Taking the Model to the Data

October 4, 2015

An estimable model

Lets think of a nice way to bring model to data

$$w_{it} = \varphi(S, X) e^{\theta_i + \varepsilon_{it}}$$

where

- S : schooling
- X : experience
- $\theta_i + \varepsilon_{it}$: error term
- φ: human capital production function or hedonic pricing function
- Most models assume it is production function

Take logs

$$\log(w_{it}) = \log(\varphi(S, X)) + \theta_i + \varepsilon_{it}$$

Lets assume that

- ε_{it} just represents measurement error It is irrelevant to the agent
- No tuition (or at least income during school~tuition paid)
- Separability

$$\varphi(S,X) = f(S)g(X)$$

Then

$$V_{i}(S; r) = \int_{S}^{\infty} e^{-rt} \varphi(S, t - S) e^{\theta_{i}} dt$$

$$= \int_{S}^{\infty} e^{-rt} f(S) g(t - S) e^{\theta_{i}} dt$$

$$= e^{-rS + \theta_{i}} f(S) \int_{S}^{\infty} e^{-r(t - S)} g(t - S) dt$$

$$= e^{-rS + \theta_{i}} f(S) \int_{0}^{\infty} e^{-rX} g(X) dX$$

Internal rate of return comparing schooling levels *S* and *S* + *d* is defined as $\rho(S, S + d)$

$$V_{i}(S + d; \rho(S, S + d)) = V_{i}(S; \rho(S, S + d))$$

$$e^{-\rho(S,S+d)(S+d) + \theta_{i}} f(S + d) \int_{0}^{\infty} e^{-\rho(S,S+d)X} g(X) dX$$

$$= e^{-\rho(S,S+d)S + \theta_{i}} f(S) \int_{0}^{\infty} e^{-\rho(S,S+d)X} g(X) dX$$

$$e^{-\rho(S,S+d)S} f(S + d) = e^{-\rho(S,S+d)S} f(S)$$

Thus

$$\rho(S, S+d) = \frac{\log(f(S+d)) - \log(f(S))}{d}$$

To estimate this model we can just run a nonparametric regression since

$$\log(w_{it}) = \log(f(S)) + \log(g(X)) + \theta_i + \varepsilon_{it}$$

From this you can get the internal rate of return to schooling

People often assume that

$$\log(f(S)) = \beta S$$

Then β is the internal rate of return to schooling

The phrase "returns to" has taken on a much broader meaning

Often use dummies instead of linear term

The Mincer Model

Suppose each period you spend some time working and the rest investing in human capital

Let

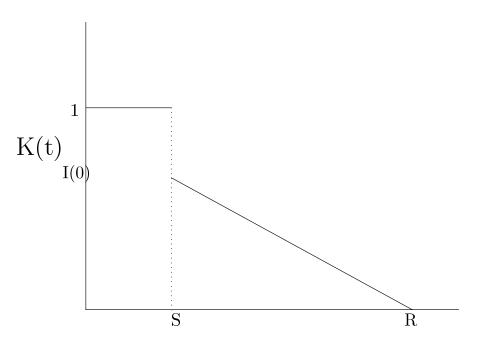
- *K*(*t*) be percentage of time spent investing in human capital
- h(0) human capital at birth

Suppose the human capital production function is

 $\dot{H} = \rho H(t) K(t)$

Solving the differential equation yields

$$\log(H(t)) = \log(H(0)) + \int_0^t \rho K(t) dt$$


Normalizing human capital rental rate to 1

$$w(t) = H(t) \left(1 - K(t)\right)$$

People leave school at time S

Mincer then assumes that

- Retire from the labor market at time R
- K(t) = 1 while in school
- K(t) is linear in the labor force
- *K*(*R*) = 0

Let *x* be experience, i.e. x = t - S and let I(x) = K(t)

$$egin{aligned} \mathcal{H}(S) &= \mathcal{H}(0) e^{
ho S} \ \mathcal{I}(x) &= \mathcal{I}(0) - rac{\mathcal{I}(0)x}{R-S} \end{aligned}$$

SO

$$\begin{aligned} \log(H(x)) &= \log(H(S)) + \rho \int_{0}^{x} I(\xi) d\xi \\ &= \log(H(0)) + \rho S + \rho \left[I(0)x - \frac{I(0)x^{2}}{2(R-S)} \right] \\ &\approx \beta_{0} + \beta_{1}S + \beta_{2}x + \beta_{3}x^{2} \end{aligned}$$

The famous Mincer specification $\beta_{\rm 1}=\rho={\rm internal}$ rate of return to schooling

This is a huge empirical success

Problems:

- Is K(t) really linear?
- Is β_1 the same for everyone?
- Not "structural" in the classic sense
- Implies everyone is exactly indifferent between all levels of schooling-in which case schooling should be very sensitive to anything

Next we will consider an empirical model that relax some of these assumptions.

