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Abstract

This paper presents a theoretical case for replacement of conventional heteroskedasticity-consistent

and cluster-robust variance estimators with jackknife variance estimators, in the context of linear regres-

sion with heteroskedastic and/or cluster-dependent observations. We examine the bias of variance es-

timation and the coverage probabilities of confidence intervals. Concerning bias, we show that conven-

tional variance estimators have full downward worst-case bias, while our jackknife variance estimator is

never downward biased. Concerning confidence intervals, we show that intervals based on conventional

standard errors have worst-case coverage equalling zero, while our jackknife-based confidence interval

has coverage probability bounded by the Cauchy distribution. We also extend the Bell-McCaffrey (2002)

student t approximation to our jackknife t-ratio, resulting in confidence intervals with improved cover-

age probabilities. Our theory holds under minimal assumptions, allowing arbitrary cluster sizes, regres-

sor leverage, within-cluster correlation, heteroskedasticity, regression with a single treated cluster, fixed

effects, and delete-cluster invertibility failures. Our theoretical findings are consistent with the extensive

simulation literature investigating heteroskedasticity-consistent and cluster-robust variance estimation.
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1 Introduction

Heteroskedasticity-consistent (HC) and cluster-robust (CRVE) variance estimators and standard er-

rors for regression coefficient estimators are foundational for applied economic analysis. They are used

for measuring estimation precision, confidence interval construction, and tests of hypotheses.

Unfortunately, under standard conditions, conventional HC and CRVE variance estimators can be

fully downward biased, conventional HC and CRVE t-tests can exhibit unbounded size distortions, and

conventional HC and CRVE confidence intervals can have coverage rates equal to zero, even when the

regresson errors are normally distributed.

This situation – full downward bias, unbounded size, and zero coverage probability – can be cor-

rected by replacing conventional variance estimators by an appropriate jackknife estimator. The latter is

simple to calculate. This simple change – the use of jackknife instead of conventional standard errors –

has the result that variance estimation is never downward biased and size distortion is bounded.

Our case for jackknife standard errors is based on the following new theoretical insights. First, under

standard assumptions, the CRVE variance estimator has full worst-case downward estimation bias, while

our jackknife variance estimator is conservative (its expectation is larger than the exact variance). Sec-

ond, under the assumption of cluster-dependent normality, the worst-case coverage probability of the

CRVE-based confidence interval equals zero, while the worst-case coverage probability of our jackknife-

based confidence interval is uniformly bounded and controlled by the Cauchy distribution, where uni-

formity is across all possible regressor and covariance matrix configurations.

Of the above described results, the most important contribution of this paper is the demonstration

that the finite sample coverage probability of our jackknife confidence interval is uniformly bounded by

the Cauchy distribution. This is not an elementary result, but requires a combination of finite sample

analysis, convex analysis, and numerical computation.

All of our theory holds under minimal assumptions, allowing arbitrary cluster sizes, regressor lever-

age, within-cluster correlation, heteroskedasticity, and delete-cluster invertibility failures. Concerning

the latter – delete-cluster invertibility failures – our results allow for the context where a regressor is non-

zero only for a single cluster; for example, regressions with included cluster-level fixed effects, regres-

sions with cluster-level treatment indicators when only one cluster is treated, and saturated regressions

with sparse cell proportions. In contrast, conventional variance estimators (including conventional jack-

knife variance estimators) can fail miserably in such contexts.

A new discovery we highlight is that for jackknife variance estimation to be robust to invertibility

failures, it is critical to carefully modify the jackknife formula so not to discard clusters. Existing methods

(which make ad hoc modifications) fail to be robust.

Our theoretical results are backed by the existing extensive simulation literature investigating ro-

bust variance estimation which has demonstrated that jackknife standard errors provide dramatically

improved finite sample inference in a wide variety of settings.

Furthermore, we investigate the exact distribution of jackknife confidence intervals. We provide a

new exact characterization of the finite sample distribution, and provide a practical approximation to

this distribution based on a student t distribution.
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The family of heteroskedasticity-consistent variance estimators are often written by the monikers

HC0, HC1, HC2, and HC3. The HC0 version was introduced by Eicker (1963), Huber (1967), and White

(1980). The degree-of-freedom correction known as HC1 was suggested by Hinkley (1977), and became

ubiquitous in applied econometric practice by its designation as the default “r” robust option in Stata.

Together, HC0 and HC1 are known as Eicker-Huber-White (EHW) variance estimators. HC2 and HC3

were introduced by MacKinnon and White (1985) as unbiased estimators under homoskedasticity and

the jackknife principle, respectively.

The cluster-robust variance estimator (CRVE) was introduced by Liang and Zeger (1986) and Arel-

lano (1987), is available in Stata through its ubiquitous cluster standard error option, and currently

dominates applied econometric practice. Bell and McCaffrey (2002) introduced two generalizations for

clustered regression similar to HC2 and HC3. The review by MacKinnon, Nielsen, and Webb (2023a) use

the monikers CV1, CV2, and CV3 to denote these three estimators.

The recognition that finite-sample inference based on EHW confidence intervals can be severely

distorted is a recurrent theme in econometrics. Some investigations include Chesher and Jewitt (1987),

Chesher (1989), Chesher and Austin (1991), Long and Ervin (2000), and Young (2019).

There has been a substantial recent literature proposing improved standard errors over the EHW

class under independent sampling. This includes Bera, Suprayitno, and Premaratne (2002), Cattaneo,

Jansson, and Newey (2018), and Kline, Saggio, and Solvsten (2020). These new variance estimators have

the advantage that they are (approximately) unbiased, but have as disadvantages that the variance esti-

mators are computationally burdensome in large samples and are not necessarily positive semi-definite.

These methods, while promising, have not been generalized to the clustered sampling setting and are

not investigated in this paper.

Jackknife standard errors can be paired with conventional critical values (student t or normal) or with

alternative methods. The latter include the distributional adjustments of Bell and McCaffrey (2002), Im-

bens and Kolesár (2016), and Pustejovsky and Tipton (2018), bootstrap percentile-t methods (Cameron,

Gelbach, and Miller (2008)), and the conditional critical values of Pötscher and Preinerstorfer (2023).

The recommendation to use jackknife/HC3 variance estimators is not new. Authors making this rec-

ommendation include Efron and Stein (1981), MacKinnon and White (1985), Andrews (1991), Chesher

and Austin (1991), Long and Erwin (2000), and MacKinnon, Nielsen and Webb (2023abc).

Our analysis applies to all regression contexts. One where the inadequacy of conventional approxi-

mations has received particular attention is regression with a small number of clusters and/or a small

number of treated clusters. This literature includes Conley and Taber (2011), Ibragimov and Müller

(2016), Rokicki, Cohen, Fink, Salomon, and Landrum (2018), Ferman and Pinto (2019), Hagemann (2019,

2023), MacKinnon and Webb (2020), Canay, Santos, and Shaikh (2021), and Niccodemi and Wansbeek

(2022). These applications will also benefit from jackknife standard errors and our adjusted degree of

freedom approximation, as their application will reduce size distortions.

The organization of the paper is as follows. Section 2 introduces clustered regression and the cluster-

robust variance estimator. Section 3 introduces jackknife variance estimation. Section 4 presents results

on variance estimation bias. Section 5 presents the core results on the coverage rates of confidence
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intervals. Section 6 presents results on the distribution of the jackknife t-statistic. Section 7 proposes

an adjusted degree-of-freedom for a student t distributional approximation. Section 8 discusses models

with cluster-level fixed effects. Section 9 presents simulation evidence. Section 10 presents an empirical

application. A conclusion is presented in Section 11. The technical proofs are presented in Section 12.

The R code which generates the numerical calculations presented in the paper, as well as R and Stata

code to implement the proposed variance estimator and degree-of-freedom correction, is posted on the

author’s webpage users.ssc.wisc.edu/~bhansen/.

2 Clustered Regression and the CRVE

The model is a standard clustered sampling regression. The observations are separated into G un-

balanced mutually independent clusters. Notationally, we write the observations on the i th individual

in the g th cluster as (Yi g , Xi g ), for i = 1, ...,ng and g = 1 = 1, ...,G . The variable Yi g is scalar while Xi g is

a k-vector. It is useful to stack the observations by cluster, so that Y g = (Y1g , ...,Yng g )′ is an ng ×1 vector

and X g = (X1g , ..., Xng g )′ is an ng ×k matrix. The number of observations in the g th cluster is ng and the

total number of observations is n =∑G
g=1 ng . Stacking the observations conventionally, we obtain the full

sample (Y , X ).

The observations satisfy the standard linear regression model Yi g = X ′
i gβ+ ei g where β is a k × 1

coefficient vector and ei g is an error. Written at the level of the cluster, the model is

Y g = X gβ+eg (1)

E
[
eg

]= 0 (2)

where eg = (e1g , ...,eng g )′. It is also sometimes convenient to use the full-sample notation Y = Xβ+
e. We will treat the regressors as fixed, but all results go through in the random regressor setting by

conditioning. Define the cluster-level covariance matrices

E
[

eg e ′
g

]
=Σg . (3)

The specification (3) allows the covariance matrices Σg to be a function of the regressors (and hence

conditionally heteroskedastic), and/or to be a function of the cluster g (and hence unconditionally het-

eroskedastic). We follow the clustering literature and impose no structure on Σg . We also define the

full-sample covariance matrix Σ= diag{Σ1, ...,ΣG }.

The model (1)-(3) includes heteroskedastic regression as the special case where ng = 1 for all g . We

call this the “no clustering” or “absence of clustering” case.

Assumption 1 Model (1)-(3) holds, X is full rank, and Σ has finite elements.
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We focus on the least squares estimator

β̂= (
X ′X

)−1 (
X ′Y

)= (
G∑

g=1
X ′

g X g

)−1 (
G∑

g=1
X ′

g Y g

)
.

It is well known that in under Assumption 1, β̂ is unbiased for β with exact covariance matrix

V = var
[
β̂

]= (
X ′X

)−1

(
G∑

g=1
X ′

gΣg X g

)(
X ′X

)−1 .

The nearly ubiquitous cluster-robust variance estimator (CRVE1) for V is

V̂ 1 = G (n −1)

(G −1)(n −k)

(
X ′X

)−1

(
G∑

g=1
X ′

g êg ê ′
g X g

)(
X ′X

)−1 , (4)

where êg = Y g −X g β̂ denotes the least squares residual vector for the g th cluster. CRVE1 was introduced

by Liang and Zeger (1986) and Arellano (1987). The constant appearing in (4) is an ad hoc degree-of-

freedom correction, apparently introduced by the Stata “cluster” covariance matrix option.

In the absence of clustering, (4) specializes to the HC1 “heteroskedasticity-robust” variance estima-

tor, which is the Eicker-Huber-White (EHW) estimator of Eicker (1963), Huber (1967), and White (1980),

multiplied by an n/(n−k) degree-of-freedom correction as suggested by Hickley (1977). HC1 dominates

empirical practice due to its encoding as the “r” covariance matrix option in Stata.

As an alternative to CRVE1, Bell and McCaffrey (2002), Imbens and Kolesár (2016), and Kolesár (2023)

recommended the CRVE2 variance estimator

V̂ 2 =
(

X ′X
)−1

(
G∑

g=1
X ′

g M+1/2
g êg ê ′

g M+1/2
g X g

)(
X ′X

)−1 (5)

where M+1/2
g is the Moore-Penrose generalized inverse of the symmetric square root of the partial pro-

jection matrix

M g = I ng −X g
(

X ′X
)−1 X ′

g . (6)

In the absence of clustering, and when all M g are invertible, CRVE2 specializes to the HC2 estimator of

MacKinnon and White (1985).

The original definitions of HC2 in MacKinnon and White (1985) and CRVE2 in Bell and McCaffrey

(2002) required that all M g are invertible. As discussed by Kolesár (2023), the generalized inverse in (5)

allows CRVE2 to be defined even when M g is non-invertible, and this is the implementation in Stata 18

through its vce(hc2 clustvar) option.

The motivation for the CRVE2 estimator (5) that it is unbiased when the regression errors are i.i.d. (so

that Σg = I ngσ
2) and all M g are invertible.
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3 Jackknife Variance Estimation

The jackknife estimator of variance of Tukey (1958) extended to clustered dependence is

V̂ 3 = G −1

G

G∑
g=1

(
β̂−g − β̄

)(
β̂−g − β̄

)′
(7)

where

β̂−g =
( ∑

j ̸=g
X ′

j X j

)−1 ( ∑
j ̸=g

X ′
j Y j

)
(8)

=
(

X ′X −X ′
g X g

)−1 (
X ′Y −X ′

g Y g

)
and

β̄= 1

G

G∑
g=1

β̂−g . (9)

The delete-one-cluster estimator β̂−g in (8) is obtained by applying least squares to the sample after

deleting the observations in cluster g . A variant of V̂ 3 is

V̂ 4 = G −1

G

G∑
g=1

(
β̂−g − β̂

)(
β̂−g − β̂

)′
, (10)

which centers at the full-sample estimator β̂ rather than at β̄. In Stata, V̂ 3 and V̂ 4 can be calculated by

the vce(jackknife) and vce(jackknife,mse) options.

The estimators (7) and (10) as written are undefined if there is a cluster g for which X ′X − X ′
g X g is

noninvertible1. The implementation in Stata 18 circumvents this difficulty by excluding from the sums

in (7)-(10) any cluster where (8) is undefined2. We follow this interpretation; henceforth, we assume that

(7)-(10) are implemented with this modification. We describe (7)-(10) as the “conventional” jackknife

variance estimators.

As we show in the next section, the conventional estimators V̂ 3 and V̂ 4 can exhibit downward bias.

To eliminate this possibility, we define the following jackknife estimator:

V̂ 5 =
G∑

g=1

(
β̃−g − β̂

)(
β̃−g − β̂

)′
(11)

where

β̃−g =
(

X ′X −X ′
g X g

)+ (
X ′Y −X ′

g Y g

)
(12)

and A+ denotes the Moore-Penrose generalized inverse of A. β̃−g is a generalized delete-one-cluster

estimator. It is defined for all g and therefore (11) includes all clusters. β̃−g is a minimizer of the delete-

one-cluster least squares criterion, and is therefore a valid delete-one-cluster version of the full-sample

1This is identical to the context where M g in (6) is noninvertible.
2This follows the recommendation in Shao and Tu (1995) for noninvertible bootstrap replications.
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estimator β̂.

