77 0.73

E
(
r̃−i`jw̃i`j

)
× 100 0.69 0.69 0.69

cov(r̃−i`j, S̃i`j)× 100 8.18 8.21 8.69
Fraction Wage Drops 0.400 0.392 0.391
Coeff Exper×100 2.48 2.47 1.80
Coeff Exper2 × 1000 -0.291 -0.292 -0.190
Coeff Tenure2 × 1000 -0.460 -0.460 -0.602
Var(Employment Dur) 102000 102666 102518
Invol Job to Job 0.205 0.205 0.211
Eθ 4.263 4.259
σθ 0.217 0.203
σvp 0.212 0.212
a1 0.0059
a2 0.0064
P∗ 0.391 0.391
λn 0.993 0.567
λe 2.076 1.648
µδ -2.950 -2.880
σδ 2.273 2.206
b1 × 100 0.209 0.424
b2 × 100 0.094 -0.021
σξ 0.139 0.135
fu 2.185 0.014
fp 0.141 0.129
fu,p ×100 0.370 4.856
Full Model 0.105 0.102
No Learning by Doing 0.096 0.092
No LBD/Monopsony 0.093 0.092
No LBD/Monop./Premarket Across 0.049 0.049
No LBD/Monop./Premarket Total 0.008 0.007
No LBD/Monop./Search 0.086 0.080
No LBD/Monop./Nonpecuniary 0.087 0.085
No LBD/Monop./Pre. Across/Search 0.049 0.049
No LBD/Monop./Pre. Total/Search 0.007 0.007
No LBD/Monop./Pre. Across/NonPec. 0.048 0.049
No LBD/Monop./Pre. Total/Nonpec. 0.006 0.006
No LBD/Monop./Search/Nonpec. 0.061 0.051
No LBD/Monop./Pre. Across/Search/Nonpec. 0.047 0.046



E.5 Allowing for different degrees of complementarity between firms and workers

Our standard model of production is

log(πij) = θi + µ
p
j + vp

ij.

Note that since this is logs, in levels it does impose some complementarity between firms and

workers. However, since workers have log utility, this will have no impact on sorting. We do

not explicitly estimate parameters on sorting, but instead perform a robustness check to see

how the results would change in a model with more complementarity between worker skill(
θi + vp

ij

)
and the firm component µ

p
j . In particular, we generalize the production function to

log
(
πij
)
= θ + µ

p
j +

(
ω

µ
p
j − µ`

µu − µ`
+ (1−ω)

) (
θi − θ + vij

)
where µu is the largest value of µ

p
j and µ`is the lowest. Note that when ω = 0 we are in our

base case, when ω = 1 all workers are equally productive at the least productive firm.

We re-estimate the model with ω = 1/2 and ω = 1 and present the results in Table E.5. In

the first panel, we show the fit of the model in terms of deviations from the targeted auxiliary

parameters. One can see that both models fit very well. The next panel presents how the

estimated parameters differ from the baseline model. In some cases the deviation is quite

large-though the interpretation of some of the parameters are now very different.

Most important in the third panel we re-simulate the model decomposition. The main

results of the model do not change very much. Premarket skills remain the most important-

and the relative importance of the across variation in premarket skills is remarkably similar

to the baseline case. The one thing that does change is the sign of removing search frictions,

which go from a relatively small negative effect to a similar magnitude positive effect. This

occurs almost by assumption-a positive α means that finding a good match is relatively more

important for high θi workers than for low ones. This mean that relaxing search frictions

helps those individuals. For a similar reason when α = 1, eliminating preferences for non-

pecuniary aspects of jobs also increases inequality. We view α = 1 and α = 1/2 as quite

extreme parameter values, but ultimately this is an empirical question that we leave for future

work.
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Table E.5: Sensitivity of Results to Alternative Parameterization of Production Function

log
(
πij
)
= θ + µj +

(
α

µ
p
j −µ`

µu−µ` + (1− α)

) (
θi − θ + vij

)
Data Baseline Model

α = 0 α = 1
2 α = 1

Avg. Length Emp. Spell 377 0.1% 0.3% 0.4%
Avg. Length Nonnemp. Spell 91.4 -0.3% -1.9% -1.0%
Avg. Length Job 106 -0.0% -0.4% -0.7%
Sample mean wi`jt 4.50 0.0% -1.5% -3.4%
Between Persons×100 8.03 0.2% -0.0% -3.2%
Between Jobs×100 2.87 -0.2% -2.2% -3.1%
Within Job×100 1.49 0.1% -1.2% 0.1%
E
(
w̃i`jw̃−i`j

)
× 100 0.77 0.1% -2.7% -0.3%

E
(
r̃−i`jw̃i`j

)
× 100 0.69 -0.1% 0.7% -1.8%

cov(r̃−i`j, S̃i`j)× 100 8.18 0.6% -0.5% 0.8%
Fraction Wage Drops 0.400 -1.8% -1.8% -1.6%
Coeff Exper×100 2.48 -0.4% -1.8% -0.3%
Coeff Exper2 × 1000 -0.291 -0.4% 1.9% 0.4%
Coeff Tenure2 × 1000 -0.460 0.2% -0.3% -2.0%
Var(Nonemployment) 16000 1.4% 0.2% 2.0%
Cov(wi, Non-employment) -3.42 -0.1% -0.4% -1.1%
Var(Employment Dur) 102000 1.0% 1.0% 1.0%
Invol Job to Job 0.205 0.0% 0.2% -0.9%
Eθ 4.263 -1.6% -3.0%
σθ 0.217 18.7% 49.2%
σvp 0.212 21.1% 35.0%
α 3.574 -0.0% -0.0%
β 0.848 1.5% 0.0%
P∗ 0.391 0.1% 0.3%
λn 0.993 -0.2% -0.1%
λe 2.076 1.0% 4.4%
µδ -2.950 0.0% 0.0%
σδ 2.273 -0.3% -0.4%
b1 × 100 0.209 267.3% -7.4%
b2 × 100 0.094 -52.2% 5.9%
σξ 0.139 0.0% 0.0%
fu 2.185 -1.8% -0.0%
fp 0.141 -42.0% -80.4%
fu,p ×100 0.370 296.3% 170.3%
σν 0.352 -5.0% -15.1%
γθ -0.274 26.4% 89.2%
Full Model 0.105 0.104 0.101
No Learning by Doing 0.096 0.095 0.092
No LBD/Monopsony 0.093 0.093 0.089
No LBD/Monop./Premarket Across 0.049 0.047 0.041
No LBD/Monop./Premarket Total 0.008 0.003 0.000
No LBD/Monop./Search 0.086 0.100 0.115
No LBD/Monop./Nonpecuniary 0.087 0.092 0.098
No LBD/Monop./Pre. Across/Search 0.049 0.054 0.044
No LBD/Monop./Pre. Total/Search 0.007 0.002 0.000
No LBD/Monop./Pre. Across/NonPec. 0.048 0.057 0.044
No LBD/Monop./Pre. Total/Nonpec. 0.006 0.001 0.000
No LBD/Monop./Search/Nonpec. 0.061 0.075 0.102
No LBD/Monop./Pre. Across/Search/Nonpec. 0.047 0.062 0.044



References

French, E. and C. Taber (2011). Identification of models of the labor market. In D. C. O.

Ashenfelter (Ed.), The Handbook of Labor Economics Volume 4A.

Kotlarski, I. (1967). On characterizing the gamma and the normal distributions. Pacific Jour-

nal of Mathematics 20(1), 69–76.