- They think of schooling based on the Roy model of comparative advantage
- Keep things very simple
- 2 Schooling Choices:
- Attend College or not

Let

- *V_{ci}* be present value of earnings as a college graduate
- V_{Hi} be present value of earnings as a high school graduate

Go to college if $V_{Ci} > V_{Hi}$

Assume exponential growth in earnings

For college

$$W_{cit} = \left\{ egin{array}{c} 0 & t \leq s \ \overline{Y}_{ci} e^{g_{ci}(t-s)} & t > s \end{array}
ight.$$

- *c* represents college
- s is number of years it takes to get a college degree
- t represents age (measured as years since high school graduation)
- *i* is an individual
- \overline{Y}_{ci} is initial wage
- *g_{ci}* growth rates in wages

High School:

$$W_{Hit} = \overline{Y}_{Hi} e^{g_{Hi}(t)}$$

with these terms being defined analogously

Let r_i be individual specific interest rate

Then putting it together

$$V_{ci} = \int_{0}^{\infty} e^{-r_{i}t} W_{cit} dt$$

$$= \int_{s}^{\infty} e^{-r_{i}t} \overline{Y}_{ci} e^{g_{ci}(t-s)} dt$$

$$= e^{-r_{i}s} \overline{Y}_{ci} \int_{0}^{\infty} e^{(g_{ci}-r_{i})t} dt$$

$$= \frac{e^{-r_{i}s} \overline{Y}_{ci}}{r_{i}-g_{ci}}$$

$$V_{Hi} = \int_{0}^{\infty} e^{-r_{i}t} \overline{Y}_{Hi} e^{g_{Hi}t} dt$$

$$= \frac{\overline{Y}_{Hi}}{r_{i}-g_{Hi}}$$

As

- $\overline{Y}_{ci} \uparrow \Longrightarrow college \uparrow$
- $g_{ci} \uparrow \Longrightarrow$ college \uparrow
- $r_i \uparrow \Longrightarrow$ college \downarrow

They allow for heterogeneity in:

- interest rates (r_i)
- initial wages $(\overline{Y}_{ci}, \overline{Y}_{Hi})$
- growth rates (g_{ci}, g_{Hi})

Go to college if $V_{ci} > V_{Hi}$

or

$$-r_i s + \log\left(\overline{Y}_{ci}
ight) - \log\left(r_i - g_{ci}
ight) > \log\left(\overline{Y}_{Hi}
ight) - \log\left(r_i - g_{Hi}
ight)$$

They cheat at this point and assume that

$$\begin{split} \log(\textit{V}_{\textit{ci}}) - \log(\textit{V}_{\textit{Hi}}) \approx & \alpha_0 + \alpha_1 \left[\log\left(\overline{\textit{Y}}_{\textit{ci}}\right) - \log\left(\overline{\textit{Y}}_{\textit{Hi}}\right) \right] + \alpha_2 \textit{g}_{\textit{ci}} \\ & + \alpha_3 \textit{g}_{\textit{Hi}} + \alpha_4 \textit{r}_i \end{split}$$

Assume that

$$\log \left(\overline{Y}_{ci}\right) = X'_i \beta_c + u_{1i}$$

$$\log \left(\overline{Y}_{Hi}\right) = X'_i \beta_H + u_{2i}$$

$$g_{ci} = X'_i \gamma_c + u_{3i}$$

$$g_{Hi} = X'_i \gamma_H + u_{4i}$$

$$r_i = Z'_i \delta + u_{5i}$$

with all of the error terms normally distributed

Data is

- NBER-Thorndike-Hagen Survey of 1968-1971
- Male World War II Veterans who applied for Army Air Corps
- Not random
- Data on schooling
- Wage at two different points in time

Define

$$I_{i} = \log(V_{ci}) - \log(V_{Hi})$$

= $\alpha_{0} + \alpha_{1} \left[\log(\overline{Y}_{ci}) - \log(\overline{Y}_{Hi}) \right] + \alpha_{2}g_{ci} + \alpha_{3}g_{Hi} + \alpha_{4}r_{i}$
= $W_{i}'\pi + \omega_{i}$

where

$$W_i = (X_i, Z_i)$$

$$\omega_i = \alpha_1 (u_{1i} - u_{2i}) + \alpha_2 u_{3i} + \alpha_3 u_{3i} + \alpha_4 u_{4i}$$

Let σ_{ω} be the standard deviation of ω_i

They estimate this model in 3 steps as we did in the Roy model section (ignoring the last stage getting the variance/cov matrix)