Our estimator V̂ 5 differs from V̂ 3 and V̂ 4 in three respects, all of which contribute to the inequality

V̂ 5 > V̂ 4 > V̂ 3. First, V̂ 5 does not drop noninvertible clusters. Second, V̂ 5 is centered at the full-sample

estimator β̂ rather than at β̄. Third, V̂ 5 does not have the degree-of-freedom correction (G − 1)/G . In

some applications these differences will be negligible, but in others, as we show later, they can be sub-

stantial.

Jackknife estimation is ideally suited for the context where the delete-one-cluster estimators β̂−g are

well-defined for all clusters, which requires that the matrices X ′X −X ′
g X g are invertible for all g . We call

this context clusterwise invertibility and its failure clusterwise noninvertibility. Noninvertibility occurs

when deletion of a single cluster renders the regressor design matrix singular. Most typically, this occurs

when a regressor (or some linear combination of regressors) only takes non-zero values for a single clus-

ter. Examples include regressions with included cluster-level fixed effects, regressions with cluster-level

treatment indicators when only one cluster is treated, and saturated regressions with sparse cell propor-

tions. Such regressions are commonplace in applications, so it is desirable for variance estimation to be

sufficiently flexible to handle their occurance, which is presumably the motivation for the “drop nonin-

vertible clusters” modification described above. However, the properties of any such modification need

to be investigated to preclude undesirable outcomes.

When the sample satisfies clusterwise invertibility then the estimators V̂ 4 and V̂ 5 only differ by the

degree-of-freedom correction (G −1)/G , which is typically inconsequential. They can differ more sub-

stantially, however, under clusterwise noninvertibility.

The jackknife estimators V̂ 3 and V̂ 4 for clustered samples were developed by Cochran (1977), Rust

and Rao (1996), and Bell and McCaffrey (2002). See MacKinnon, Nielsen, and Webb (2023abc) for de-

tailed discussions. Stata has codified the modification to delete noninvertible clusters. MacKinnon,

Nielsen, and Webb (2023c) propose and implement a generalized delete-one-cluster estimator similar

to (12), though they do not investigate the statistical properties of the resulting jackknife variance esti-

mator.

Alternative algebraic representations of the jackknife estimator are available; see MacKinnon, Nielsen,

and Webb (2023b). One we will find useful is based on the delete-one-cluster prediction errors

ẽg = Y g −X g β̃−g . (13)

In the proof of Theorem 1 in Section 12 we show that

β̃−g − β̂=−(
X ′X

)−1 X ′
g ẽg , (14)

and interestingly, this equality holds even allowing for clusterwise noninvertibility. Given (14), we can

write (11) as

V̂ 5 =
(

X ′X
)−1

(
G∑

g=1
X ′

g ẽg ẽ ′
g X g

)(
X ′X

)−1 . (15)

The jackknife estimators (7)-(11) simplify in the absence of clustering, though existing proposals and
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analysis all assume that the M g are all invertible3. Under these conditions the estimator (7) corresponds

to that proposed by MacKinnon and White (1985) and the estimator (11) corresponds to that proposed by

Andrews (1991) and Davidson and MacKinnon (1993). The latter is known as HC3, and can be calculated

in Stata by the vce(hc3) option. When clusterwise invertibility fails, the estimators HC2 and HC3 are

undefined4. For more details, see the monographs of Efron (1982) and Shao and Tu (1995).

4 Biased vs Conservative Variance Estimation

In the classical regression model, the classical variance estimator is unbiased for the exact finite sam-

ple variance. Unsurprisingly, outside the classical model, robust variances estimators are not unbiased.

We now examine the worst-case downward bias of the five variance estimators described in the previ-

ous sections. We focus on downward bias, as this is the issue which causes undercoverage of confidence

intervals and oversized tests. The main contribution of this section is the following result.

Theorem 1 Under Assumption 1,

E
[
V̂ 5

]≥V . (16)

Theorem 1 shows that our recommended jackknife estimator V̂ 5 is never downward biased in a posi-

tive semi-definite sense. A never-downward-biased variance estimator can be described as conservative.

This means that in any regression context, and any sample size, we can be confident that the jackknife

estimator is not downward biased. We will find that this bias property is important as it is directly con-

nected to the coverage probabilities of confidence intervals.

Theorem 1 holds quite broadly, holding for all sample sizes, regressor matrices, variance matrices,

and violations of clusterwise noninvertibility. In particular, the robustness to clusterwise noninvertibility

is new and surprising.

Theorem 1 augments Theorem 2 of Bell and McCaffrey (2002), which established that V̂ 4 is never

downward biased when the regressors satisfy clusterwise invertibility and the errors ei g are i.i.d. (that is,

when Σ= I nσ
2).

Theorem 1 is also related to the seminal work of Efron and Stein (1981). Their results are typically

described as stating that (16) holds for V̂ 3 but this is incorrect. Instead, Efron and Stein’s Theorem 2 states

that V̂ 3 is never-downward-biased as an estimator of var
[
β̄
]
, not as an estimator of var

[
β̂

]
. Furthermore,

Theorem 2 below shows V̂ 3 does not satisfy the never-downward-biased property (16).

We now explore the worst-case bias properties of the other CRVE variance estimators. For these re-

sults we focus on individual coefficient estimates and their variance estimators. For some non-zero k×1

vector R, define the scalar parameter θ = R ′β. This includes individual coefficients and linear combina-

tions. Its estimator is θ̂ = R ′β̂. Under Assumption 1, θ̂ is unbiased for θ and has exact variance

ν2 = var
[
θ̂

]= R ′V R.

3In the absence of clustering, this means that the leverage values hi i = X ′
i

(
X ′X

)−1 Xi all satisfy hi i < 1.
4A word of caution: Stata 18 reports HC2 and HC3 standard errors even when the regressor matrix is clusterwise noninvert-

ible, and does not document how they are calculated in this situation.
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The estimators of ν2 are ν̂2
j = R ′V̂ j R for j = 1, ...,5. Standard errors for θ̂ are their square roots ν̂ j =√

R ′V̂ j R.

It will be convenient to define sets of models. For fixed k and G let F be the class of all regressor and

covariance matrices (X ,Σ) such that X is full rank, Σ has finite elements, and ν2 > 0. Let F∗ ⊂F be the

subset where X satisfies clusterwise invertibility. Let F∗
0 ⊂F∗ and F0 ⊂F be the further subsets where

Σ= I nσ
2.

The following result shows that the variance estimators other than V̂ 5 can be severely biased.

Theorem 2 Suppose Assumption 1 holds. For (X ,Σ) ∈F∗
0 ,

inf
(X ,Σ)∈F∗

0

E
[
ν̂2

1

]
ν2 = 0. (17)

For (X ,Σ) ∈F∗,

inf
(X ,Σ)∈F∗

E
[
ν̂2

2

]
ν2 = 0, (18)

inf
(X ,Σ)∈F∗

E
[
ν̂2

3

]
ν2 =

(
G −1

G

)2

< 1, (19)

and

inf
(X ,Σ)∈F∗

E
[
ν̂2

4

]
ν2 = G −1

G
< 1. (20)

For (X ,Σ) ∈F0,

inf
(X ,Σ)∈F0

E
[
ν̂2

3

]
ν2 = 0 (21)

and

inf
(X ,Σ)∈F0

E
[
ν̂2

4

]
ν2 = 0. (22)

For (X ,Σ) ∈F ,

inf
(X ,Σ)∈F

E
[
ν̂2

5

]
ν2 = 1. (23)

Equation (17) shows that the expected value of the scaled CRVE1 estimator can be arbitrarily close

to zero. This means that there is some distribution under which variance estimation has arbitrarily large

downward bias. In words, we say that CRVE1 is fully downwardly biased. The set of models considered

are those satisfying Σ = I nσ
2 and clusterwise invertibility, so the result (17) has nothing to do with het-

eroskedasticity, correlated errors, or invertibility failure. Rather, it is a consequence of extreme regressor

leverage (unbalanced regressors and/or cluster sizes).

Equation (18) shows a similar result for CRVE2 in the class of models which allows general covariance

matrices (heteroskedasticity and correlation) but still requires clusterwise invertibility. The difference

between (17) and (18) is that CRVE1 can be fully downward biased due to regressor leverage alone, while

the result for CRVE2 requires non-i.i.d. errors.

Equations (19) and (20) show related results for the conventional jackknife estimators. They show

that ν̂2
3 and ν̂2

4 violate the never-downward-biased property, even under clusterwise invertibility. The
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magnitude of the violation, however, is small when G is large. Regardless, (19) and (20) show that the

conventional interpretation5 of the results of Efron and Stein (1981) is incorrect, and that the never-

downward-biased result of Bell and McCaffrey (2002) is not robust to non-i.i.d. errors.

Equations (21) and (22) extend the analysis of the conventional jackknife estimators to the class of

models allowing clusterwise noninvertibility. The results show that under clusterwise noninvertibility

the conventional estimators ν̂2
3 and ν̂2

4 are fully downward biased. This arises even though (21)-(22)

restrict the set of models to satisfyΣ= I nσ
2. This means that the full downward bias of the conventional

jackknife estimators is entirely a consequence of the deletion of noninvertible clusters, and does not

require heteroskedasticity or correlated errors.

Equation (23) examines our recommended jackknife estimator ν̂2
5 in the broadest context, allowing

for general heteroskedasticity, correlated errors, and clusterwise noninvertibility. As implied by Theorem

1, ν̂2
5 is never downward biased. Equation (23) extends this further and demonstrates that the infimum

equals one, meaning that the inequality of Theorem 1 is sharp.

Theorem 2 draws a stark contrast between the five variance estimators. The full downward bias of

CRVE1, CRVE2, and the conventional jackknife estimators means that on average they can be “much too

small” relative to the true variance. In contrast, the never-downward-biased property of ν̂2
5 means that

there is no situation where it is expected to be “too small”, even slightly.

The model classes studied in Theorem 2 hold fixed the number of regressors k and number of clusters

G , but allow the cluster sizes ng , regressors X , and covariance matricesΣ to vary freely. It is important to

understand that the statements of Theorem 2 hold for all G , from the very small to very large. Thus the

bias of CRVE1, CRVE2, and the conventional jackknife can be arbitrarily bad in both very small and very

large samples.

The worstcase downward bias in (17)-(22) is calculated by studying models with extreme leverage,

arising when the regressor of interest has variation which is dominated by a single cluster. Intuitively,

when a small number of clusters dominate the sample, standard variance estimators are highly biased

towards zero. The least squares estimator overfits the dominating clusters, shrinking the residuals for

these clusters relative to the true errors. This leads to downward estimation bias. Conventional fixes,

such as the degree-of-freedom adjustment of CRVE1, are insufficient to counter the bias.

5 Unbounded vs Bounded Inference

Given a standard error ν̂ j and a pre-selected critical value c, a confidence interval for θ is

Ĉ j (c) = θ̂± cν̂ j .

For a nominal 100(1−α)% interval the conventional6 choice for the critical value is c = t 1−α/2
G−1 , the 1−α/2

quantile of the student t distribution with G −1 degrees of freedom.

For the results of this section, we require that the errors are normally distributed.

5This distinction was recognized by Efron and Stein (1981). For a further discussion see Section 4.5 of Efron (1982).
6For example, that used in Stata.
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Assumption 2 eg is distributed N
(
0,Σg

)
.

Assumption 2 states that the cluster error vectors eg are normally distributed, but their within-cluster

covariance structure is left unrestricted. As described after (3), this allows the covariance matrices to

vary both with the regressors as well as the cluster, and thus allows both unconditional and conditional

heteroskedasticity.

Normality is a strong assumption, and is not meant to be taken literally. Rather, by studying coverage

rates under this assumption we can gain insight into their behavior in finite samples without relying on

asymptotic approximations.

We now evaluate the worst-case coverage probabilities of CRVE confidence intervals.

Under i.i.d. normal errors, it is well known that confidence intervals with classical standard errors

have exact coverage 1−α. What may be less well known (or at least less emphasized in standard curricula)

is that this result does not extend to confidence intervals constructed with HC and CRVE standard errors.

We now present the most important contribution of the paper, which provides a lower bound on the

coverage rate of our recommended jackknife confidence interval. Let F (x;k1,k2) denote the F distribu-

tion function with degrees of freedom k1 and k2.

Theorem 3 Under Assumptions 1-2, for any 1 ≤ c <∞,

inf
(X ,Σ)∈F

P
[
θ ∈ Ĉ5(c)

]≥ F (c;1,1) . (24)

Equation (24) shows that the interval Ĉ5(c) has coverage probability which is uniformly bounded7

away from zero in the broad model class F . The lower bound is the F distribution with (1,1) degrees

of freedom, which is the square of the Cauchy distribution. An important implication is that the finite

sample coverage probability of the Ĉ5(c) jackknife confidence interval has bounded distortion from its

nominal level. This result holds over the broadest model class F . This includes all regression models,

including those with the most extreme leverage, within-cluster correlation, heteroskedasticity, and clus-

terwise noninvertibility. Thus the jackknife interval Ĉ5(c) is robust to these contexts.

We contrast (24) with the worst-case coverage of confidence intervals constructed with the other

standard errors.

Theorem 4 Under Assumptions 1-2, for any 0 ≤ c <∞,

inf
(X ,Σ)∈F∗

0

P
[
θ ∈ Ĉ1(c)

]= 0, (25)

inf
(X ,Σ)∈F∗P

[
θ ∈ Ĉ2(c)

]= 0, (26)

inf
(X ,Σ)∈F0

P
[
θ ∈ Ĉ3(c)

]= 0, (27)

7The bound (28) requires c ≥ 1. This is not an important restriction for inference as all conventional critical values exceed 1.
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and

inf
(X ,Σ)∈F0

P
[
θ ∈ Ĉ4(c)

]= 0. (28)

Equation (25) shows that the worst-case coverage of the CRVE1 confidence interval equals 0. This

demonstrates that coverage can be arbitrarily distorted from the nominal level, and this holds for any

critical value c. This means that it is impossible to uniformly8 achieve any desired coverage probability.

The set of models considered are those satisfyingΣ= I nσ
2 and clusterwise invertibility, so the result (25)

is not due to heteroskedasticity, correlated errors, or invertibility failure. Rather, it is a consequence of

extreme regressor leverage (unbalanced regressors and/or cluster sizes).

Equation (26) shows a similar result for the CRVE2 confidence interval in the class of models which

allows general covariance matrices: that the worst-case coverage of the CRVE2 confidence interval equals

0. Again, this demonstrates that coverage can be arbitrarily distorted from the nominal level. The differ-

ence with (25) is that (26) requires the model class to included non-i.i.d. errors.

