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Simple tests for parameter instability are presented and discussed. These tests have 
locally optimal power and do not require a priori knowledge of “the breakpoint.” 
Two empirical examples are presented to illustrate the use of the tests. The first 
examines whether an AR( 1) model for annual U.S. output growth rates has remained 
stable over 1889- 1987. The second examincls the stability of an error correction model 
for an aggregate life cycle model of consumption. 

1. INTRODUCTION 

Model stability is necessary for prediction and econometric infer- 
ence. Because a parametric econometric model is completely described 
by its parameters, model stability is equivalent to parameter stability. 
Model instability may be caused simply by the omission of an important 
variable, or be due to some kind of “regime shift. ” While model 
instability generically makes it difficult to interpret regression results, 
it is of particular importance in policy analysis to know if econometric 
models are invariant to possible policy interventions. Engle et al. 
(1983) incorporated parameter invariance to interventions in their def- 
inition of super exogeneity, a condition they argued was a necessary 
precondition for predictive policy experiments. A necessary condition 
for super exogeneity is within sample parameter constancy. 

Because of the well-recognized need for stable models, a large 
literature has emerged developing tests of model stability. The number 
and variety of testing procedures are quite surprising. Unfortunately, 
not all tests are equal, and many, developed from ad hoc criteria, are 
quite poor. Ideally, a test should have known size and possess the 
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maximal power against the alternative of interest for all tests of the 
same size. In practice, ideal tests rarely exist. Asymptotic theory may 
be necessary to approximate the null distribution, and direct power 
comparisons may be impossible. A useful criterion is local power, that 
is, the slope of the power function at the null hypothesis (in the direction 
of interest). Tests that have maximal local power can be derived (see 
Cox and Hinkley, 1974), and the local power function can be ap- 
proximated via the asymptotic local power function. 

One of the most common tests in a&plied econometrics is Chow’s 
(1960, pp. 595-599) simple split-sample test. ’ This test is designed to 
test the null hypothesis of constant parameters against an alternative 
of a one-time shift in the parameters at some known time. There are 
several simple ways to calculate this test statistic, each of which in- 
volves splitting the sample at the hypothesized time of structural 
change. One method is to compare (using the appropriate covariance 
matrix) the estimates obtained from each subsample. A second method 
is to calculate the estimates using just the data from one subsample, 
and compare this with the estimates using the full sample. A third 
method uses dummy variables (intercept and slope) for one subsample, 
and then tests the significance of the dummy variables. These methods 
are essentially equivalent and easy to use in practice. 

A severe problem arises with this Chow test, however, in the need 
to select the timing of the structural change that occurs under the 
alternative hypothesis. The problem is that the date of structural change 
is not defined (has no meaning) under the null hypothesis, and standard 
testing theory is not applicable; see Davies ( 1977, 1987) on this point. 
A researcher has several options open. First, the timing can be selected 
in an arbitrary way, such as at the sample midpoint. This solution 
effectively eliminates the dating question, but is ad hoc and would not 
be expected to have particularly good power against many alternatives 
of interest. Second, the data and/or regression residuals can be plotted 
for indications of structural change. If this is done, the timing is selected 
conditional on the data and the conventional x2 approximation for the 
distribution of the resulting test statistic is invalid. What may in effect 
be done is to select a candidate breakpoint that suggests a structural 
change, when in fact none may have occurred. Third, the date of 
structural change may be selected by appeal to events known a priori. 
If this approach is adopted, it is essential that the researcher can argue 

‘Chow’s test is a straightforward application of the analysis of covariance, a standard statistical 
method dating back to Fisher ( 1922). Chow ( 1960) appears to have been the first. however, to 
apply the principle io testing stability in a tirw :ries context. 
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that the events are selected exogenously . For example, the oil shock 
of 1974 is “known” to be associated with a slowdown in aggregate 
output in many countries. This is known simply because a slowdown 
did occur after the oil shock. Thus it is impossible to test (using 
conventional theory) whether the oil shock had an effect upon the GNP 
process, because the selection of 1974 has been made after the data 
has been informally examined. Fourth, tests for structural change for 
every breakpoint could be calculated, and the largest test statistic ex- 
amined. This is the test proposed originally by Quandt ( 1960), but not 
used much because of the lack of a distributional theory. This theory 
has been given recently in Andrews ( 1990), Chu ( 1989), and Hansen 
(1990). This procedure is theoretically sound, but may be a compu- 
tational burden in some cases. 