VARIABLE	REDUCED FORM (16)		Structure (26)		Structure (29)	
	Coefficient	t	Coefficient	t	Coefficient	t
Constant	.0485	.20	.1512	.22	.1030	.13
Background:					11000	
Father's ED	0145	41	0168	54	0152	49
Father's ED ²	.0037	2.05	.0038	2.26	.0037	2.26
DK ED	4059	-3.96	3924	-2.79	4001	-2.91
Manager	.1897	2.17	.1825	2.13	.1871	2.2
Clerk	.0556	.54	.0561	.59	.0554	.59
Foreman	.0182	.19	.0210	.23	.0200	.22
Unskilled	0910	85	0948	89	0928	87
Farmer	2039	-2.12	2256	-2.27	2094	-2.14
DK job	0413	19	0629	29	0609	28
Catholic	1144	-1.91	0982	-1.51	1083	-1.66
lew	0293	23	.0143	.12	0158	14
Old sibs	0162	93	0162	93	0161	95
Young sibs	.0122	.63	.0096	.49	.0112	.57
Mother works:						
Full 5	.1039	.66	.1168	.81	.1104	.76
Part 5	.2179	1.42	.2106	1.52	.2156	1.56

TABLE 2 College Selection Rules: Probit Analysis

None 5 Full 14	.0655 .2898	.63 2.29	.0677 .2884	.65 2.30	.0661 .2888	.64 2.33
Part 14	.2709	2.20	.2768	2.02	.2693	2.03
None 14	.1980	1.91	.1990	1.92	.1966	1.92
H.S. shop	4411	-6.14	4397	-3.74	4379	-3.90
Ability:						
Read	.0047	1.67				
NR read	2575	-1.41				
Mech	0070	-4.29				
NR mech	-3.0236	-1.04				
Math	.0244	12.34				
NR math	7539	-5.75				
Dext	.0019	.72				
NR dext	2.2797	.47				
Earnings:						
$\ln (\bar{y}_a / \bar{y}_b)$			5.1486	2.25		
g_a			138.3850	1.83	7.6632	.11
g_b			-44.2697	-1.28	71.8981	2.34
$\ln y_a(t)/y_b(t)$					5.1501	2.57
Observations		3611		3611		3611
Limit observations		791		791		791
Nonlimit observations		2820		2820		2820
-2 ln (likelihood ratio)		579.5		568.8		576.6
χ^2 degree freedom		28		23		23

NoTE-t is asymptotic t-statistic: DK: Don't know, dummy variable; NR: No response, dummy variable; other variables are defined in Appendix A.

Step 2 Slightly more complicated then before because we have growth as well

$$E\left(\log\left(Y_{ci}\left(0\right)\right) \mid W_{i}, l_{i} > 0\right) = X_{i}'\beta_{c} + \rho_{1}\frac{\phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}{\Phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}$$
$$E\left(\log\left(Y_{Hi}\left(0\right)\right) \mid W_{i}, l_{i} > 0\right) = X_{i}'\beta_{h} + \rho_{2}\frac{\phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}{1 - \Phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}$$
$$E\left(\frac{\log(Y_{ci}\left(T\right)) - \log\left(Y_{ci}\left(0\right)\right)}{T} \mid W_{i}, l_{i} > 0\right) = X_{i}'\gamma_{c} + \rho_{3}\frac{\phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}{\Phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}$$
$$E\left(\frac{\log(Y_{Hi}\left(T\right)) - \log\left(Y_{Hi}\left(0\right)\right)}{T} \mid W_{i}, l_{i} < 0\right) = X_{i}'\gamma_{H} + \rho_{4}\frac{\phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}{1 - \Phi\left(\frac{X_{i}'\pi}{\sigma_{\omega}}\right)}$$