Equations (27) and (28) show that the conventional jackknife intervals also have worst-case coverage

of 0 if the model class is broadened to include clusterwise noninvertibility. This is due to invertibility

failure. These results show that the conventional (e.g., Stata) modification, which is explicitly intended to

allow regressions with clusterwise noninvertibility, is not actually robust to clusterwise noninvertibility.

The results (25)-(28) should not be surprising given Theorem 2, which showed that the variance es-

timators ν̂2
1-ν̂2

4 can be arbitrarily downward biased. Indeed, the proof of Theorem 4 is a simple manip-

ulation of Theorem 2. What is important about these results is that they show that these confidence

intervals have no a priori guarantee that they are in any sense a confidence interval. It is also important

to understand that the zero coverage rates of (25)-(28) cannot be fixed by simply using a larger critical

value c, as these results hold for any finite c.

Returning to the confidence interval Ĉ5(c), equation (24) bounds its smallest coverage probability in

any regression with normal errors. For example, with the conventional c = 1.96 critical value, the bound

(24) is 0.70. Thus, the finite sample coverage of Ĉ5(1.96) can never be less than 70%. Similarly, the finite

sample size of a t-test using the standard error ν̂5 and critical value c = 1.96 can never be greater than

30%.

Another implication of (24) is that the Cauchy distribution can be used for finite sample inference

(substituting the Cauchy for student t critical values). Doing so will produce inferential statements (hy-

pothesis tests and confidence intervals) with uniform size control. This uniformity holds over all regres-

sion designs X and error variances Σ.

In practice, however, it is unlikely that researchers will use the Cauchy distribution for inference, as it

is exceedingly conservative. For example, while the 5% normal critical value is 1.96, that for the Cauchy

distribution is 12.7. It is difficult to imagine a user declaring a t-ratio equalling 10 to be “insignificant”

simply because it is less than the Cauchy critical value.

Instead, the practical message of Theorems 3 and 4 is that conventional EHW and CRVE confidence

intervals can have arbitrary coverage distortion, while the jackknife interval has bounded distortion.

8Here, “uniformly” means over all regression designs X .
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This is a strong motivation for replacement of the EHW and CRVE standard errors by simple-to-calculate

jackknife standard errors.

While the bound (24) may appear simple, its derivation is not. Our derivation relies on a characteriza-

tion of the exact distribution of the t-ratio, the variance bound (23), convex optimization, and numerical

calculation. The use of numerical calculation in the proof is theoretically inelegant; it is only needed for

the clusterwise noninvertible case. Under the added assumption of clusterwise invertibility, the proof of

Theorem 3 does not require a numerical argument.

6 Distribution of Jackknife t statistic

In this section we present a characterization of the finite sample distribution of the squared jackknife

t-statistic

T 2
5 =

(
θ̂−θ)2

ν̂2
5

. (29)

Let F (x;k1,k2) denote the F distribution function with degrees of freedom k1 and k2.

Theorem 5 Under Assumptions 1-2, ν2 > 0, and any 0 ≤ x <∞,

P
[
T 2

5 ≤ x
]≥P[

ν2ξ2
0∑G

j=1φ jξ
2
j

≤ x

]
≃ F

(
a2x;1,K

)
(30)

where ξ2
j are mutually independent χ2

1 random variables, φ j are the eigenvalues of the G ×G matrix L

defined in (94),

a =
√

tr [L]

ν2 , (31)

and

K = (tr [L])2

tr [LL]
. (32)

The approximation in (30) is the Satterthwaite (1946) approximation to the weighted sum of chi-squares∑G
j=1φ jξ

2
j .

Theorem 5 provides two distributional characterizations in (30). The first shows that the exact dis-

tribution of T 2
5 is bounded below by that of a ratio of independent weighted sums of chi-squares. The

second shows that the latter is approximately F distributed with a non-standard scale and degree-of-

freedom. Equivalently, this shows that the distribution of the t-statistic T5 =
(
θ̂−θ)

/ν̂5 is bounded by an

approximate student t with scale a and degree-of-freedom K .

One new feature of Theorem 5 is the bound for the exact distribution by a ratio of independent

weighted sums of chi-squares. It is well known that this representation holds for common t-statistics

under i.i.d. errors, and is also widely known that a similar representation, but with correlated weighted

sums of chi-squares, holds for non-i.i.d. errors. The fact that the representation (30) holds for indepen-

dent χ2
1 variables is new.
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The constants a and K in (31)-(32) are written as functions of the eigenvalues of the G ×G matrix

L defined in the proof of Theorem 5. Of particular importance is the non-standard degree-of-freedom

K . Examining (32) and observing that the matrix L is G ×G , we can deduce that K takes values in [1,G].

The case K =G occurs when the matrix L is perfectly balanced so that all its eigenvalues are equal. The

case K = 1 occurs when the matrix L is highly unbalanced with only one non-zero eigenvalue. Most

applications will lie between these two extremes. Note in contrast that conventional software uses G −1

degrees of freedom.

The constants a and K which determine the F distribution of Theorem 5 depend on the unknown

variance matrices Σg . If the Σg are known then a and K can be calculated and this F distribution used.

However, in practice these variance matrices are unknown. Bell and McCaffery suggested calculating

a and K based on a reference model, in particular, Σg = I ng (which holds under i.i.d. errors). Other

plausible reference models are Σg = 1ng 1′
ng

(holds under perfect within-cluster correlation) and Σg =
X g X ′

g (strong conditional heteroskedasticity). We follow Bell and McCaffery and recommend calculation

of a and K based on the simple reference modelΣg = I ng . If desired, other reference models forΣg could

be used.

We now present explicit expressions for the constants a and K under this reference model which do

not rely on explicit computation of the matrix L nor its eigenvalues.

Theorem 6 Computationally convenient expressions for the constants appearing in (31)-(32) for the case

Σg = I ng are

ν2 = R ′ (X ′X
)−1 R, (33)

tr[L] =
G∑

g=1
S ′

g Sg − T ′T
Z ′Z

+ tr
[
U ′U X̂

′
X̂

]
−2tr

[
U ′V

]
, (34)

and

tr [LL] =
G∑

g=1

(
S ′

g Sg

)2 −2

∑G
g=1

(
S ′

g Sg

)
T 2

g

Z ′Z
+

(
T ′T
Z ′Z

)2

−2
T ′U X̂

′
X̂ U ′T

Z ′Z
(35)

+ tr
[

X̂
′
X̂ U ′U X̂

′
X̂ U ′U

]
+2tr

[
V ′UV ′U

]+2tr
[
U ′W X̂

′
X̂

]
−4tr

[
V ′W

]+4
T ′V U ′T

Z ′Z
−4tr

[
U ′U X̂

′
X̂ U ′V

]
+2tr

[
U ′UV ′V

]
,
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where

Z = X
(

X ′X
)−1 R

X̂ = X −Z
(

Z ′Z
)−1 Z ′X

U g =
(

X ′X −X ′
g X g

)+
X ′

g Z g

Sg = Z g +X gU g

V g = X̂
′
g Sg

W g =U g S ′
g Sg

Tg = S ′
g Z g

U =


U ′

1
...

U ′
G

 , V =


V ′

1
...

V ′
G

 , W =


W ′

1
...

W ′
G

 , S =


S1
...

SG

 , T =


T1
...

TG

 .

The expression (34) and (35) in Theorem 6 look imposing, but they are computationally simple to

implement. All of the matrices for which the trace operator are applied are k ×k. The expressions (34)-

(35) are functions of (and only of) the regressors X and vector R.

7 Adjusted Confidence Intervals

Simulation evidence shows that while our jackknife confidence interval using conventional critical

values has improved coverage rates relative to the CRVE1 and CRVE2 intervals, it can still under-cover.

The source of the problem is the conventional student t distributional approximation.

A promising class of distributional adjustments was introduced by Bell and McCaffery (2002) for HC2

and CRVE2 t-ratios. They are simple to calculate and produce greatly improved coverage rates in finite

samples. These methods have been endorsed by other authors, including Imbens and Kolesár (2016). In

this section, we extend the Bell-McCaffery adjustment to jackknife t tests and confidence intervals. Our

extension involves both scale and degree-of-freedom adjustments.

Our Bell-McCaffery adjustment is based on the approximation of Theorem 5, which states that the

finite sample distribution of the squared t-statistic is approximately F distributed (or the non-squared

t-statistic is approximately student t distributed) with a scale adjustment and a non-standard degree-

of-freedom. The original Bell-McCaffery adjustment (for HC2 and CRVE2 t-ratios) does not have a scale

adjustment, because the CRVE2 variance estimator is unbiased under i.i.d. errors. In contrast, our ad-

justment for the jackknife statistic has a scale adjustment to account for jackknife variance estimation

bias.

As discussed in the previous section, these approximations need to be calculated under a reference

model for the unknown variances, and following Bell and McCaffery we recommend Σg = I ng . In this

context, efficient formula for the inputs for the constants a and K are given in expressions (33)-(35).
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The adjusted 100(1−α)% confidence interval for θ is

C̃5 = θ̂±
t 1−α/2

K ν̂5

a
(36)

where t 1−α/2
K is the 1−α/2 quantile of the student t distribution with K degrees of freedom and ν̂5 is our

recommended jackknife standard error. Equivalently, t 1−α/2
K =

√
q1−α

1,K , where q1−α
1,K is the 1−α quantile

of the F (x;1,K ) distribution.

Specifically, the confidence interval is formed by the following steps. Take any linear coefficient θ =
R ′β.

1. Calculate the jackknife variance V̂ 5 from (11) and standard error ν̂5 =
√

R ′V̂ 5R.

2. Calculate the adjustment parameters K and a from (34) and (35).

3. Calculate the critical value t 1−α/2
K from the student t distribution with the degree-of-freedom K .

4. Set θ̂ = R ′β̂ and C̃5 as in (36).

The adjustment parameters K and a are coefficient-specific, so the above steps need to be repeated

for each element of β in order to calculate confidence intervals for all individual coefficients.

The adjusted degree-of-freedom K will typically be smaller than the conventional degree-of-freedom,

thereby increasing the critical value and the width of the confidence interval. This adjustment accounts

for the non-standard distribution of the variance estimator. In contrast, the adjustment factor a is typi-

cally greater than 1, so the scale adjustment decreases the width of the confidence interval. This counters

the bias of the jackknife variance estimator.

Similarly, the adjusted p-value for a test of θ = θ0 is

p = 1−F

(
a2

(
θ̂−θ0

ν̂5

)2

;1,K

)
(37)

where F (x;1,K ) is the F distribution with degrees of freedom (1,K ). As for the confidence intervals, this

makes both a degree-of-freedom adjustment (through K ) and a scale adjustment (through a).

The theoretical justification for the confidence interval (36) is as follows. Using the equalities C̃5 =
Ĉ5

(
t 1−α/2

K /a
)
, t 1−α/2

K =
√

q1−α
1,K , then Theorem 5, we find

P
[
θ ∈ C̃5

]=P[
θ ∈ Ĉ5

(
t 1−α/2

K /a
)]

=P
[

T 2
5 ≤ q1−α

1,K /a2
]

≳ F
(
q1−α

1,K ;1,K
)

(38)

= 1−α.

The inequality (38) combines the inequality and approximation of Theorem 5, and holds under the ref-

erence model Σ= I nσ
2.
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This shows that, approximately, C̃5 will have coverage close to or exceeding the desired level. There

are three sources of approximation error: (1) the inequality bound in (30); (2) the Satterthwaite approx-

imation in (30); (3) the reference model approximation. Each may contribute to a distortion of actual

from nominal coverage.

8 Fixed Effects

It is common in panel/clustering contexts to include cluster-specific fixed effects9. This possibility

is allowed in our framework either by explicit inclusion of fixed effect dummy variables in the regressor

matrix X , or by specifying Y g and X g as within-transformed. In the latter case, equation (1) represents

the model after the within transformation has been applied. Note that in this case, the covariance matrix

(3) is that of the within-transformed errors, not the original equation errors. As (3) is unstructured and

allows Σg to be singular, this is without loss of generality.

When fixed effect dummy variables are present in the regressor matrix X , the traditional jackknife

variances estimators V̂ 3 and V̂ 4 are undefined. In contrast, our jackknife variance estimator V̂ 5 is well-

defined, and conservative by Theorem 1 for all the coefficients including the estimated fixed effects.

Regardless, our recommendation10 is to first apply the within transformation and then apply least

squares estimation to the within transformed variables, to obtain the coefficient estimates and jackknife

standard errors. This is both computationally and theoretically preferred. It is theoretically preferred

because the model after the within transformation is clusterwise invertible, so has reduced distribu-

tional distortions. In contrast, the model with the included fixed effect dummy variables is clusterwise

noninvertible, and while our finite sample distribution theory applies, the inequalities suggest that the

confidence intervals will be conservative.

9 Simulation Evidence

We present a simulation experiment to investigate the performance of the methods. The experiment

concerns the clustered linear regression (1)-(3). The goal is 95% confidence intervals for the slope coef-

ficients.

Our baseline model is the simple regression Y g = α+ X gβ+ eg with X g a single ng × 1 stochastic

regressor. Within this model we consider six designs which vary the distributions of the regressors X g ,

the heteroskedasticity of the equation errors, and the cluster size heterogeneity. Let I g denote the ng ×
ng identity matrix, 1g = (1,1, , ...) the ng × 1 vector of ones, and hg = (1,−1,1,−1, ...) the ng × 1 vector

containing alternating ±1.

The designs for the regressors are:

1. Normal with Clustered Dependence: X g ∼ N
(
1g , I g +1g 1′

g

)
.

9We focus on the case where the fixed effects are included for the same clusters as used
10These comments apply to the case where the fixed effects are applied at the same level as clustering, and not when fixed

effects are applied at a different or more aggregate level.
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2. LogNormal with Clustered Dependence: X g ∼ exp
(
N

(
0, I g +1g 1′

g

))
, recentered and rescaled so

the elements have a mean of 1 and variance of 2.

In the first design, the regressors are normally distributed with a cluster-level random effects covari-

ance matrix. In the second design, the regressors are log-normally distributed with the same cluster-level

random effects covariance matrix. In both models the regressors are centered and scaled so to have the

same first and second moments.

The designs for the errors are:

1. Homoskedastic with Clustered Dependence: eg ∼ N
(
0, I g +1g 1′

g +hg h′
g

)
.

2. Heteroskedastic: eg ∼ N
(
0, I g +

(
X g −1g

)(
X g −1g

)′).

