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Abstract

The mean-square efficiency of cumulative distribution function estimation can be improved through

kernel smoothing. We propose a plug-in bandwidth rule, which minimizes an estimate of the asymptotic

mean integrated squared error.
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1 Introduction

The classic nonparametric estimator of the distribution function is the empirical distribution function

(EDF). This estimator is widely used in practice despite the known fact that smoothing can produce ef-

ficiency gains in finite samples. Proposals to use kernel smoothing for distribution estimation dates back

to Nadaraya (1964), and demonstrations of the resulting asymptotic efficiency gains include Azzalini

(1981), Reiss (1981), and Jin and Shao (1999).

Kernel smoothing requires the choice of a bandwidth parameter. This choice is critical, as under- or

over-smoothing can substantially reduce precision. A cross-validation selection method was proposed

by Sarda (1993), but this method has deficiencies as shown by Altman and Leger (1995). The latter

proposed a plug-in estimate which minimizes an estimate of the mean weighted integrated squared error,

using the density function as a weight function. This weighting choice can result in oversmoothing in

the tails, whose sampling error has been downweighted.

Instead, our measure of precision is the unweighted mean integrated squared error (MISE). This

results in a simple expression for the MISE, as shown by Jones (1990). The optimal bandwidth only

depends on the roughness of the first derivative of the density, which is straightforward to estimate. We

show how to construct reference and plug-in estimators of the optimal bandwidth. A simulation study

illustrates the gains achieved by smoothing. Gauss code to implement the method is available on the

author’s webpage.

2 Distribution Estimation

For a random variable Y with random sample {Y1, ..., Yn} let F (y) denote its distribution function, f(y)
the density, and f (m)(y) its m’th derivative. Let

Rm =

Z ∞

−∞

³
f (m)(y)

´2
dy (1)

denote the “roughness” of f (m). Furthermore, let φ(y) and Φ(y) denote the standard normal density

and distribution, respectively.

Let k(x) denote any symmetric 20nd order kernel normalized to have unit variance. (That is,R∞
−∞ x2k(x)dx = 1.) For a bandwidth h > 0 let kh(u) = h−1k(u/h). The kernel estimator of f(y) is

f̂h(y) =
1

n

nX
i=1

kh (y − Yi) . (2)

The density estimator can be integrated to obtain the smoothed distribution function (SDF) estimator

of F (x)

F̂h(y) =

Z y

−∞
f̂h(u)du =

1

n

nX
i=1

Kh(y − Yi)
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where

K(x) =

Z x

−∞
k(u)du

is the integrated kernel and Kh(u) = K(u/h). For example, if k(x) = φ(x) then K(x) = Φ(x).

As shown by Jones (1990) if hn1/2 →∞ as n→∞ then

AMISE(h) =

Z ∞

−∞
E
³
F̂h(y)− F (y)

´2
dy

=
V

n
− hψ

n
+

h4R1
4

+O(h4)

where V =
R∞
−∞ F (y)(1− F (y))dy, R1 is defined in (1) and

ψ = 2

Z ∞

−∞
xK(x)k(x)dx > 0

is a constant which depends only on the kernel. For example, if k(x) = φ(x), then ψ = 1/
√
π.

The AMISE is minimized by setting h equal to

h0 = (ψ/R1)
1/3 n−1/3. (3)

The optimal AMISE is

AMISE(h0) =
V

n
− 3ψ4/3

n4/34R
1/3
1

which is lower than that of the EDF. From this expression we learn the following. First, while the

improvement over the SDF disappears as n → ∞, it does so at the slow rate of n−1/3, which suggests
that the SDF may have meaningful finite sample gains over the EDF. Second, the improvement of the

SDF is inversely proportional to R1. Thus we expect the gains to be minimal when the density is steep.

Third, the choice of kernel k only affects the AMISE through ψ (larger values reduce the AMISE). As

shown by Jones (1990), this is maximized by the uniform kernel, but the difference relative to other

standard kernels is small and is unlikely to have a small sample effect on efficiency.

3 Bandwidth Selection

The AMISE optimal bandwidth (3) depends on the unknown roughness R1. A simple choice is a normal

scale estimate. If f = φσ then

R1 =

Z ∞

−∞

³
φ(1)σ (y)

´2
dx =

1

σ3

Z ∞

−∞
y2φ(y)2dx =

1

σ34
√
π
.

Thus a reference bandwidth is

ĥ0 = σ̂
¡
4
√
πψ
¢1/3

n−1/3 (4)
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where σ̂ is the sample standard deviation. In particular, for the normal kernel (k = φ) then ĥ1 =

1.59σ̂n−1/3. The reference bandwidth, however, may work poorly for distributions which are far from
the normal.

A plug-in bandwidth replaces R1 in (3) by an estimate. Efficient estimation relies on knowledge of

higher order derivatives.

