Returns to Schooling

Department of Economics
University of Wisconsin-Madison

October 18, 2015
Returns to Schooling

This comes from the Card Handbook Chapter

Let's assume that

\[\log(W_i) = b_0 + \beta S_i + g(X_i) + \theta_i + u_i \]

where \(W_i \) is wages, \(S_i \) is schooling, \(X_i \) is experience, \(\theta_i \) is unobserved ability, and \(u_i \) is other unobservables.

Is schooling Really linear?
The figure shows that without controlling for ability bias, it seems to be pretty close.

There is a literature on this and there are papers that find evidence of sheepskin effects—but at the very least this is not an unreasonable assumption.
We are worried about ability bias we want to use instrumental variables

A good instrument should have two qualities:

- It should be correlated with schooling (S_i)
- It should be uncorrelated with ability (θ_i) as well as other unobservables)

Many different things have been tried. Lets go through some of them
Family Background

If my parents earn quite a bit of money it should be easier for me to borrow for college

Also they might put more value on education

This should make me more likely to go

This has no direct effect on my income-Wisconsin did not ask how much education my Father had when they made my offer

But is family background likely to be uncorrelated with unobserved ability?
Closeness of College

If I have a college in my town it should be much easier to attend college

- I can live at home
- If I live on campus
 - I can travel to college easily
 - I can come home for meals and to get my clothes washed
- I can hang out with my friends from High school

But is this uncorrelated with unobserved ability?
Quarter of Birth

This is the most creative

Consider the following two aspects of the U.S. education system (this actually varies from state to state and across time but ignore that for now),

- People begin Kindergarten in the calendar year in which they turn 5
- You must stay in school until you are 16

Now consider kids who:

- Can’t stand school and will leave as soon as possible
- Obey truancy law and school age starting law
- Are born on either December 31, 1972 or January 1, 1973
Those born on December 31 will

- turn 5 in the calendar year 1977 and will start school then (at age 4)
- will stop school on their 16th birthday which will be on Dec. 31, 1988
- thus they will stop school during the winter break of 11th grade

Those born on January 1 will

- turn 5 in the calendar year 1978 and will start school then (at age 5)
- will stop school on their 16th birthday which will be on Jan. 1, 1989
- thus they will stop school during the winter break of 10th grade
The instrument is a dummy variable for whether you are born on Dec. 31 or Jan 1

This is pretty cool:

- For reasons above it will be correlated with education
- No reason at all to believe that it is correlated with unobserved ability

The Fact that not everyone obeys perfectly is not problematic:

An instrument just needs to be correlated with schooling, it does not have to be perfectly correlated

In practice we can’t just use the day as an instrument, use “quarter of birth” instead
Another possibility is to use institutional features that affect schooling. Here often institutional features affect one group or one cohort rather than others.
TABLE II

OLS and IV Estimates of the Return to Education with Instruments Based on Features of the School System

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample and Instrument</th>
<th>Schooling Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1930–39 cohort in 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1940–49 cohort in 1980</td>
</tr>
<tr>
<td>2. Staiger and Stock (1997)</td>
<td>1980 Census, Men. Instruments are quarter of birth interacted with state and year of birth. Controls are same as in Angrist and Krueger, plus indicators for state of birth. LIML estimates.</td>
<td>1930–39 cohort in 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1940–49 cohort in 1980</td>
</tr>
<tr>
<td>3. Kane and Rouse (1993)</td>
<td>NLS Class of 1972, Women. Instruments are tuition at 2 and 4-year state colleges and distance to nearest college. Controls include race, part-time status, experience. Note: Schooling measured in units of college credit equivalents.</td>
<td>Models without test score or parental education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Models with test scores and parental education</td>
</tr>
<tr>
<td>4. Card (1995b)</td>
<td>NLS Young Men (1966 Cohort) Instrument is an indicator for a nearby 4-year college in 1966, or the interaction of this with parental education. Controls include race, experience (treated as endogenous), region, and parental education</td>
<td>Models that use college proximity as instrument (1976 earnings)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Models that use college proximity \times family background as instrument</td>
</tr>
<tr>
<td>Study</td>
<td>Sample Description</td>
<td>Methodology</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Models that include parental education and earnings</td>
</tr>
<tr>
<td>7. Ichino and Winter-Ebmer (1998)</td>
<td>Austria: 1983 Census, men born before 1946. Germany: 1986 GSOEP for adult men. Instrument is indicator for 1930–35 cohort. (Second German IV also uses dummy for father’s veteran status). Controls include age, unemployment rate at age 14, and father’s education (Germany only). Education measure is dummy for high school or more.</td>
<td>Austrian Men</td>
</tr>
<tr>
<td></td>
<td></td>
<td>German Men</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1981 Census:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Dummy for 1–2 years of college relative to minimum schooling)</td>
</tr>
<tr>
<td>Author</td>
<td>Sample and Instrument</td>
<td>Schooling Coefficients</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>10. Maluccio (1997)</td>
<td>Bicol Multipurpose Survey (rural Philippines): male and female wage earners age 20–44 in 1994, whose families were interviewed in 1978. Instruments are distance to nearest high school and indicator for local private high school. Controls include quadratic in age and indicators for gender and residence in a rural community.</td>
<td>Models that do not control for selection of employment status or location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Models with selection correction for location and employment status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Duflo (1999)</td>
<td>1995 Intercensal Survey of Indonesia: men born 1950–72. Instruments are interactions of birth year and targeted level of school building activity in region of birth. Other controls are dummies for year and region of birth and interactions of year of birth and child population in region of birth. Second IV adds controls for year of birth interacted with regional enrollment rate and presence of water and sanitation programs in region.</td>
<td>Model for hourly wage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Model for monthly wage with imputation for self-employed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: See text for sources and more information on individual studies.
Consistently IV estimates are higher than OLS