In the first design, the errors are normally distributed with a cluster-level factor covariance matrix. In

the second design, they are conditionally heteroskedastic. The scalings are set so that the unconditional

variances are the same in both designs.

The designs for the cluster sizes are

1. Homogeneous: ng = 10 for g = 1, ...,G .

2. Heterogeneous: n1 = n2 = 5G/2+5, and ng = 5 for g = 3, ...,G .

The homogeneous cluster size design sets all clusters equal to 10. The heterogeneous cluster size

design puts between 1/4 and 1/3 of the observations in each of the first and second clusters, with the

remaining spread among the other clusters. There are an average of 10 observations per cluster to match

the homogeneous cluster size design.

The six designs combine these elements as described in Table 1. For each design, the number of

clusters G is varied among {6,12,40,100}. As there are an average of 10 observations per cluster, the

associated total sample sizes are {60,120,400,1000}.

Table 1: Simulation Designs

Regressor Error Cluster Size
Design 1 Normal Homoskedastic Homogeneous
Design 2 LogNormal Homoskedastic Homogeneous
Design 3 LogNormal Homoskedastic Heterogeneous
Design 4 Normal Heteroskedastic Homogeneous
Design 5 LogNormal Heteroskedastic Homogeneous
Design 6 LogNormal Heteroskedastic Heterogeneous

For each simulation replication we estimate the coefficients by least squares. We use six methods

to calculate standard errors: the five variances estimators described in the text: CRVE1 (ν̂1), CRVE2 (ν̂2),
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the two conventional jackknife estimators ν̂3 and ν̂4, our recommended jackknife estimator ν̂5, and the

nonparametric pairs cluster bootstrap11 which we denote as ν̂6.

We calculate confidence intervals for β using twelve methods.

The first six are conventional, based on the six standard errors and conventional student t critical

values. Thus, given each standard error ν̂ j , we form the confidence interval β̂± t 0.975
G−1 ν̂ j where t 0.975

G−1 is

the 0.975 quantile of the tG−1 distribution. We use the t 0.975
G−1 critical value as this is the current imple-

mentation in Stata for cluster-robust inference.

The next two intervals are adjusted t intervals. The first is that recommended by Bell and McCaffrey

(2002) and equals β̂± t 0.975
K ν̂2 where K is calculated12 similar to (32) under the reference modelΣg = I ng .

The second interval is our adjusted interval (36) using the jackknife standard error.

The next two intervals are nonparametric pairs cluster bootstrap symmetric percentile-t intervals,

using the standard errors ν̂1 and ν̂5, and 1000 bootstrap replications. The bootstrap samples are con-

structed by nonparametric pairs resampling, as described earlier. On each bootstrap sample we calcu-

late the least squares estimate β̂∗ and the CRVE1 and jackknife standard errors ν̂∗1 and ν̂∗5 . From the 1000

bootstrap samples we calculate the 95% quantiles ĉ∗1 and ĉ∗5 of the statistics
∣∣β̂∗− β̂∣∣/ν̂∗1 and

∣∣β̂∗− β̂∣∣/ν̂∗5 .

The confidence intervals are β̂± ĉ∗1 ν̂1 and β̂± ĉ∗5 ν̂5.

The final two intervals are wild cluster bootstrap symmetric percentile-t intervals, using the standard

errors ν̂1 and ν̂5, and 1000 bootstrap replications. This is the method proposed by Cameron, Gelbach,

and Miller (2008), Djogbenou, MacKinnon, and Nielsen (2019), and Canay, Santos, and Shaikh (2021)

for hypothesis testing, and can be used to construct a confidence interval by test inversion13. First, the

coefficients are re-estimated imposing known β to obtain restricted estimates
(
α̃, β̃=β)

and residuals

ẽg . Next, the clusters, regressors X g , and restricted residuals ẽg are held fixed. The bootstrap errors are

generated as e∗
g = ζg ẽg where ζg is an independent Rademacher variable (equals +1 and −1 each with

probability 1/2), and Y ∗
g = α̃+X g β̃+e∗

g . The bootstrap sample then consists of the observations (Y ∗
g , X g ).

On each bootstrap sample we calculate the least squares estimate β̂∗ and the standard errors ν̂∗1 and ν̂∗5 .

From the 1000 bootstrap samples we calculate the 95% quantiles ĉ∗1 (β) and ĉ∗5 (β) of the the statistics∣∣β̂∗−β∣∣/ν̂∗1 and
∣∣β̂∗−β∣∣/ν̂∗5 . The confidence intervals14 consist of all β such that

∣∣β̂−β∣∣/ν̂1 ≤ ĉ∗1 (β) and∣∣β̂−β∣∣/ν̂5 ≤ ĉ∗5 (β), respectively.

We compute the actual coverage probability of these nominal 95% intervals by simulation with 20,000

replications. These estimates are precise, as their standard errors are all less than 0.003.

We report the results for the baseline regression model in Table 2. The top block reports the results

for G = 6. The first six columns are for the conventional confidence intervals. We can see that the con-

ventional CRVE1 confidence interval has substantial under-coverage in most designs. The worst-case is

11This is the standard implementation of the bootstrap for clustered observations. Each bootstrap sample is constructed by
resampling G clusters (Y g , X g ) with replacement from the original sample of clusters. Least squares estimation is applied to
the bootstrap sample. The bootstrap standard error is the empirical standard deviation of the bootstrap least squares estimates.
1000 bootstrap replications were made in each simulation replication. For details see Cameron, Gelbach, and Miller (2008).

12The CRVE2 standard error ν̂2 and Bell-McCaffrey adjusted interval are calculated using the dfadjust R package of Kolesár
(2023), which is identical to the implementation in Stata 18.

13MacKinnon, Nielsen and Webb (2023b) review several variants of the wild cluster bootstrap. Our implementation corre-
sponds to their WCR-V method.

14To assess the coverage rate, it is sufficient to do the calculation for the true value of β.
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Table 2: Baseline Regression Model. Coverage of Nominal 95% Confidence Intervals for β

Cr. Value Conventional tG−1 Adjusted tK Pairs Boot Wild Boot
St. Error ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 ν̂2 ν̂5 ν̂1 ν̂5 ν̂1 ν̂5

G = 6
Design 1 0.91 0.93 0.95 0.95 0.96 0.94 0.95 0.96 0.96 0.96 0.93 0.94
Design 2 0.85 0.91 0.95 0.95 0.96 0.98 0.99 0.99 0.93 0.96 0.96 0.95
Design 3 0.83 0.90 0.95 0.95 0.96 0.99 0.99 0.99 0.93 0.97 0.95 0.95
Design 4 0.89 0.91 0.93 0.93 0.95 0.91 0.94 0.95 0.95 0.96 0.93 0.94
Design 5 0.64 0.74 0.88 0.89 0.90 0.92 0.93 0.95 0.80 0.92 0.91 0.94
Design 6 0.61 0.72 0.88 0.88 0.90 0.92 0.92 0.94 0.81 0.93 0.91 0.94
G = 12
Design 1 0.92 0.93 0.95 0.95 0.95 0.93 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.83 0.89 0.94 0.94 0.94 0.97 0.98 0.99 0.89 0.93 0.96 0.96
Design 3 0.80 0.88 0.94 0.94 0.95 0.98 0.99 0.99 0.90 0.95 0.95 0.95
Design 4 0.91 0.92 0.93 0.93 0.94 0.91 0.94 0.94 0.95 0.95 0.94 0.95
Design 5 0.63 0.74 0.87 0.87 0.88 0.86 0.93 0.95 0.82 0.92 0.92 0.93
Design 6 0.59 0.71 0.87 0.87 0.88 0.86 0.93 0.95 0.81 0.92 0.92 0.94
G = 40
Design 1 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.86 0.90 0.93 0.93 0.93 0.95 0.97 0.98 0.89 0.92 0.95 0.96
Design 3 0.81 0.88 0.94 0.94 0.94 0.95 0.98 0.99 0.90 0.95 0.94 0.96
Design 4 0.93 0.94 0.94 0.94 0.95 0.93 0.94 0.94 0.95 0.95 0.95 0.95
Design 5 0.70 0.79 0.88 0.88 0.89 0.84 0.93 0.95 0.90 0.94 0.94 0.94
Design 6 0.64 0.75 0.87 0.87 0.88 0.83 0.93 0.95 0.87 0.94 0.93 0.94
G = 100
Design 1 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.89 0.91 0.93 0.93 0.93 0.95 0.97 0.97 0.91 0.93 0.95 0.95
Design 3 0.81 0.88 0.94 0.94 0.95 0.92 0.97 0.98 0.92 0.96 0.94 0.96
Design 4 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 5 0.77 0.84 0.90 0.90 0.90 0.85 0.93 0.95 0.92 0.95 0.95 0.95
Design 6 0.69 0.78 0.89 0.89 0.89 0.83 0.93 0.95 0.89 0.94 0.94 0.95

Design 6, where the interval has only 61% coverage. The CRVE2 confidence interval has slightly better

coverage, but still substantially under-covers in most designs. The jackknife and bootstrap confidence

intervals have better coverge, but undercover in Designs 5 & 6.

The next two columns are for the confidence intervals using adjusted critical values. The adjusted

CRVE2 interval has improved coverage over the conventional CRVE2 interval, but slightly undercovers

(92%) for Designs 5 and 6. The adjusted jackknife interval has excellent coverage, with the coverage

probability exceeding 94% in all designs.

The results for the pairs bootstrap-t methods are reported in the next two columns. The intervals

based on the CRVE1 standard error generally undercover (and severely for Designs 5 & 6). The intervals

based on the jackknife standard errors have much better coverage, with coverage exceeding 92% in all

designs.
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Table 3: Regression with Treatment Dummy. Coverage of Nominal 95% Confidence Intervals for β

Cr. Value Conventional tG−1 Adjusted tK Pairs Boot Wild Boot
St. Error ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 ν̂2 ν̂5 ν̂1 ν̂5 ν̂1 ν̂5

G = 6
Design 1 0.91 0.93 0.94 0.94 0.96 0.94 0.95 0.95 0.95 0.96 0.93 0.94
Design 2 0.85 0.91 0.92 0.93 0.97 0.93 0.99 0.99 0.92 0.96 0.96 0.96
Design 3 0.83 0.90 0.87 0.89 0.96 0.87 0.99 0.98 0.90 0.95 0.95 0.95
Design 4 0.89 0.91 0.91 0.92 0.95 0.90 0.94 0.93 0.93 0.94 0.93 0.94
Design 5 0.64 0.74 0.81 0.83 0.90 0.84 0.93 0.94 0.81 0.92 0.92 0.94
Design 6 0.61 0.72 0.74 0.76 0.89 0.74 0.92 0.93 0.79 0.91 0.92 0.94
G = 12
Design 1 0.92 0.93 0.94 0.94 0.96 0.93 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.83 0.89 0.92 0.93 0.94 0.95 0.99 0.99 0.89 0.93 0.96 0.96
Design 3 0.82 0.89 0.89 0.90 0.95 0.89 0.99 0.99 0.88 0.93 0.95 0.96
Design 4 0.91 0.92 0.93 0.93 0.94 0.91 0.94 0.94 0.94 0.95 0.94 0.94
Design 5 0.63 0.74 0.84 0.85 0.88 0.83 0.93 0.95 0.81 0.91 0.92 0.93
Design 6 0.59 0.71 0.76 0.77 0.87 0.73 0.93 0.94 0.79 0.90 0.92 0.94
G = 40
Design 1 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.86 0.90 0.93 0.93 0.93 0.95 0.97 0.98 0.89 0.92 0.95 0.96
Design 3 0.82 0.89 0.91 0.91 0.94 0.89 0.98 0.98 0.88 0.93 0.94 0.96
Design 4 0.93 0.94 0.94 0.94 0.95 0.93 0.94 0.94 0.95 0.95 0.95 0.95
Design 5 0.70 0.79 0.88 0.88 0.89 0.83 0.93 0.95 0.90 0.94 0.94 0.94
Design 6 0.64 0.75 0.79 0.79 0.88 0.73 0.93 0.95 0.84 0.92 0.93 0.94
G = 100
Design 1 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.89 0.91 0.93 0.93 0.94 0.95 0.97 0.97 0.91 0.93 0.95 0.95
Design 3 0.83 0.89 0.92 0.92 0.94 0.89 0.97 0.98 0.89 0.94 0.93 0.96
Design 4 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 5 0.77 0.84 0.90 0.90 0.90 0.85 0.93 0.95 0.92 0.95 0.95 0.95
Design 6 0.69 0.78 0.80 0.80 0.89 0.74 0.93 0.95 0.86 0.92 0.94 0.95

The results for the wild bootstrap-t are presented in the final two columns. The coverage rates are

excellent when the jackknife standard errors are used.

The following blocks are for G = 12, G = 40, and G = 100. Qualitatively, the results are similar to the

G = 6 case. For some designs and methods the coverage probabilities improve slightly as G increases. A

notable exception is the conventional interval with bootstrap standard errors whose coverage probabil-

ities worsen as G increases in Designs 3, 5, and 6. In general, the best performance is obtained by our

adjusted jackknife interval and the wild bootstrap using jackknife standard errors. A close competitor is

the pairs bootstrap percentile-t using jackknife standard errors. No other method has reliable coverage

across the designs and the four sample sizes.