Another commonly applied stability test is the “predictive-failure” 
test derived by Chow (1960, pp. 594-595)2 and routinely used by 
Hendry and his coauthors.” This test also requires an a priori selection 
of a breakpoint, and therefore suffers the same problem as the Chow 
test. 

Recognizing the need for tests that reveal model instability of general 
form, Brown, Durbin and Evans ( 1975) proposed the CUSUM test, 
which was fairly widely programmed and used in the late 1970s and 
early 1980s. Theoretical investigations eventually revealed that the 
CUSUM test is essentially a test to detect instability in the intercept 
alone (see, for example, Kramer, Ploberger, and Ah, 1988). Another 
test proposed from a similar motivation is the CUSUM of squares test. 
This test, however, has poor asymptotic power against instability in 
the regression coefficients (Ploberger and Kramer, 1990). Instead, the 
CUSUM of squares test can be viewed as a test for detecting instability 
in the variance of the regression error. For an analysis of the power 
of these and other tests, see Hansen ( 199 1 a). 

Below we describe a simple yet powerful test for parameter insta- 
bility. The statistic has a long history in theoretical statistics and econ- 
ometrics. The test was independently proposed for the Gaussian linear 
model by Gardner ( 1969) Pagan and Tanaka ( 198 1 ), Nyblom and 
Makelainen (1983), and King (1987). The extensions to nonlinear 
maximum likelihood and general econometric problems were made by 

‘Although Chow developed the predictive failure test, he argued ( 1960, p. 598) that it would 
not be as powerful as the analysis-of-covariance test when the number of observations in the 
prediction interval exceeds the number of coefficients. 

‘See, for example, Hendry and Richard ( 1982). Engle and Hendry ( 1990). Hendry ( 1989), 
and Hendry and Ericsson ( 1991). 
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Nyblom (1989) and Hansen (1990), respectively. The test is approx- 
imately the Lagrange multiplier test (or locally most powerful test) of 
the null of constant parameters against the alternative that the param- 
eters follow a martingale. This alremative incorporates simple struc- 
tural breaks of unknown timing as well as dom walk parameters. 
These tests can be developed for any econo ic model, although this 
paper concentrates on least squares regressior The analysis includes 
both static and dynamic regression, for no special treatment of lagged 
dependent variables is required. It is necessary to exclude, however, 
nonstationary regressors. That is, we exclude unit root processes and 
deterministic trends; otherwise, a different distributional theory applies 
(Hansen, 199lb). One caveat should be noted. The tests discussed 
here simply test the null of constancy. They are not designed for 
determining the timing of a “structural break’ ’ if one has occurred. 
Other methods should be used for this purpose, and will not be dis- 
cussed in this paper. 

Section 2 describes the test statistics and discusses their interpre- 
tation. Section 3 uses these tests to study U.S. GNP. Section 4 ex- 
amines error correction models and a simple aggregate consumption 
equation. Section 5 concludes. 