By repeated integration by parts, Rm as defined in (1) equals the expectation

Rm = (−1)m
Z ∞

−∞
f (2m)(y)f(y)dy

= (−1)mEf (2m)(Y ). (5)

An estimate of f (2m)(y) using a Gaussian kernel with bandwidth a is

f̂ (2m)a (y) =
1

n

nX
i=1

φ(2m)a (y − Yi) . (6)

Computationally, it is useful to observe that

φ(2m)a (y) = a−(1+2m)He2m
³y
a

´
φ
³y
a

´
where Hem (x) is the m0th Hermite polynomial, the orthogonal polynomials with respect to φ(x). For
example,He0 (x) = 1, He1 (x) = x, and He2 (x) = x2−1. The Hermite polynomials satisfy the recursive
relation Hem+1 (x) = xHem (x)−mHem−1 (x).

Equations (5) and (6) motivate the Jones and Sheather (1991) estimator

R̂m (a) = (−1)m 1
n

nX
j=1

f̂ (2m)a (Yj)

= (−1)m 1
n2

nX
i,j=1

φ(2m)a (Yj − Yi) . (7)

Jones and Sheather (1991) Result 2 show that the bandwidth a which minimizes the asymptotic

mean-square error of R̂m(a) is

am (Rm+1) =

Ã
(−1)m2φ(2m)(0)

Rm+1n

!1/(2m+3)

=

µ
(2m)!

m!2m−1/2
√
πRm+1n

¶1/(2m+3)
=

Ã
2m+1/2Γ

¡
m+ 1

2

¢
πRm+1n

!1/(2m+3)
(8)

where the second equality uses equation (7.2) of Marron and Wand (1992), and the third is an algebraic
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simplification. We write am (Rm+1) as a explicit function of Rm+1 to emphasize the dependence on the

unknown roughness.

(7) and (8) can be combined to write the estimate of Rm as a function of the input Rm+1.

R̂m (Rm+1) = R̂m (am (Rm+1)) .

This relationship suggests the sequential plug-in rule. Fix J ≥ 1 and take RJ+1 as given. Then

estimate RJ by R̂J = R̂J (RJ+1), RJ−1 by R̂J−1 = R̂J−1
³
R̂J

´
, etc, until we obtain an estimate

R̂1 = R̂1
³
R̂2
´
for R1. We can write this as an explicit function of the input RJ+1:

R̂1 (RJ+1) = R̂1
³
R̂2
³
R̂3
³
· · · R̂J (RJ+1)

´´´
.

As this sequential plug-in estimator depends on the input RJ+1, we suggest a Gaussian reference

estimate. When f = φσ then

RJ+1 = R0J+1 =
(2J + 2)!

σ2J+3 (J + 1)!22J+3
√
π
=
Γ
¡
J + 3

2

¢
σ2J+32π

(see equations (7.1) and (7.2) of Marron and Wand (1992)). The scale σ can be replaced by the sample

standard deviation. This yields the J ’th-step estimate of R1

R̂1,J = R̂1
¡
R0J+1

¢
and the J ’th-step plug-in bandwidth

ĥJ =
³
ψ/R̂1,J

´1/3
n−1/3 (9)

4 Simulation

The finite sample performance of the SDF estimator is explored in a simple simulation experiment. The

observations are generated by the first nine mixture-normal test densities of Marron and Wand (1992),

normalized to have unit variance. These densities cover a broad range of shapes and characteristics.

Samples of size n = 10, 30, 60 and 120 are investigated. The Gaussian kernel and 10,000 simulation

draws are used for each sample size and model.

We first investigate the accuracy of the AMISE approximation

AMISE(h) ' V

n
− h

n
√
π
+

h4R1
4

. (10)

The constant V is calculated by numerical integration using 51 gridpoints over the region [-2.5, 2.5].

The roughness R1 is calculated analytically using Theorem 4.1 of Marron and Wand (1992). The exact

MISE is calculated by numerical integration (using the same gridpoints) over the simulation draws.
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The exact MISE and AMISE are displayed in Figure 1 for n = 30. The graphs for other sample sizes

are qualitatively similar. The MISE and AMISE have been normalized by the MISE for h = 0 (the

EDF), and are graphed as functions of the bandwidth h. The solid lines are the exact MISE (computed

by simulation), the dashed lines the AMISE (10). The asymptotic approximation (10) should equal

the exact MISE for h = 0. The slight differences between the curves at h = 0 observed in Figure 1 are

therefore due to simulation and integration error.

From Figure 1 we observe the following. First, the MISE and AMISE have similar shapes across

models. In many cases the two curves are quite close, especially for small values of h. For large band-

widths, however, the can be quite divergent. A common observation is that for large h, the exact MISE

curve lies significantly below the AMISE curve. Second, the bandwidth which minimizes the exact MISE

and the AMISE are typically quite close. A notable exception is the Strongly Skewed distribution, for

which the AMISE is a poor approximation to the exact MISE, and the bandwidth which minimizes the

former is much smaller than that which minimizes the latter. Third, we observe that the MISE curves

vary considerably across distributions.