	DEPENDENT VARIABLE						
Regressor	$ln \ \bar{y}_a$ (1)	$\ln \tilde{y_b}$ (2)	g _a (3)	g _b (4)	$ln y_a(\overline{t})$ (5)	$ \ln y_b(\hat{t}) $ (6)	
Constant	8.7124	2.8901	.1261	.2517	10.3370	7.5328	
	(16.51)	(1.37)	(3.90)	(2.11)	(5.52)	(2.08)	
Read	.0009	0019	.0001	.0003	.0027	.0057	
	(1.21)	(-1.17)	(1.11)	(3.20)	(2.80)	(3.28)	
NR read	.0791	.0506	0034	0046	.0033	0402	
	(1.24)	(.58)	(76)	(89)	(.04)	(42)	
Mech	0002	0005	0001	0001	0021	0017	
	(48)	(54)	(-2.16)	(-1.13)	(-3.59)	(-1.73)	
NR mech	(,	.1969		.0002	(0.00)	.2196	
		(.69)		(.01)		(.68)	
Math	.0015	0013	.0001	0000	.0030	0019	
	(2.02)	(.74)	(1.18)	(20)	(3.31)	(-1.00)	
NR math	1087	.0562	.0015	.0006	0877	.0712	
	(-1.94)	(.83)	(.38)	(.15)	(-1.24)	(.96)	
Dext	.0008	0019	0000	.0003	.0002	.0036	
Dext	(1.03)	(-1.21)	(78)	(2.77)	(.16)	(2.19)	
NR dext	.0751	(1.21)	0004		.1466	()	
NK dext	(.28)	• • •	(02)		(.43)		
Exp	0523	.4260	(02) 0028	0154	(.43) 0129	0770	
схр	(-1.49)	(3.10)				.0776	
Exp ²			(-1.11)	(-1.93)	(29)	(.53)	
r.xp-	.0015	0067	.0000	.0002	0000	0012	
Year 48	(2.22)	(-2.95)	(.21)	(1.82)	(01)	(49)	
rear 48	0020	0156					
V 60	(48)	(-1.72)					
Year 69					0067	.0039	
					(26)	(.09)	
S13-15	.1288		0062		.0168		
	(5.15)		(-3.49)		(.52)		
S16	.0760		.0026		.1095		
	(3.82)		(1.79)		(4.26)		
S20	.1318		.0049		.2560		
	(4.10)		(2.13)		(6.15)		
λα	1069		.0058		.0206		
	(-3.21)		(2.45)		(.49)		
λ _b		0558		.0118		.2267	
		(66)		(2.39)		(2.48)	
R^2	.0750	.0439	.1578	.0513	.0740	.0358	

Finally we go back to the "Structural probit"

$$\begin{split} \log(V_{ci}) &- \log(V_{Hi}) \\ &\approx \alpha_0 + \alpha_1 \left[X'_i \beta_c - X'_i \beta_H \right] + \alpha_2 X'_i \gamma_c + \alpha_3 X'_i \gamma_H + \alpha_4 Z'_i \delta + \omega_i \end{split}$$

Standard errors must be corrected

VARIABLE	REDUCED FORM (16)		Structure (26)		Structure (29)	
	Coefficient	t	Coefficient	t	Coefficient	t
Constant	.0485	.20	.1512	.22	.1030	.13
Background:					11000	
Father's ED	0145	41	0168	54	0152	49
Father's ED ²	.0037	2.05	.0038	2.26	.0037	2.26
DK ED	4059	-3.96	3924	-2.79	4001	-2.91
Manager	.1897	2.17	.1825	2.13	.1871	2.2
Clerk	.0556	.54	.0561	.59	.0554	.59
Foreman	.0182	.19	.0210	.23	.0200	.22
Unskilled	0910	85	0948	89	0928	87
Farmer	2039	-2.12	2256	-2.27	2094	-2.14
DK job	0413	19	0629	29	0609	28
Catholic	1144	-1.91	0982	-1.51	1083	-1.66
lew	0293	23	.0143	.12	0158	14
Old sibs	0162	93	0162	93	0161	95
Young sibs	.0122	.63	.0096	.49	.0112	.57
Mother works:						
Full 5	.1039	.66	.1168	.81	.1104	.76
Part 5	.2179	1.42	.2106	1.52	.2156	1.56

TABLE 2 College Selection Rules: Probit Analysis

None 5 Full 14	.0655 .2898	.63 2.29	.0677 .2884	.65 2.30	.0661 .2888	.64 2.33
Part 14	.2709	2.20	.2768	2.02	.2693	2.03
None 14	.1980	1.91	.1990	1.92	.1966	1.92
H.S. shop	4411	-6.14	4397	-3.74	4379	-3.90
Ability:						
Read	.0047	1.67				
NR read	2575	-1.41				
Mech	0070	-4.29				
NR mech	-3.0236	-1.04				
Math	.0244	12.34				
NR math	7539	-5.75				
Dext	.0019	.72				
NR dext	2.2797	.47				
Earnings:						
$\ln (\bar{y}_a / \bar{y}_b)$			5.1486	2.25		
g_a			138.3850	1.83	7.6632	.11
g_b			-44.2697	-1.28	71.8981	2.34
$\ln y_a(t)/y_b(t)$					5.1501	2.57
Observations		3611		3611		3611
Limit observations		791		791		791
Nonlimit observations		2820		2820		2820
-2 ln (likelihood ratio)		579.5		568.8		576.6
χ^2 degree freedom		28		23		23

NoTE-t is asymptotic t-statistic: DK: Don't know, dummy variable; NR: No response, dummy variable; other variables are defined in Appendix A.