2. INSTABILITY TESTS 

We will examine the standard linear regression model 

E(e,lx,) = 0, 

E(ef) = CT:, 

1 
ff 

lim - c a’ = & 
IWX ‘l,-l 

Throughout this paper, we will maintain the assumption that the vari- 
ables {x,, e,} are weakly dependent processes. That is, the variables do 
not contain deterministic or stochastic trends (such as unit roots). See 
Andrews (1990) or Hansen (1990) for the technical details, and Hansen 
( 199 1 b) for an analysis in the presence of trends in the regressors. We 
are interested in testing the assumed constancy of the model parameters 
(Q, o’). Nyblom ( 1989) has shown how to derive the locally most 
powerful test of the hypothesis of constancy against the alternative that 
the parameters follow a martingalc process. We follow this approach 
here. 
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Equation 1 is estimated by least squares, yielding the parameter 
estimates (p, &‘) and the first-order conditions 

n 

0 = c -T,& i = l.....rn 
I- I 

,I 

0 = c <t?; - &q 
I I 

where P, = y,- $0. We can rewrite this by defining 

(2) 

(3) 

so Equation 2 is equivalent to 

O=Cfl,. i= l..... m+ 1. (4) 
r-l 

The variables {J,} are the first-order conditions (scores in a maximum 
likelihood context). Our test statistics are based upon the cumulative 
first-order conditions, given by 

(5) 

Note that Si, = 0 by the first-order condition Equation 4. Also note 
that the sums Si, are functions of the full sample estimates, unlike the 
classic CUSIJM of Brown, Durbin, and Evans ( 1975) (BDE). 

We are interested in testing the stability of each parameter individ- 
ually and the stability of all the parameters jointly. First, the individual 
stability test statistics4 are given by 

,I 

L. =- n: c 7 _ s- ,, 

1, I 

where 

v, = c f,;. 
I I 

(6) 

(7) 

To obtain the statistic for the joint stability test, it will be mast 
convenient to use matrix notation. Define the vectors 

‘See Nyblom ( 1989) or Hansen ( 1990) for the derivations of the test statistic. 
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fi = v/Y - - - r.L+ 1,)’ 
S, = CL, * * - , s,, I,)‘. 

The joint stability test statistic is 

L,_ = I c s;v ‘s,, 
n I-I 

where 
,, 
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(8) 

(9) 

Note that the Vi m Equation 7 are the diagonal elements of V in Equation 
10. 

Expression 9 shows that the test statistic is essentially an average 
of the squared cumulative sums of first-order conditions. Under the 
null hypothesis, the first-order conditions are mean zero, and their 
cumulative sums will tend to wander around zero (in the manner of a 
tied-down random walk). Under the alternative hypothesis of parameter 
instability, however, the cumulative sums will develop a nonzerc mean 
in parts of the sample, so S,, will not behave like a random walk, and 
the test statistic will tend to be large. Thus, the test is to reject the 
null hypothesis of stability for large values of Lc. The test can be 
shown to have asymptotic local power against any nonstationary (long- 
run) movements in B and/or (T’. This is unlike the CUSUM test, which 
has asymptotic local power only against movements in P%(x), or the 
CUSUM of squares test, which has asymptotic local power only against 
movements in o-‘.’ In fact, if one regressor is a constant (say xJ, then 
its associated test statistic (L,) is an analog of the BDE CUSUM test. 
Similarly, the test for the stability of the error variance (IL,,, + ,) is an 
analog of the BDE CUSUM of squares test. We can therefore think 
of the Li family of tests as expanding, rather than replacing, the 
CUSUM family of tests. 

The following facts about the above construction should be kept in 
mind. The L, test statistic given in Equations 9 and 10 is asymptotically 
robust to heteroskedasticity because the matrix V is exactly the central 
component in the heteroskedasticity-robust covariance matrix estimator 
of White (1980). Similarly, the test statistic could be made robust to 
residual serial correlation as in White and Domowitz ( 1984). We are 

‘See Krkner, Ploberger. and Alt I i 988 1, Ploberger 

for analytic studies of the power of these tests 

and Krimer (1990). and Hansen (194la) 
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explicitly discussing testing via ordinary least squares (OLS) estima- 
tion, while in applications generalized least squares (GLS) methods 
(either for heteroskedasticity or serial correiatiorl) are routinely used. 
If Equation I represents the transformed model (after a Cochrane- 
Orcutt correction or weighting has been made) then all the above 
analysis is still valid, if the tests are applied to the transformed data. 
Similarly, in an application involving two-stage least squares (2SLS) 
estimation, Equation I could represent the transformed model (after 
the endogenous regressors have been replaced by their predicted val- 
ues). The only caution in this case is that the covariance matrix estimate 
V needs to be calculated differently. 