These observations suggest the following lessons. The diversity of the MISE curves across dis-

tributions indicates that reference (rule-of-thumb) bandwidths may perform quite poorly if the true

distribution is not close to the reference distribution. Thus data-based bandwidth selection rules are

necessary for implementation. The similarity of the exact MISE and AMISE curves indicates that

bandwidth selection can be based on estimates of the AMISE, such as the plug-in rules of section 3.

We next examine the performance of the SDF estimator with empirically-selected bandwidths.

Again, our performance measure is the MISE, expressed as a ratio to the MISE for the EDF (h = 0).We

calculate the SDF using the reference bandwidth (4) and the plug-in bandwidths (9) for j = 1 through

8. Table 1 reports the results.

The first column reports the relative MISE for the reference bandwidth. As expected, we see that

the results depend strongly on the true distribution. For six of the nine distributions, the MISE of the

SDF is lower than that of the EDF, but for three other distributions (Kurtotic, Outlier, and Separated

Bimodal) the MISE of the SDF can be substantially higher.

The remaining columns report the relative MISE for the plug-in bandwidths ĥJ . For the distributions

where the reference bandwidth had a low MISE, the plug-in bandwidths yield similar MISE results. The

notable differences arise for the three other distributions. In these cases, the use of a plug-in bandwidth

substantially reduces the MISE. If a plug-in bandwidth of order four or higher is used, the MISE of the

SDF dominates that of the EDF for all distributions and sample sizes investigated. Increasing the order

of the plug-in bandwidth above four has mixed benefits.

In summary, we conclude that the fourth-order plug-in bandwidth ĥ4 yields a distribution function

estimator which has uniformly excellent MISE, and is recommended for empirical practice. The band-

width ĥ4 and estimator F̂h(y) are quite straightforward to calculate. Gauss code is available on the

author’s webpage.
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Table 1:

Distribution Function Estimation

Normalized MISE of Smooth Distribution Function

Sample Size Density Bandwidth Method

ĥ0 ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 ĥ6 ĥ7 ĥ8

n = 10 Gaussian 0.69 0.70 0.71 0.72 0.72 0.72 0.73 0.73 0.74

Skewed 0.71 0.71 0.71 0.72 0.72 0.73 0.73 0.74 0.74

Strongly Skewed 0.92 0.90 0.89 0.88 0.88 0.88 0.88 0.88 0.88

Kurtotic 0.97 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.89

Outlier 2.21 1.56 1.22 1.06 0.98 0.94 0.92 0.91 0.90

Bimodal 0.67 0.68 0.69 0.69 0.70 0.71 0.71 0.72 0.72

Separated Bimodal 0.93 0.92 0.88 0.85 0.83 0.83 0.83 0.83 0.83

Asymmetric Bimodal 0.67 0.68 0.69 0.70 0.70 0.71 0.72 0.72 0.73

n = 30 Gaussian 0.76 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.78

Skewed 0.78 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.79

Strongly Skewed 0.93 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.91

Kurtotic 1.22 1.12 1.07 1.04 1.01 0.99 0.98 0.97 0.96

Outlier 3.02 1.36 1.01 0.93 0.91 0.90 0.89 0.89 0.89

Bimodal 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.78

Separated Bimodal 1.20 1.01 0.91 0.89 0.88 0.88 0.88 0.88 0.88

Asymmetric Bimodal 0.76 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.78

n = 60 Gaussian 0.79 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.82

Skewed 0.82 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82

Strongly Skewed 0.93 0.90 0.91 0.91 0.92 0.92 0.93 0.93 0.93

Kurtotic 1.41 1.19 1.10 1.04 1.01 0.99 0.97 0.96 0.96

Outlier 3.27 1.18 0.95 0.91 0.90 0.90 0.90 0.89 0.89

Bimodal 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.82

Separated Bimodal 1.36 1.00 0.92 0.91 0.90 0.90 0.90 0.90 0.90

Asymmetric Bimodal 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

n = 120 Gaussian 0.83 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Skewed 0.84 0.84 0.84 0.84 0.84 0.85 0.85 0.85 0.85

Strongly Skewed 0.92 0.91 0.92 0.93 0.94 0.94 0.94 0.95 0.95

Kurtotic 1.59 1.21 1.07 1.01 0.98 0.97 0.96 0.96 0.96

Outlier 3.38 1.07 0.93 0.91 0.91 0.91 0.91 0.91 0.91

Bimodal 0.85 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.85

Separated Bimodal 1.43 0.98 0.93 0.92 0.92 0.92 0.92 0.92 0.92

Asymmetric Bimodal 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
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