If we compare performance by standard error method, within each type of inference method (con-

ventional, adjusted, pairs bootstrap-t , and wild bootstrap-t ), we systematically see that methods based
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Table 4: Regression with Treatment Dummy. Coverage of Nominal 95% Confidence Intervals for γ

Cr. Value Conventional tG−1 Adjusted tK Pairs Boot Wild Boot
St. Error ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 ν̂2 ν̂5 ν̂1 ν̂5 ν̂1 ν̂5

G = 6
Design 1 0.64 0.66 0.68 0.68 1.00 0.66 0.73 1.00 0.83 1.00 1.00 1.00
Design 2 0.64 0.66 0.66 0.67 1.00 0.64 0.72 1.00 0.85 1.00 1.00 1.00
Design 3 0.59 0.64 0.67 0.68 1.00 0.66 0.76 1.00 0.82 1.00 0.98 0.98
Design 4 0.71 0.75 0.77 0.77 1.00 0.75 0.82 1.00 0.83 0.99 1.00 1.00
Design 5 0.69 0.72 0.74 0.75 1.00 0.72 0.76 1.00 0.87 1.00 1.00 1.00
Design 6 0.72 0.77 0.79 0.80 1.00 0.79 0.86 1.00 0.87 1.00 0.99 0.99
G = 12
Design 1 0.49 0.50 0.51 0.51 1.00 0.49 0.52 1.00 0.57 1.00 1.00 1.00
Design 2 0.47 0.48 0.48 0.49 1.00 0.47 0.51 1.00 0.53 1.00 1.00 1.00
Design 3 0.47 0.51 0.55 0.56 1.00 0.50 0.59 1.00 0.59 1.00 0.99 0.98
Design 4 0.61 0.64 0.66 0.66 1.00 0.61 0.66 1.00 0.73 1.00 1.00 1.00
Design 5 0.54 0.58 0.62 0.62 1.00 0.56 0.60 1.00 0.66 1.00 1.00 1.00
Design 6 0.64 0.70 0.74 0.75 1.00 0.70 0.77 1.00 0.76 1.00 0.99 0.99
G = 40
Design 1 0.28 0.28 0.29 0.29 1.00 0.28 0.29 1.00 0.29 1.00 1.00 1.00
Design 2 0.26 0.27 0.27 0.27 1.00 0.26 0.27 1.00 0.27 1.00 1.00 1.00
Design 3 0.33 0.38 0.43 0.43 1.00 0.35 0.43 1.00 0.48 1.00 0.99 0.99
Design 4 0.44 0.45 0.45 0.45 1.00 0.43 0.45 1.00 0.48 1.00 1.00 1.00
Design 5 0.36 0.40 0.44 0.44 1.00 0.39 0.41 1.00 0.47 1.00 1.00 1.00
Design 6 0.56 0.62 0.67 0.68 1.00 0.60 0.68 1.00 0.69 1.00 1.00 1.00
G = 100
Design 1 0.17 0.17 0.17 0.17 1.00 0.17 0.17 1.00 0.18 1.00 1.00 1.00
Design 2 0.16 0.16 0.16 0.16 1.00 0.16 0.16 1.00 0.16 1.00 1.00 1.00
Design 3 0.28 0.33 0.38 0.38 1.00 0.29 0.37 1.00 0.47 1.00 0.99 0.98
Design 4 0.30 0.31 0.31 0.31 1.00 0.30 0.31 1.00 0.32 1.00 1.00 1.00
Design 5 0.29 0.32 0.36 0.36 1.00 0.31 0.32 1.00 0.39 1.00 1.00 1.00
Design 6 0.54 0.60 0.64 0.64 1.00 0.54 0.65 1.00 0.69 1.00 1.00 1.00

on jackknife standard errors perform better than any other standard error method. Specifically, this

holds whether inference uses conventional student t critical values, adjusted critical values, pairs bootstrap-

t critical values, or wild bootstrap-t critical values. This is strong evidence favoring jackknife standard

errors, regardless of the inference method.

We expand the analysis by examining a model with clusterwise noninvertibility. This is Y g = α+
X gβ+D gγ+ eg with D g a dummy indicator for the first cluster. This model is cluster-level treatment

with a single treated cluster. The regression is clusterwise noninvertible as the least squares estimator

is undefined when the first cluster is omitted. In this model we examine confidence intervals for both β

and γ. For this model we consider the same six designs as in the baseline model for the distributions of

the regressors, errors, and cluster sizes.

At this point we need to discuss our implementation of the pairs bootstrap. As D g is non-zero only
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Table 5: Regression with Strongly Skewed Errors. Coverage of Nominal 95% Confidence Intervals for β

Cr. Value Conventional tG−1 Adjusted tK Pairs Boot Wild Boot
St. Error ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 ν̂2 ν̂5 ν̂1 ν̂5 ν̂1 ν̂5

G = 6
Design 1 0.92 0.94 0.96 0.96 0.97 0.95 0.96 0.97 0.96 0.97 0.94 0.94
Design 2 0.86 0.92 0.96 0.96 0.97 0.99 0.99 0.99 0.93 0.97 0.96 0.95
Design 3 0.84 0.90 0.96 0.96 0.97 0.99 0.99 0.99 0.93 0.97 0.94 0.95
Design 4 0.86 0.88 0.90 0.90 0.92 0.88 0.91 0.92 0.93 0.94 0.91 0.91
Design 5 0.64 0.74 0.87 0.87 0.89 0.91 0.92 0.94 0.79 0.91 0.91 0.93
Design 6 0.61 0.72 0.87 0.88 0.89 0.93 0.92 0.93 0.80 0.92 0.91 0.94
G = 12
Design 1 0.93 0.94 0.95 0.95 0.96 0.94 0.95 0.96 0.96 0.96 0.95 0.95
Design 2 0.85 0.91 0.94 0.94 0.95 0.97 0.99 0.99 0.90 0.94 0.96 0.96
Design 3 0.81 0.89 0.94 0.95 0.95 0.98 0.99 0.99 0.90 0.95 0.95 0.95
Design 4 0.88 0.90 0.91 0.91 0.92 0.89 0.91 0.92 0.93 0.93 0.92 0.92
Design 5 0.62 0.72 0.85 0.85 0.86 0.85 0.92 0.94 0.80 0.90 0.91 0.93
Design 6 0.58 0.69 0.84 0.85 0.86 0.85 0.91 0.94 0.79 0.90 0.91 0.93
G = 40
Design 1 0.94 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.96 0.95 0.95
Design 2 0.87 0.91 0.94 0.94 0.94 0.96 0.98 0.98 0.90 0.93 0.96 0.96
Design 3 0.82 0.89 0.94 0.94 0.94 0.95 0.98 0.99 0.91 0.95 0.95 0.96
Design 4 0.92 0.92 0.93 0.93 0.93 0.91 0.93 0.93 0.94 0.94 0.93 0.93
Design 5 0.68 0.77 0.85 0.85 0.86 0.81 0.91 0.93 0.86 0.91 0.92 0.92
Design 6 0.62 0.72 0.84 0.84 0.85 0.80 0.90 0.93 0.84 0.91 0.91 0.92
G = 100
Design 1 0.94 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Design 2 0.89 0.92 0.93 0.93 0.94 0.95 0.97 0.97 0.91 0.93 0.95 0.95
Design 3 0.82 0.89 0.94 0.94 0.94 0.93 0.97 0.98 0.91 0.95 0.94 0.95
Design 4 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.95 0.95 0.94 0.94
Design 5 0.74 0.81 0.87 0.87 0.87 0.83 0.91 0.93 0.89 0.93 0.92 0.92
Design 6 0.66 0.75 0.86 0.86 0.86 0.80 0.90 0.93 0.86 0.92 0.91 0.92

for one cluster, a high percentage (about 37%) of bootstrap samples have a singular regressor matrix.

In this context it is not clear how the bootstrap should treat these sample draws. We follow the recom-

mendation of Shao and Tu (1995) and implementation in Stata which discards these bootstrap samples.

Thus bootstrap standard errors and critical values are calculated from the bootstrap samples which have

nonsingular regressor matrices.

Table 3 presents the coverage rates for confidence intervals for β. In general, the results are similar to

those of Table 2 but with two important differences. First, in Table 3 we see a meaningful divergence in

performance between the intervals based on conventional jackknife standard errors ν̂3 and ν̂4 and those

based on our recommended jackknife standard errors ν̂5. In Table 2, these three methods were nearly

identical; in Table 3 we can see that the two conventional intervals exhibit substantial undercoverage

in most designs (which diminish as G increases). This difference is due to the treatment of noninvert-
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Table 6: Baseline Regression. Average Interval Length

Cr. Value Conventional tG−1 Adjusted tK Pairs Boot
St. Error ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 ν̂2 ν̂5 ν̂1 ν̂5

G = 6
Design 1 1.00 1.12 1.28 1.29 1.41 1.05 1.26 1.43 1.85 2.08
Design 2 1.69 2.09 3.17 3.28 3.60 3.32 3.96 5.30 3.15 5.65
Design 3 1.71 2.18 3.51 3.66 4.01 3.92 4.46 5.87 3.77 7.24
Design 4 0.94 1.04 1.17 1.17 1.29 0.97 1.18 1.31 1.91 2.25
Design 5 0.83 1.08 1.71 1.78 1.95 1.46 2.15 2.96 2.94 6.26
Design 6 0.83 1.10 1.83 1.91 2.09 1.65 2.35 3.15 3.50 7.60
G = 12
Design 1 0.67 0.71 0.76 0.76 0.80 0.67 0.76 0.80 0.85 0.90
Design 2 0.86 1.02 1.37 1.39 1.45 1.40 1.84 2.39 1.22 1.91
Design 3 0.93 1.15 1.67 1.70 1.77 1.67 2.26 2.97 1.58 2.70
Design 4 0.66 0.70 0.76 0.76 0.79 0.66 0.76 0.79 0.92 1.01
Design 5 0.63 0.82 1.23 1.25 1.31 0.93 1.64 2.30 2.29 4.65
Design 6 0.63 0.85 1.33 1.35 1.42 1.01 1.81 2.50 2.70 5.62
G = 40
Design 1 0.36 0.37 0.38 0.38 0.38 0.36 0.38 0.38 0.39 0.39
Design 2 0.37 0.41 0.49 0.49 0.50 0.48 0.61 0.75 0.47 0.61
Design 3 0.45 0.55 0.73 0.73 0.74 0.64 0.91 1.19 0.75 1.12
Design 4 0.38 0.39 0.40 0.40 0.41 0.38 0.40 0.41 0.43 0.44
Design 5 0.55 0.69 0.93 0.93 0.94 0.69 1.15 1.56 1.69 2.80
Design 6 0.56 0.72 1.04 1.05 1.06 0.76 1.32 1.85 1.98 3.66
G = 100
Design 1 0.23 0.23 0.24 0.24 0.24 0.23 0.24 0.24 0.24 0.24
Design 2 0.22 0.23 0.26 0.26 0.26 0.26 0.30 0.35 0.26 0.30
Design 3 0.31 0.37 0.47 0.47 0.48 0.39 0.54 0.71 0.55 0.80
Design 4 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.26 0.26 0.26
Design 5 0.51 0.60 0.75 0.75 0.76 0.58 0.87 1.12 1.23 1.85
Design 6 0.51 0.65 0.89 0.89 0.90 0.65 1.07 1.48 1.57 2.79

ible clusters. Second, the conventional interval using bootstrap standard errors exhibits a substantial

deterioration in coverage relative to the clusterwise invertible case of Table 2.

Next, we examine Table 4, which presents coverage rates for the dummy variable coefficient γ in the

regression model Y g = α+ X gβ+D gγ+ eg . This is a treacherous context, as we are essentially making

inference for a coefficient based on a single cluster. The results in Table 4 reveal that the conventional

inference methods fail15, and worsen as the sample size increases. The Bell-McCaffrey adjusted interval,

conventional bootstrap interval, and pairs bootstrap percentile-t using CRVE1 standard errors similarly

fail. The exceptions (which generally produce coverage rates of 100%) are any intervals (conventional,

adjusted, bootstrap percentile-t , and wild bootstrap-t ) using the jackknife ν̂5 standard error, and both

wild bootstrap percentile-t intervals. The reason why the intervals based on the jackknife standard error

15The failure of conventional methods in this context is well known.
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ν̂5 have coverage rates of 100% is because in this context ν̂5 tends to approximately equal the coefficient

estimate γ̂, so the confidence interval always covers the true value of 0. Coverage is conservative, but at

least there is no tendency towards false significance. The message of Table 4 is that our recommended

jackknife standard errors and confidence intervals will not produce misleading significance, even in the

most extreme context of inference on a dummy indicator for a single treated cluster.

Our inference theory is developed under the assumption of normally distributed errors, which raises

the question if the coverage rates are sensitive to departures to normality. To explore this question, we

repeat the analysis of the baseline model, but with the errors drawn from a skewed heavy-tailed distribu-

tion. Specifically, we use the “strongly skewed” distribution displayed in Figure 3.7(b) of Hansen (2022)

which is a 9-component normal mixture distribution with a skew of 1.34 and kurtosis of 6.7. We sample

the regression errors from this skewed distribution, with the same cluster covariances as in the baseline

model. The results are displayed in Table 5. Comparing Tables 2 and 5, we can see that the results are

qualitatively similar, with reduced coverage accuracy of several methods in Table 5. The relative rankings

of the methods, however, are unchanged.

We finally address the accuracy of the confidence intervals by calculating their average length in the

baseline model. We do so for all methods except for the wild bootstrap. This is because calculation of

the full wild bootstrap confidence interval must be done by numerical test statistic inversion, which is

computationally demanding16. We report the results in Table 6. The results are a bit difficult to compare

across methods, as most methods have substantial undercoverage. However, we can make the follow-

ing observations. First, if we compare the conventional methods (the first six), we can see that while

our proposed jackknife-based intervals have the longest length, the six are of rough similar length, and

this holds despite the fact that the other intervals have substantial under-coverage. Second, our pro-

posed adjusted confidence interval has longer average length than the conventional methods, but again

of rough similarity. Third, the relative differences decrease as the sample size increases. Fourth, the pairs

bootstrap-t intervals can be substantially wider than our proposed intervals, despite having similar cov-

erage probabilities. In general, the results of Table 6 suggest that the proposed methods have reasonable

accuracy.

In summary, we are able to draw the following conclusions from the simulation evidence. First, the

standard error which produces confidence intervals with the best coverage rates is ν̂5. Second, the sim-

ple confidence interval β̂± t 1−α/2
G−1 ν̂5 has good coverage rates in many contexts, but can under-cover in

extreme designs. Third, the adjusted confidence interval β̂± t 1−α/2
K ν̂5/a has excellent (but conserva-

tive) coverage in all contexts examined. Fourth, excellent coverage is also attained by the pairs and wild

bootstrap-t intervals, but only if combined with the jackknife standard error ν̂5. Fifth, issues such as

clusterwise invertibility should not be handled by ad hoc computational implementations, but rather by

methods justified by theoretical insight. In particular, the jackknife should be implememented without

the discarding of iterations with noninvertible design matrices.

16Our calculation of Table 6 using parellel processing took 3 days. Adding the wild bootstrap would increase the computation
time by an order of magnitude.

25



10 Empirical Illustration

We illustrate the applicability of the methods with an empirical example. We follow Canay, Santos,

and Shaikh (2021) by revisiting an application by Meng, Qian, and Yared (2015) into the causes of the

Chinese Great Famine between 1958 and 1960. Their regressions (Table 2 of Meng-Qian-Yared) take the

form Y = Z1β1 + Z2β2 +W ′γ+ e for G = 19 provinces between 1953 and 1982, where Y equals the log of

deaths in the province, Z1 equals the log of predicted grain production, Z2 equals the product of Z1 and

an indicator for a famine year, and W are other controls. The focus is on the coefficient sum β1+β2. The

authors report six specifications which vary the sample period (1953-1982 vs 1953-1965), the provinces

(19 vs 23 provinces), and replacing predicted with reported grain production.