Why?

- Bad Instruments
- Ability Bias
- Measurement Error
- Publication Bias
- Discount Rate Bias
Discount Rate Bias

This is a simplified version of it (and my version of it)

Lang and Card explain it somewhat differently

Suppose 2 levels of schooling and 2 values of instrument

\[S_i = \begin{cases}
0 & \text{High School} \\
1 & \text{College}
\end{cases} \]

\[Z_i = \begin{cases}
1 & \text{with probability } \rho \\
0 & \text{with probability } 1 - \rho
\end{cases} \]

\[\log(W_i) = \theta_i + \beta_i S_i + u_i \]

\[E(u_i) = 0 \text{ and is uncorrelated with } S_i \]

\(S_i \) is potentially correlated with \((\theta_i, \beta_i)\)
Suppose that we have an instrument Z_i which is correlated with S_i but not with (θ_i, β_i, u_i)

$$E (W_i \mid Z_i) = E (\theta_i \mid Z_i) + E (\beta_i S_i \mid Z_i)$$

If $\beta_i = \beta_0$ so it is constant for everyone

$$E (W_i \mid Z_i) = E (\theta_i \mid Z_i) + \beta_0 E (S_i \mid Z_i)$$

so IV works
However if β_i varies across persons then in general

$$E (\beta_i S_i \mid Z_i) \neq E (\beta_i) E (S_i \mid Z_i)$$
Local Average Treatment Effects

To see what it converges to I draw on Imbens and Angrist (EMA, 1994)

Imbens and Angrist (1994) consider the case in which there are not constant treatment effects

We need a “first stage” so Z_i has to be correlated with S_i.

Without loss of generality assume that

$$Pr(S_i = 1 \mid Z_i = 1) > Pr(S_i = 1 \mid Z_i = 0)$$
There are 4 different types of people those for whom $T_i = 1$ when:

1. $Z_i = 1, Z_i = 0$
2. never
3. $Z_i = 1$ only
4. $Z_i = 0$ only

Imbens and Angrist’s monotonicity rules out 4 as a possibility.

Let μ_1, μ_2, and μ_3 represent the sample proportions of the three groups.

and G_i an indicator of the group.
Note that

\[\hat{\beta}_1 \overset{p}{\to} = \frac{\text{Cov}(Z_i, W_i)}{\text{Cov}(Z_i, S_i)} = \frac{\text{Cov}(Z_i, \theta_i + \beta_i S_i + u_i)}{\text{Cov}(Z_i, S_i)} = \frac{\text{Cov}(Z_i, \beta_i S_i)}{\text{Cov}(Z_i, S_i)} \]

\[= \frac{E(Z_i \beta_i S_i) - E(\beta_i S_i) E(Z_i)}{E(Z_i S_i) - E(S_i) E(Z_i)} \]

Recall that \(\rho \) denotes the probability that \(Z_i = 1 \).

Let's look at the pieces
first the numerator

\[
E(\theta_i S_i Z_i) - E (\theta_i S_i) E (Z_i)
\]
\[
= \rho E(\theta_i S_i \mid Z_i = 1) - E (\theta_i S_i) \rho
\]
\[
= \rho E(\theta_i S_i \mid Z_i = 1)
\]
\[
- \left[\rho E(\theta_i S_i \mid Z_i = 1) + (1 - \rho) E(\theta_i S_i \mid Z_i = 0) \right] \rho
\]
\[
= \rho (1 - \rho) \left[E(\theta_i S_i \mid Z_i = 1) - E(\theta_i S_i \mid Z_i = 0) \right]
\]
\[
= \rho (1 - \rho) \left[E(\theta_i \mid G_i = 1) \mu_1 + E(\theta_i \mid G_i = 3) \mu_3 - E(\theta_i \mid G_i = 1) \mu_1 \right]
\]
\[
= \rho (1 - \rho) E(\theta_i \mid G_i = 3) \mu_3
\]
Next consider the denominator

\[E(S_i Z_i) - E(S_i) E(Z_i) \]
\[= \rho E(S_i \mid Z_i = 1) - E(S_i) \rho \]
\[= \rho E(S_i \mid Z_i = 1) \]
\[- [\rho E(S_i \mid Z_i = 1) + (1 - \rho) E(S_i \mid Z_i = 0)] \rho \]
\[= \rho (1 - \rho) [E(S_i \mid Z_i = 1) - E(S_i \mid Z_i = 0)] \]
\[= \rho (1 - \rho) [\mu_1 + \mu_3 - \mu_1] \]
\[= \rho (1 - \rho) \mu_3 \]
Thus

$$\hat{\beta}_1 \to \frac{\rho E(\beta_i \mid G_i = 3) \mu_3}{\rho(1 - \rho) \mu_3} = E(\beta_i \mid G_i = 3)$$

They call this the local average treatment effect.

Thus $\hat{\beta}_{IV}$ may be high because $E(\beta_i \mid G_i = 3)$ may be high.

There are a number of reasons why this might be the case:

- Borrowing Constraints
- Nonlinearities in schooling
Twins

\[
\log(w_{if}) = \theta_f + \beta S_{if} + u_{if}
\]

The problem is that \(\theta_f\) is correlated with \(S_{if}\).

We can solve by differencing

\[
E(\log(w_{if}) - \log(w_{jf})) = \beta E(S_{if} - S_{jf})
\]

Use this to get consistent estimates of \(\beta\)
<table>
<thead>
<tr>
<th>Author</th>
<th>Sample and specification</th>
<th>Cross-sectional OLS</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td>1. Ashenfelter and Rouse (1998)</td>
<td>1991–1993 Princeton Twins Survey. Identical male and female twins. Controls Basic controls include quadratic in age, gender and race. Added controls include tenure, marital status and union status.</td>
<td>Basic</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.010)</td>
<td>(0.019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.008)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>3. Miller et al. (1995)</td>
<td>Australian Twins Register. Identical and fraternal twins. Controls include quadratic in age, gender, marital status. Incomes imputed from occupation</td>
<td>Identical twins</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>4. Behrman et al. (1994)</td>
<td>NAS-NRC white male twins born 1917–1927, plus male twins born 1936–1955 from Minnesota Twins Registry. Controls include quadratic in age b</td>
<td>Identical twins</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>5. Isacsson (1997)</td>
<td>Swedish same-sex twins with both administrative and survey measures of schooling. Controls include sex, marital status, quadratic in age, and residence in a large city c</td>
<td>Identical twins</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fraternal twins</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>
Problems:

- Twins aren’t a random sample of population (and often not a random sample of twins)
- Need to have variation in $S_{if} - S_{jf}$
- Is θ_{if} really the same for identical twins?

In Willis and Rosen two things affect schooling choices:

- r_i
 - ability differences (Roy model style)

These should be the same for both
Suppose that $\theta_{if} \neq \theta_{jf}$

We expect that:

- $\text{corr}(S_{if}, \theta_{if}) > 0$
- $\text{corr}(S_{if} - S_{jf}, \theta_{if} - \theta_{jf}) > 0$

While most of the variation in θ_{if} may be explained by family effects, it may also mean that most of the variation in S_{if} is explained by family effects as well.
Since

\[\beta_{OLS} = \beta + \frac{\text{cov}(S_{if}, \theta_{if})}{\text{var}(S_{if})} \]

\[\beta_{FE} = \beta + \frac{\text{cov}(S_{if} - S_{jf}, \theta_{if} - \theta_{jf})}{\text{var}(S_{if} - S_{jf})} \]

If \(\text{var}(S_{if} - S_{jf}) \) is small the bias could be large

It is not clear which has bigger bias