Canay, Santos, and Shaikh (2021) use this application to illustrate hypothesis testing using the clus-

ter wild bootstrap. In contrast, we are interested in standard error calculation and confidence interval

construction, in addition to hypothesis testing. Following these authors, we cluster by province.

We estimate the same six regression specifications as Meng, Qian, and Yared (2015) and focus on the

coefficient sumβ1+β2. In Table 7 we report the least squares estimates β̂1+β̂2 plus three standard errors:

CRVE1, CRVE2, and our recommended jackknife standard errors. What you can see from the table is that

in some of the specifications there are considerable differences between the three standard errors, and in

particular between the jackknife and the other two. The discrepancies between the CRVE1 and jackknife

standard errors range from 10% (in specification #1) to 66% (in specification #3). These are large and

substantial differences.

We next construct 95% adjusted confidence intervals for the coefficient sum β1 +β2. We start by

calculating the adjustment coefficients K and a for each of the six specifications, and report these coef-

ficients in Table 7. The values for the adjusted degree-of-freedom K range between 4 and 6, which are

all small. The values for the scale adjustment a range between 1.17 and 1.26. Together, these are used to

construct the confidence intervals, which are reported in the Table.

Take, for example, specification #1, where β̂1 + β̂2 = 0.141, ν̂5 = 0.066, K = 4.18, and a = 1.21. The

95% critical value from the t distribution with K = 4.18 degrees of freedom is 2.73. The 95% confidence

interval is therefore 0.141±2.73×0.066/1.21 = [−.01, .29], as reported.

The confidence intervals are wide, indicating uncertainty about the value of the coefficient sum. The

intervals do not vary greatly across the six specifications, indicating that the result is reasonably robust

to the specification.

We also construct and report adjusted p-values for t-tests of the hypothesisβ1+β2 = 0. The t-statistic

using the jackknife standard error is 0.141/0.066 = 2.16. The adjusted p-value is 1−F
(
1.212 ×2.162;1,4.18

)=
0.058, as reported. None of the six p-values are significant at the 5% level. This contrasts with the p-values

reported by Meng, Qian, and Yared (2015), which were all statistically significant, some greatly so. Several

of our p-values are similar to those calculated by the wild cluster bootstrap as reported by Canay, Santos,

and Shaikh (2021). For example, for the baseline specification #1, our p-value of 0.058 is nearly identical

to their wild studentized p-value of 0.061.
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Table 7: China’s Great Famine, 1959-1961

Dependent variable: log deaths in year t +1
Constructed grain production Reported grain production

19 provinces 23 provinces 19 provinces
1953-1982 1953-1965 1953-1982 1953-1965 1953-1982 1953-1965

(1) (2) (3) (4) (5) (6)
β̂1 + β̂2 0.141 0.098 0.115 0.094 0.113 0.089
CRVE1 (0.060) (0.053) (0.037) (0.037) (0.063) (0.059)
CRVE2 [0.061] [0.056] [0.039] [0.037] [0.068] [0.063]

Jackknife 〈0.066〉 〈0.066〉 〈0.061〉 〈0.052〉 〈0.079〉 〈0.073〉
K 4.18 3.95 5.34 5.03 5.18 5.97
a 1.21 1.26 1.21 1.23 1.18 1.17

Interval [−0.01,0.29] [−0.05,0.24] [−0.01,0.24] [−0.01,0.20] [−0.06,0.28] [−0.06,0.24]
p-value 0.058 0.135 0.069 0.076 0.151 0.200

Notes: All regressions include log total population, log urban population, and year fixed effects. CRVE1,
CRVE2, and jackknife standard errors for β̂1 + β̂2, clustered by province, in parenthesis, square brackets,
and angle brackets, respectively. K and a are the adjustment parameters for the confidence interval for

β̂1 + β̂2. The p-value is for the t-test of the hypothesis β1 +β2 = 0.

11 Conclusion

Heteroskedasticity-consistent and cluster-robust standard errors are routinely reported in applied

econometric practice. It is prudent for the profession to coalesce on simple yet well-behaved methods

which produce reliable inference across reasonable estimation settings. It is our contention that jack-

knife variance estimators are superior to conventional (EHW and CRVE1) estimators, based on our anal-

ysis of worst-case downward bias and confidence interval coverage rates. They are also computationally

simple to implement.

12 Technical Proofs

Proof of Theorem 1: We first show that (14) holds for definitions (12) and (13). The estimator (12) with

any generalized inverse is a minimizer of the least-squares criterion, so solves the first order condition(
X ′X −X ′

g X g

)
β̃−g =

(
X ′Y −X ′

g Y g

)
.

Pre-multiplying by
(

X ′X
)−1, rearranging, and using (13), we obtain

β̃−g = (
X ′X

)−1 X ′Y − (
X ′X

)−1 X ′
g Y g +

(
X ′X

)−1 X ′
g X g β̃−g

= β̂− (
X ′X

)−1 X ′
g

(
Y g −X g β̃−g

)
= β̂− (

X ′X
)−1 X ′

g ẽg ,
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which is (14) as claimed.

By definition (13) and model (1), the prediction errors equal

ẽg = Y g −X g β̃−g = eg −X g
(
β̃−g −β

)
. (39)

Squaring and expanding,

ẽg ẽ ′
g = eg e ′

g −eg
(
β̃−g −β

)′
X ′

g −X g
(
β̃−g −β

)
e ′

g +X g
(
β̃−g −β

)(
β̃−g −β

)′
X ′

g (40)

≥ eg e ′
g −eg

(
β̃−g −β

)′
X ′

g −X g
(
β̃−g −β

)
e ′

g . (41)

The inequality holds because the final term in (40) takes the form A A′ and is thus positive semi-definite.

The first term in (41) has expectation Σg . Observe that eg is independent of β̃−g −β and mean zero,

so the expectation of the second and third terms in (41) equals zero. We deduce that

E
[

ẽg ẽ ′
g

]
≥ E

[
eg e ′

g

]
=Σg . (42)

Using expression (15) and inequality (42),

E
[
V̂ 5

]= (
X ′X

)−1

(
G∑

g=1
X ′

gE
[

ẽg ẽ ′
g

]
X g

)(
X ′X

)−1

≥ (
X ′X

)−1

(
G∑

g=1
X ′

gΣg X g

)(
X ′X

)−1

=V .

This is (16). ■

Proof of Theorem 2, equation (17): Without loss of generality, normalize X ′X = I k and R ′R = 1. Set

Z g = X g R and cg = Z ′
g Z g , and observe that

∑G
g=1 cg = 1.

The CRVE1 estimator can be written as

ν̂2
1 = d

G∑
g=1

Z ′
g êg ê ′

g Z g (43)

where d =G (n −1)/(G −1)(n −k). The restriction (X ,Σ) ∈F∗
0 imposesΣg =σ2I ng , under which we can

calculate that ν2 =σ2 and

E
[

êg ê ′
g

]
=σ2M g (44)

where

M g = I ng −X g X ′
g ≤ I ng −Z g Z ′

g . (45)

The inequality in (45) can be shown by the following argument. Let R⊥ be k × (k −1) such that [R,R⊥] is
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orthonormal. Set Z ⊥g = X g R⊥. Then

X g X ′
g = X g [R,R⊥]

[
R ′

R ′
⊥

]
X ′

g = [
Z g , Z ⊥g

][
Z ′

g

Z ′
⊥g

]
= Z g Z ′

g +Z ⊥g Z ′
⊥g ≥ Z g Z ′

g ,

which implies (45). Taking expectations of (43) using (44), (45), Z ′
g Z g = cg , and

∑G
g=1 cg = 1, we find that

E
[
ν̂2

1

]= d
G∑

g=1
Z ′

gE
[

êg ê ′
g

]
Z g

= dσ2
G∑

g=1
Z ′

g M g Z g

≤ dσ2
G∑

g=1
Z ′

g

(
I ng −Z g Z ′

g

)
Z g

= dσ2

(
1−

G∑
g=1

c2
g

)
.

Together with ν2 =σ2, we find that
E
[
ν̂2

1

]
ν2 ≤ d

(
1−

G∑
g=1

c2
g

)
. (46)

Inequality (46) implies that the left side of (17) is weakly smaller than the infimum of the right-hand

side of (46) over cg . Thus

inf
(X ,Σ)∈F∗

0

E
[
ν̂2

1

]
ν2 ≤ d inf∑G

g=1 cg=1

(
1−

G∑
g=1

c2
g

)
= 0. (47)

The rightmost equality in (47) is attained as (c1, ...,cG ) → (1,0, ...,0). Since the left side of (47) is non-

negative, the equation hold as an equality. This verifies (17). ■

Proof of Theorem 2, equation (18): We use the same normalizations and notation as in the proof of (17),

add the assumption that λmin
(
M g

)≥ δ> 0 for all g > 1, which means that all clusters other than g = 1 are

uniformly clusterwise invertible, and assume that Σ1 = I n1 and Σg = 0, which is extreme heteroskedas-

ticity. Under these conditions, you can calculate that V = X ′
1X 1 and ν2 = c1.

The CRVE2 estimator for ν2 can be written as

ν̂2
2 =

G∑
g=1

Z ′
g M−1/2

g êg ê ′
g M−1/2

g Z g . (48)

We can calculate that for g = 1,

E
[
ê1ê ′

1

]= I n1 −2X 1X ′
1 +X 1X ′

1X 1X ′
1 = M 1M 1, (49)

and for g > 1,

E
[

êg ê ′
g

]
= X g X ′

1X 1X ′
g . (50)

29



Taking expectations of (48) and using (49)-(50)

E
[
ν̂2

2

]= G∑
g=1

Z ′
g M−1/2

g E
[

êg ê ′
g

]
M−1/2

g Z g

= Z ′
1M−1/2

1 M 1M 1M−1/2
1 Z 1 +

G∑
g=2

Z ′
g M−1/2

g X g X ′
1X 1X ′

g M−1/2
g Z g . (51)

The first term on the right side of (51) equals

Z ′
1M 1Z 1 ≤ Z ′

1

(
I n1 −Z 1Z ′

1

)
Z 1 = c1 − c2

1 ,

where the inequality is (45). Since

λmax

(
M−1/2

g X g X ′
1X 1X ′

g M−1/2
g

)
≤λmax

(
M−1

g

)
λmax

(
X ′

1X 1
)
λmax

(
X ′

g X g

)
≤ 1

δ

(using the assumption λmin
(
M g

) ≥ δ for any g ≥ 2 and the fact X ′
g X g ≤ X ′X = I k for any g ≥ 1), the

second term on the right side of (51) satisfies

G∑
g=2

Z ′
g M−1/2

g X g X ′
1X 1X ′

g M−1/2
g Z g ≤

G∑
g=2

Z ′
g Z g

δ
= 1− c1

δ
. (52)

Together with ν2 = 1, we find that
E
[
ν̂2

2

]
ν2 ≤ 1− c1 + 1− c1

δc1
. (53)

The assumptions we have made are a special case of the model class F∗. Therefore, the left side of

(18) is weakly smaller than the infimum of (53) over c1. Hence

inf
(X ,Σ)∈F∗

E
[
ν̂2

2

]
ν2 ≤ inf

0<c1<1

(
1− c1 + 1− c1

δc1

)
= 0. (54)

The rightmost equality in (54) is attained as c1 → 1. Equation (54) implies (18), as claimed. ■

Proof of Theorem 2, equation (19): We first show that when X is clusterwise invertible,

E
[
V̂ 3

]≥ (
G −1

G

)2

V . (55)

The proof of (55) is analogous to that of Theorem 1. Using (9) under clusterwise invertibility, collecting
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terms, (14), and then (39), we calculate that

β̃−g − β̄= (
β̃−g − β̂

)− 1

G

G∑
h=1

(
β̃−h − β̂)

=
(

G −1

G

)(
β̃−g − β̂

)− 1

G

∑
h ̸=g

(
β̃−h − β̂)

=−
(

G −1

G

)(
X ′X

)−1 X ′
g ẽg + 1

G

(
X ′X

)−1 ∑
h ̸=g

X ′
h ẽh

=−
(

G −1

G

)(
X ′X

)−1 X ′
g eg −Sg (56)

where

Sg =−
(

G −1

G

)(
X ′X

)−1 X ′
g X g

(
β̃−g −β

)− 1

G

(
X ′X

)−1 ∑
h ̸=g

X ′
heh + 1

G

(
X ′X

)−1 ∑
h ̸=g

X ′
h X h

(
β̃−h −β)

.

Notice that the first two components of Sg are uncorrelated with eg . Thus

E

[(
G −1

G

)(
X ′X

)−1 X ′
g eg S ′

g

]
= G −1

G2

(
X ′X

)−1 ∑
h ̸=g

X ′
gE

[
eg

(
β̃−h −β)′]

X ′
h X h

(
X ′X

)−1

= G −1

G2

(
X ′X

)−1 ∑
h ̸=g

X ′
gΣg X g

(
X ′X −X ′

h X h
)−1 X ′

h X h
(

X ′X
)−1

= Ag ,

say, where the second equality uses the relationship (under clusterwise invertibility)

β̃−h −β= (
X ′X −X ′

h X h
)−1

( ∑
ℓ̸=h

X ′
ℓeℓ

)
.

Using (56), it follows that

E
[
V̂ 3

]= (
G −1

G

) G∑
g=1

E
[(
β̃−g − β̄

)(
β̃−g − β̄

)′]
=

(
G −1

G

)2 (
X ′X

)−1
G∑

g=1
X ′

gE
[

eg e ′
g

]
X g

(
X ′X

)−1 +
G∑

g=1

(
E
[

Sg S ′
g

]
+ Ag + A′

g

)
≥

(
G −1

G

)2

V . (57)

The positive semi-definite (PSD) inequality (57) holds because E
[

Sg S ′
g

]
and Ag + A′

g are PSD. The sum

Ag +A′
g is PSD because Ag is the matrix product of PSD matrices, and thus has non-negative eigenvalues

(see Zhang and Zhang (2006, Corollary 11)). This establishes (55).
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Equation (55) implies

inf
(X ,Σ)∈F∗

E
[
ν̂2

3

]
ν2 = inf

(X ,Σ)∈F∗

R ′E
[
V̂ 3

]
R

R ′V R
≥

(
G −1

G

)2

. (58)

To show that (58) holds as an equality we calculate an upper bound for the left side of (58) in the

context of the example from the proof of (18). We adopt the assumptions made therein. The model

class F∗ imposes clusterwise invertibility. As shown by equation (19) of MacKinnon, Nielsen, and Webb

(2023b), clusterwise invertibility and X ′X = I k implies

R ′ (β̂− β̃−g
)= R ′X ′

g M−1
g êg = Z ′

g M−1
g êg .

Consequently,

ν̂2
3 =

(
G −1

G

) G∑
g=1

R ′ (β̃−g − β̄
)(
β̃−g − β̄

)′
R

=
(

G −1

G

) G∑
g=1

R ′ (β̃−g − β̂
)(
β̃−g − β̂

)′
R − (G −1)R ′ (β̂− β̄)(

β̂− β̄)′
R

=
(

G −1

G

) G∑
g=1

Z ′
g M−1

g êg ê ′
g M−1

g Z ′
g −

(
G −1

G2

)(
G∑

g=1
Z ′

g M−1
g êg

)(
G∑

g=1
ê ′

g M−1
g Z ′

g

)

=
(

G −1

G

)2

Z ′
1M−1

1 ê1ê ′
1M−1

1 Z 1 (59)

+
(

G −1

G

)2 G∑
g=2

Z ′
g M−1

g êg ê ′
g M−1

g Z g (60)

−2

(
G −1

G2

) G∑
g=2

Z ′
g M−1

g êg ê ′
1M−1

1 Z 1 (61)

−
(

G −1

G2

) ∑
h ̸=g ̸=1

Z ′
g M−1

g êg ê ′
h M−1

h Z h . (62)

Using (49), the expectation of (59) equals ((G −1)/G)2 times

Z ′
1M−1

1 E
[
ê1ê ′

1

]
M−1

1 Z 1 = Z ′
1M−1

1 M 1M 1M−1
1 Z 1 = Z ′

1Z 1 = c1.

Using (50) the expectation of (60) equals ((G −1)/G)2 times

G∑
g=2

Z ′
g M−1

g E
[

êg ê ′
g

]
M−1

g Z g =
G∑

g=2
Z ′

g M−1
g X g X ′

1X 1X ′
g M−1

g Z g ≤ 1− c1

δ2 ,

where the inequality follows by similar same steps as for (52).

We calculate that for g ̸= 1

E
[
êg ê ′

1

]=−X g
(

I k −X ′
1X 1

)
X ′

1. (63)
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The assumption λmin
(
M g

)≥ δ implies that

G∑
g=2

X ′
g M−1

g X g ≥ 1

δ

G∑
g=2

X ′
g X g = 1

δ

(
I k −X ′

1X 1
)

. (64)

Using the Woodbury identity and the fact X ′
1X 1 ≤ X ′X = I k ,

X ′
1M−1

1 X 1 = X ′
1X 1 +X ′

1X 1
(

I k −X ′
1X 1

)−1 X ′
1X 1

≤ I k +
(

I k −X ′
1X 1

)−1

≤ 2
(

I k −X ′
1X 1

)−1 . (65)

Combining (63), (64), and (65), the expectation of (61) equals 2(G −1)/G2 times

R ′ G∑
g=2

X ′
g M−1

g X g
(

I k −X ′
1X 1

)
X ′

1M−1
1 X 1R ≤ 2

δ
R ′ (I k −X ′

1X 1
)(

I k −X ′
1X 1

)(
I k −X ′

1X 1
)−1 R

= 2

δ
R ′ (I k −X ′

1X 1
)

R

= 2(1− c1)

δ
.

We calculate that for h ̸= g ̸= 1

E
[
êg ê ′

h

]= X g X ′
1X 1X ′

h ,

so the expectation of (62) equals (G −1)/G2 times

−R ′ ∑
h ̸=g ̸=1

X ′
g M−1

g X g X ′
1X 1X ′

h M−1
h X hR ≤ 0,

where the inequality holds since it is a quadratic form of a sum of positive semi-definite matrices.

Together, with ν2 = c1, we have

E
[
ν̂2

3

]
ν2 ≤

(
G −1

G

)2

+
(

G −1

G

)2 1− c1

δ2c1
+4

(
G −1

G2

)
1− c1

δ
. (66)

As in the proof of (18), the left side of (19) is weakly smaller than the infimum of (66) over c1. Hence

inf
(X ,Σ)∈F∗

E
[
ν̂2

3

]
ν2 ≤ inf

0<c1<1

((
G −1

G

)2

+
(

G −1

G

)2 1− c1

δ2c1
+4

(
G −1

G2

)
1− c1

δ

)
=

(
G −1

G

)2

.

The rightmost equality in (54) is attained as c1 → 1. Combined with (58) this establishes that (58) holds

as an equality, which is (19), as claimed. ■

Proof of Theorem 2, equation (20): Since the model is clusterwise invertible,

ν̂2
4 =

(
G −1

G

)
ν̂2

5.
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The result follows from (23), which we establish below. ■

Proof of Theorem 2, equations (21) and (22): We calculate an upper bound for the left side of (21)-

(22) assuming one noninvertible cluster. Without loss of generality, assume X ′X = I k and assume the

noninvertible cluster is g = 1. This means that there is a linear combination X gγ of the regressors which

is identically zero for g ̸= 1. Without loss of generality, assume γ = R. Since the regressor matrix is

singular when cluster 1 is omitted, this cluster is discarded from the calculation of ν̂2
3 and ν̂2

4. Therefore

the latter equals

ν̂2
4 =

(
G −2

G −1

) G∑
g=2

R ′ (β̃−g − β̂
)(
β̃−g − β̂

)′
R

=
(

G −2

G −1

) G∑
g=2

R ′X ′
g M−1

g êg ê ′
g M−1

g X g R

= 0

since X g R = 0 for g ̸= 1. Thus ν̂2
4 is identically zero. Since ν̂2

3 ≤ ν̂2
4 we find that ν̂2

3 = 0 as well. This implies

(21)-(22) as stated. ■

Proof of Theorem 2, equation (23): Equation (16) implies

inf
(X ,Σ)∈F

E
[
ν̂2

5

]
ν2 = inf

(X ,Σ)∈F

R ′E
[
V̂ 5

]
R

R ′V R
≥ inf

(X ,Σ)∈F

R ′V R

R ′V R
= 1. (67)

To show that this is a strict equality we calculate an upper bound for the left side of (67) in the context of

the example from the proof of (19). By the calculations from that proof,

ν̂2
5 =

G∑
g=1

Z ′
g M−1

g êg ê ′
g M−1

g Z g

which satisfies
E
[
ν̂2

5

]
ν2 ≤ 1+ 1− c1

δ2c1
. (68)

This implies

inf
(X ,Σ)∈F

E
[
ν̂2

5

]
ν2 ≤ inf

0<c1<1

[
1+ 1− c1

δ2c1

]
= 1. (69)

Combined with (67) this yields (23) as stated. ■

For the proof of Theorem 3 we use the following distributional lower bound.
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Theorem 7 For any n ≥ 1 let ξ= (ξ0,ξ1, ...,ξn) ∼ N(0,Ω) where

Ω=


1 ρ1 · · · ρn

ρ1 1 · · · 0
...

. . .
...

ρn 0 · · · 1

 .

Then for any w j ≥ 0 satisfying
∑n

j=1 w j ≥ 1, any δ j , and any 1 ≤ x <∞,

P

 ξ2
0∑n

j=1 w j
(
ξ j +δ j

)2 ≤ x

≥ F (x;1,1) , (70)

where F (x;k1,k2) denotes the F distribution function with degrees of freedom k1 and k2.

Proof of Theorem 7: Our proof examines the inequality in four cases: (a) δ j = 0 and ρ j = 0 for all j ; (b)

ρ j = 0 for all j but δ j ̸= 0; (c) δ j = 0 for all j but ρ j ̸= 0; (d) general ρ j and δ j .

Case (a): δ j = 0 and ρ j = 0 for all j . The asssumption that ρ j = 0 implies that the ξ j are mutually

independent. Set w̄ = ∑n
j=1 w j ≥ 1, α j = w j /w̄ for j ≤ n − 1, αn = 1−∑n−1

j=1 α j , α = (α1, ...,αn−1)′, U =
(ξ2

1−ξ2
n , ...,ξ2

n−1−ξ2
n), and let H(x) =P[

ξ2
0 ≤ x

]
denote the χ2

1 cumulative distribution function. Using the

law of iterated expectations, the monotonicity of H(x), and w̄ ≥ 1, the left side of (70) equals

E

[
P

[
ξ2

1 ≤ x
n∑

j=1
w jξ

2
j

∣∣∣∣∣ ξ2
1, ...,ξ2

n

]]
= E

[
H

(
w̄ x

n∑
j=1

α jξ
2
j

)]

≥ E
[

H

(
x

n∑
j=1

α jξ
2
j

)]
= E[

H
(
xα′U +xξ2

n

)]
≡ f (α). (71)

We calculate that
∂2

∂α∂α′ f (α) = x2E
[
UU ′H ′′ (xα′U +xξ2

n

)]
.

This matrix is negative semi-definite since the χ2
1 distribution function H(t ) is globally concave. Hence,

the function f (α) is concave inα. It follows that the minimum of f (α) overα is obtained at a corner. By

symmetry we can take any corner, e.g. αmin = (1,0, ...,0). Hence, the minimum of (71) overα equals

E
[
H

(
xα′

minU +xξ2
n

)]= E[
H

(
xξ2

1

)]=P[
ξ2

0

ξ2
1

≤ x

]
= F (x;1,1),

since ξ2
0/ξ2

1 is distributed F with degrees of freedom (1,1). This establishes (70).

Case (b): ρ j = 0 for all j but δ j ̸= 0. In this case,
∑n

j=1 w j
(
ξ j +δ j

)2 is independent of ξ2
0. By Theorem

3 of Mathew and Nordström (1997),
∑n

j=1 w jξ
2
j is stochastically dominated by

∑n
j=1 w j

(
ξ j +δ j

)2. This
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implies

P

 ξ2
0∑n

j=1 w j
(
ξ j +δ j

)2 ≤ x

≥P
[

ξ2
0∑n

j=1 w jξ
2
j

≤ x

]
. (72)

The right-side corresponds to Case (a), which we have already shown is bounded below by F (x;1,1). This

establishes (70).

Case (c): δ j = 0 for all j but ρ j ̸= 0. Define the (n +1)× (n +1) positive semi-definite matrices A =
diag{1,0, ...,0}, B = diag{0, w1, ..., wn}, and C = Ω1/2 (A −xB )Ω1/2. By the spectral decomposition, C =
HΛH ′, where H ′H = I n+1, Λ = diag{λ0, ...,λn}, and λ0 ≥ λ1 ≥ ·· · ≥ λn are the ordered eigenvalues of C .

Set u =Ω−1/2ξ∼ N(0, I n+1) and ζ= H ′u ∼ N(0, I n+1). Partition ζ= (ζ0, ...,ζn)′ in conformity withΛ.

The left side of (70) equals

P

[
ξ2

0∑n
j=1 w jξ

2
j

≤ x

]
=P

[
ξ2

0 ≤ x
n∑

j=1
w jξ

2
j

]
=P[

ξ′ (A −xB )ξ≤ 0
]

=P[
u′C u ≤ 0

]
=P[

ζ′Λζ≤ 0
]

=P
[

n∑
j=0

λ jζ
2
j ≤ 0

]
. (73)

We next establish two bounds on the eigenvalues λ j . First,

λ0 =λmax (C )

≤λmax
(
Ω1/2 AΩ1/2)+λmax

(−xΩ1/2BΩ1/2)
=λmax (AΩ)−xλmin (BΩ)

= 1, (74)

since λmax (AΩ) = 1 by direct calculation, and λmin (BΩ) = 0 since B has deficient rank.

Second, by a corollary of the Weyl eigenvalue inequality for Hermitian matrices (Corollary 4.3.15 of

Horn and Johnson (2013)), for each j ≥ 1,

λ j =λ j+1 (C )

≤λ j+1
(
Ω1/2 AΩ1/2)+λmax

(−xΩ1/2BΩ1/2)
=λ j+1 (AΩ)−xλmin (BΩ)

= 0, (75)

the final equality since both A and B have deficient rank. Together, (74) and (75) show that the largest

eigenvalue λ0 of C is less than one, and the remaining are non-positive.

If λ0 ≤ 0 then λ j ≤ 0 for all j by (75), so (73) equals 1. This implies (70). We thus assume λ0 > 0 for the
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remainder of the proof. For j = 1, ...,n set α j =−λ j /(λ0x) ≥ 0. We see that (73) equals

P

[
ζ2

0 ≤ x
n∑

j=1
α jζ

2
j

]
=P

[
ζ2

0∑n
j=1α jζ

2
j

≤ x

]
. (76)

We next establish
n∑

j=1
α j ≥ 1. (77)

Using the property tr(C ) =∑n
j=0λ j and the direct calculations tr(AΩ) = 1 and tr(BΩ) =∑n

j=1 w j ,

n∑
j=1

α j =
−∑n

j=1λ j

λ0x

= λ0 − tr(C )

λ0x

= λ0 − tr(AΩ)+x tr(BΩ)

λ0x

=
λ0 −1+x

∑n
j=1 w j

λ0x

≥ λ0 −1+x

λ0x

≥ λ0 + (x −1)λ0

λ0x

= 1

the first inequality using
∑n

j=1 w j ≥ 1 and the second using x ≥ 1 and (74). This establishes (77). We have

shown that the left side of (70) equals (76) where ζ j ∼ N(0,1) are mutually independent and
∑n

j=1α j ≥ 1.

This corresponds to Case (a), which we have already shown is bounded below by F (x;1,1). This estab-

lishes (70).

Case (d): general ρ j and δ j . Use the same notation as in the proof of Case (c), plus δ = (0,δ1...,δn)′

and µ= H ′Ω−1/2δ. By similar manipulations, the left side of (70) equals

P

[
n∑

j=0
λ j

(
ζ j +µ j

)2 ≤ 0

]
=P

[
n∑

j=0
λ jχ

2
1

(
µ2

j

)
≤ 0

]
(78)

where χ2
1

(
µ2

j

)
are mutually independent non-central chi-square random variables with one degree of

freedom and non-centrality parameter µ2
j , and λ j are the ordered eigenvalues of C . For these calcula-
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tions we use the following explicit formulae. Standard manipulations reveal that

C =


σ2 σρ1 · · · σρn

σρ1 ρ2
1 −xw1 ρnρ1

...
. . .

...

σρn ρnρ1 · · · ρ2
n −xw2

 , µ= H ′


−∑n

j=1ρ jδ j /σ

δ1
...

δn


where σ2 = 1−∑n

j=1ρ
2
j . Given the inputs (x,ρ1, ...,ρn ,δ1, ...,δn , w1, ..., wn), the matrix C can be numeri-

cally calculated, from C the eigenvalues λ j and eigenvector matrix H can be calculated, and from these

the non-centrality coefficients µ j . Given the inputs (λ1, ...,λn ,µ1, ...,µn) the probability (78) can be cal-

culated using the method of Imhof (1961). We use R package CompQuadForm of Duchesne and Lafaye de

Micheaux (2010). The results can be compared to verify that (78) exceeds F (x;1,1).

The most important cases to investigate are n = 1 and n = 2, so for these our calculations were most

thorough. For n = 1 we calculated (78) for each ρ1 ∈ (−1,1) and µ1 ∈ [−3,3] on a double grid with in-

crements of 0.01, and for each x ≥ 1 corresponding to increments of F (x;1,1) of 0.01. Uniformly, the

inequality (70) held.

For n = 2 we generated 100,000,000 draws of parameters, calculated (78) for all x as for the case

n = 1, and compared the result with F (x;1,1). Uniformly across the 100,000,000 parameter draws and

all values of x, the inequality (70) held. The parameters were drawn as follows. The correlations (ρ1,ρ2)

were drawn from a uniform distribution on the unit disk. The coefficients (δ1δ2) were drawn from the

U [−2,2]2 distribution. The weights (w1, w2) were drawn from a flat (uniform) Dirichlet distribution.

For the cases 3 ≤ n ≤ 10 our calculations were similar to the n = 2 case, but using 10,000,000 draws of

parameters for each n. The correlations (ρ1, ...,ρn) were drawn from a uniform distribution on the unit

disk. The coefficients (δ1, ...,δn) were drawn from the U [−2,2]n distribution. The weights (w1, ..., wn)

were drawn from a flat (uniform) Dirichlet distribution. For each parameter draw and all values of x, the

inequality (70) held.

We conclude that the inequality (70) holds as stated. ■

Proof of Theorem 3: Take any (X ,Σ) ∈F and 1 ≤ c <∞. Define

ξ0 = θ̂−θ
ν

∼ N(0,1) . (79)

Define the delete-one-cluster operator M̃ , which is the n ×n matrix with g j th block

M̃ g j =
 I ng g = j

−X g

(
X ′X −X ′

g X g

)+
X ′

j g ̸= j .
(80)

This operator has the algebraic property that it creates delete-one-cluster prediction errors, M̃Y = ẽ, and

is the jackknife analog of the least squares annihilation matrix. It has the property that M̃ X = 0 under
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clusterwise invertibility, but not under clusterwise noninvertibility. Define

Z = (
X ′X

)−1 X R, (81)

partition by cluster as Z = (
Z ′

1, ...Z ′
G

)′, and define

Z̄ = diag{Z 1, ..., Z G } . (82)

Using (15), these definitions, and the equations ẽ = M̃Y and Y = Xβ+e we find

ν̂2
5 = R ′ (X ′X

)−1

(
G∑

g=1
X ′

g ẽg ẽ ′
g X g

)(
X ′X

)−1 R

=
G∑

g=1
Z ′

g ẽg ẽ ′
g Z g

= ẽ ′ Z̄ Z̄ ′ẽ

= Y ′M̃ Z̄ Z̄ ′M̃Y

= (
Xβ+e

)′ M̃ Z̄ Z̄ ′M̃
(

Xβ+e
)

(83)

= (
ψ+U

)′ (
ψ+U

)
(84)

whereψ= Z̄ ′M̃ Xβ and U = Z̄ ′M̃e.

Note that U ∼ N(0, A) where A = Z̄ ′M̃ΣM̃
′
Z̄ . Let r = rank(A). By the spectral decomposition,

A = H

[
Λ 0

0 0

]
H ′

whereΛ has the r non-zero eigenvalues of A on the diagonal and H H ′ = I n . Partition H = [H 1, H 2] con-

formably and define δ1 =Λ−1/2H ′
1ψ, δ2 = H ′

2ψ, and ξ1 =Λ−1/2H ′
1U ∼ N(0, I r ). Observe that H ′

2 Z̄ ′M̃e =
0 almost surely. Since I n = H H ′, (84) equals

(
H ′ψ+H ′U

)′ (H ′ψ+H ′U
)= ((

Λ1/2δ1

δ2

)
+

(
Λ1/2ξ1

0

))′ ((
Λ1/2δ1

δ2

)
+

(
Λ1/2ξ1

0

))

=
(
δ1 +ξ1

δ2

)′[
Λ 0

0 I n−r

](
δ1 +ξ1

δ2

)
= (
δ1 +ξ1

)′
Λ

(
δ1 +ξ1

)+δ′2δ2

≥ (
δ1 +ξ1

)′
Λ

(
δ1 +ξ1

)
=

r∑
j=1

λ j
(
ξ j +δ j

)2 (85)

where ξ1 = (ξ1, ...,ξr ) and δ1 = (δ1, ...,δr ).

We can write M̃ = I n − P̃ , where P̃ is a delete-one-cluster projection operator which has the property
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that its diagonal blocks are zeros. The eigenvalues λ j satisfy

r∑
j=1

λ j = tr(A)

= tr
(

Z̄ ′M̃ΣM̃
′
Z̄

)
= tr

(
Z̄ ′
ΣZ̄

)
−2tr

(
Z̄ ′P̃ΣZ̄

)
+ tr

(
Z̄ ′P̃ΣP̃

′
Z̄

)
≥ ν2 (86)

because

tr
(

Z̄ ′
ΣZ̄

)
=

G∑
g=1

Z ′
gΣg Zg = ν2

and tr
(

Z̄ ′P̃ΣZ̄
)
= 0, the latter because the matrices Z̄ ′

and ΣZ̄ are block diagonal, while P̃ has diagonal

blocks equalling zero.

Using Ĉ5(c) = θ̂± ν̂5c, the definition ξ0 =
(
θ̂−θ)

/ν, and the derivations (84)-(85), we find that

P
[
θ ∈ Ĉ5(c)

]=P[(
θ̂−θ)2

ν̂2
5

≤ c2

]
=P

 ξ2
0∑r

j=1 w j
(
ξ j +δ j

)2 ≤ c2

 , (87)

where w j = λ j /ν2 satisfy
∑r

j=1 w j ≥ 1 by (86), and the ξ j are normal random variables satisfying the

conditions of Theorem 7 (they are mean zero, unit variance, and ξ j are mutually uncorrelated for j ≥ 1).

Hence by Theorem 7, (87) is bounded below by F (c;1,1).

If the model is assumed to satisfy clusterwise invertibility, then M̃ X = 0, which impliesψ= 0, δ1 = 0,

and δ j = 1 for j = 1, ...,r . In this case, the application of Theorem 7 to bound (87) below by F (c;1,1) does

not rely on the numerical argument, justifying the claim in the text.

This holds for all models in F and thus establishes (24), completing the proof. ■

For the proof of Theorem 4 we use an intermediate result which connects full downward bias with

zero coverage.

Theorem 8 Under Assumptions 1-2, if for some variance estimator ν̂2 and model class Fa ⊂F ,

inf
(X ,Σ)∈Fa

E
[
ν̂2

]
ν2 = 0, (88)

then for Ĉ (c) = θ̂± cν̂ and any 0 ≤ c <∞,

inf
(X ,Σ)∈Fa

P
[
θ ∈ Ĉ (c)

]= 0.

Proof of Theorem 8: Set ε > 0. Let Q = (
θ̂−θ)2

/ν2 ∼ χ2
1. Let q be the εth quantile of the χ2

1 distribution

and set η = q/c2. Define the events A = {
ν̂2/ν2 ≤ η}

and B =
{(
θ̂−θ)2

/ν̂2 ≤ c2
}

. They jointly imply the
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event
{
Q ≤ c2η

}
. Thus

P [B ∩ A] ≤P[
Q ≤ c2η

]= ε. (89)

Pick (X ,Σ) ∈Fa so that
E
[
ν̂2

]
ν2 ≤ ηε, (90)

which is feasible by (88). By Markov’s inequality and (90),

P
[
B ∩ Ac]≤P[

Ac]=P[
ν̂2

ν2 > η
]
≤ E

[
ν̂2

]
ην2 ≤ ε. (91)

Equations (89) and (91) imply that

P
[
θ ∈ Ĉ (c)

]=P [B ] =P [B ∩ A]+P[
B ∩ Ac]≤ 2ε.

As ε is arbitrary this establishes the stated result. ■

Proof of Theorem 4: Results (25), (26), (27), and (28) follow from Theorem 2, equations (17), (18), (21),

and (22), combined with Theorem 8. ■

Proof of Theorem 5: Define ξ0, Z , and Z̄ as in (79), (81), and (82). Consider the multivariate regression

of e on ξ0:

e = νΣZ
(

Z ′ΣZ
)−1

ξ0 +ε (92)

where

ε=
(

I n −ΣZ
(

Z ′ΣZ
)−1 Z ′

)
e.

The variables ε and ξ0 are jointly normal, uncorrelated, and therefore independent. The variance matrix

of ε is

Ω=Σ−ΣZ
(

Z ′ΣZ
)−1 Z ′Σ. (93)

Combining equation (83) from the proof of Theorem 4 with (92), we find

ν̂2
5 =

(
q +ε)′ M̃ Z̄ Z̄ ′M̃

(
q +ε)

where

q = Xβ+νΣZ
(

Z ′ΣZ
)−1

ξ0.

Following similar steps as in the proof of Theorem 4, we find that the squared t-statistic satisfies

T 2
5 =

(
θ̂−θ)2

ν̂2
5

= ν2ξ2
0(

t 1 +ξ1
)′
Φ

(
t 1 +ξ1

)+ t ′2t 2

whereΦ are the non-zero eigenvalues of

L = Z̄ ′M̃ΣεM̃
′
Z̄ , (94)
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H∗ = [
H∗

1 , H∗
2

]
are the associated eigenvectors, t 1 =Φ−1/2H∗′

1 Z̄ ′M̃ q , t 2 = H∗′
2 Z̄ ′M̃ q , and ξ1 =Φ−1/2H∗′

1 Z̄ ′M̃ε∼
N(0, I r ). Thus

T 2
5 ≥ ν2ξ2

0∑r
j=1φ j

(
t j +ξ j

)2

where φ j , t j , and ξ j are the components ofΦ, t 1, and ξ1.

Notice that ξ1 is independent of (ξ0, t 1). Thus, conditioning on (ξ0, t 1), by Theorem 3 of Mathew and

Nordström (1997) (see equation (72)),
∑r

j=1φ j
(
t j +ξ j

)2 stochastically dominates
∑r

j=1φ jξ
2
j , so

P
[
T 2

5 ≤ x
]≥P

 ν2ξ2
0∑r

j=1φ j
(
t j +ξ j

)2 ≤ x

≥P
[

ν2ξ2
0∑r

j=1φ jξ
2
j

≤ x

]
. (95)

The random variables (ξ0,ξ1, ...,ξr ) are independent N(0,1). This is the inequality in (30).

The Satterthwaite approximation states that since Q = ∑r
j=1φ jξ

2
j is a weighted sum of independent

chi-squares with non-negative weights, then Q ≃ bQK /K , with

b =
G∑

j=1
φ j = tr(L) ,

K =
(∑r

j=1φ j

)2

∑r
j=1φ

2
j

= (tr(L))2

tr(LL)
,

and QK ∼ χ2
K . It follows that ξ2

0/(QK /K ) has distribution function F (x;1,K ). Then the right side of (95)

equals

P

[
ν2ξ2

0

Q
≤ x

]
≃P

[
ν2ξ2

0

bQK /K
≤ x

]
=P

[
ξ2

0

QK /K
≤ bx

ν2

]
= F

(
a2x;1,K

)
. (96)

with a =
p

b/ν2. This is the approximation in (30) as stated. ■

Proof of Theorem 6: Recalling definition (82), with some algebra we can write

M̃
′
Z̄ =


Z 1 −X 1U 2 · · · −X 1U G

−X 2U 1 Z 2 · · · −X 2U G
...

...
. . .

...

−X GU 1 −X GU 2 · · · Z G

= S −X U ′.

Under Σ= I n , (93) equalsΩ= I n −Z
(

Z ′Z
)−1 Z ′. Then (94) equals

L = Z̄ ′M̃ΩM̃
′
Z̄ = (

S ′−U X ′)Ω(
S −X U ′)= S ′ΩS +U X̂

′
X̂ U ′−V U ′−UV ′

where we use X̂ =ΩX and V = S ′X̂ .
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Using (93) and the relationship T = S ′Z we find

tr[L] = tr
[
S ′S

]− tr
[

S ′Z
(

Z ′Z
)−1 Z ′S

]
+ tr

[
U X̂

′
X̂ U ′

]
− tr

[
V U ′]− tr

[
UV ′]

=
G∑

g=1
S ′

g Sg − T ′T
Z ′Z

+ tr
[
U ′U X̂

′
X̂

]
−2tr

[
U ′V

]
which is (34).

Similarly,

tr [LL] = tr
[(

S ′ΩS +U X̂
′
X̂ U ′−V U ′−UV ′

)(
S ′ΩS +U X̂

′
X̂ U ′−V U ′−UV ′

)]
= tr

[(
S ′ΩS

)(
S ′ΩS

)]+ tr
[
U X̂

′
X̂ U ′U X̂

′
X̂ U ′

]
+2tr

[
V U ′V U ′]

+2tr
[

S ′ΩSU X̂
′
X̂ U ′

]
−4tr

[
S ′ΩSV U ′]−4tr

[
U X̂

′
X̂ U ′V U ′

]
+2tr

[
V U ′UV ′] .

Using (93) and the relationship W = S ′SU we find that this equals

= tr
[(

S ′S
)(

S ′S
)]−2

T ′S ′ST

Z ′Z
+

(
T ′T
Z ′Z

)2

+ tr
[

X̂
′
X̂ U ′U X̂

′
X̂ U ′U

]
+2tr

[
V ′UV ′U

]+2tr
[
U ′W X̂

′
X̂

]
−2

T ′U X̂
′
X̂ U ′T

Z ′Z

−4tr
[
W ′V

]+4
T ′V U ′T

Z ′Z
−4tr

[
U ′U X̂

′
X̂ U ′V

]
+2tr

[
U ′UV ′V

]
which equals (35). ■
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