The asymptotic distribution theory for the stability tests has been 
given by Nyblom ( 1989) and Hansen ( 1990). The distributional theory 
is nonstandard, but depends only upon the number of parameters tested 
for stability. In the joint tests there are m + 1 parameters: m regression 
parameters (which include the intercept if one of the regressors is a 
constant) and the error variance. Asymptotic critical values are pre- 
sented in Table 1. The first line of Table 1 gives the relevant critical 
values for the individual stability tests: for these tests there is only one 
‘ ‘degree of freedom. ’ ’ Note #that the 5 percent significance level for 
the individual stability test is 0.470. This suggests the informal rule 
of finding an individual stability test “significant’- if the test statistic 
exceeds one-half, much as we commonly find a 1 statistic “significant” 
if its value exceeds 2.0. 

One may interpret the individual and joint statistics quite similarly 
to the interplay between individual and joint tests of significance of 
regression coefficients. In the latter case, t statistics for each regression 
coefficient give information regarding the significance of each indi- 
vidual variable, while the F statistic gives the joint significance of all 
the variables. The difference in the present context is that a significant 
statistic is bad news, indicating possible instability. It is important as 
well not to abuse such information. If a large number of parameters 
are estimated, it should not be surprising to find a small number of 
‘ ‘significant’ ’ test statistics for individual instability. The joint signif- 
icance test is a more reliable guide in this context. 

One important question that most analysts ask is: If we reject sta- 
bility, what then? It is important to emphasize that there can be no 
universal answer, or solution, to the problem of unstable coefficients. 
Frequently, a significant instability test indicates some form of model 
misspecification. For example, omitted variables can induce parameter 
variation. If an alternative specification appears free of this problem, 
then it seems reasonable to adopt the alternative specification. ln prac- 
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Table 1: Asymptotic Critid Values for L, 

Significance level 

Degrees of freedom (m + 1) 1% 2.5% 5% 7.5% 10% 20% 

1 0.748 0.593 0.470 0.398 0.353 0.243 

2 1.07 0.898 0.749 0.670 0.610 0.469 

3 1.35 1.16 1.01 0.913 0.846 0.679 

4 1.60 1.39 1.24 1.14 1.07 0.883 

5 1.88 1.63 1.47 1.36 1.28 1.08 

6 2.12 1.89 1.68 1.58 1.49 1.28 

7 2.35 2.10 1.90 1.78 1.69 1.46 

8 2.59 2.33 2.11 1.99 1.89 1.66 

9 2.82 2.55 2.32 2.19 2.10 1.85 

10 3.05 2.76 2.54 2.40 2.29 2.03 

11 3.27 2.99 2.75 2.60 2.49 2.22 

12 3.51 3.18 2.96 2.81 2.69 2.41 

13 3.69 3.39 3.15 3.00 2.89 2.59 

14 3.90 3.60 3.34 3.19 3.08 2.77 

15 4.07 3.81 3.54 3.38 3.26 2.95 

16 4.30 4.01 3.75 3.58 3.46 3.14 

17 4.51 4.21 3.95 3.77 3.64 3.32 

18 4.73 4.40 4.14 3.96 3.83 3.50 

19 4.92 4.60 4.33 4.16 4.03 3.69 

20 5.13 4.79 4.52 4.36 4.22 3.86 

Source: Hansen ( 1990). Table 1. 

tice, researchers always estimate a variety of specifications in an at- 
tempt to “fit” the data. Instability test statistics can be added to the 
standard bag of tricks to determine the worth of a particular specifi- 
cation, if used cautiously. Of course, if one searches over a variety 
of specifications to find one whose stability test statistic is “insignif- 
icant, ’ ’ a form of data mining has been performed, and the credibility 
of the resulting regression is suspect. 

A more troubling alternative is to explicitly allow the parameters to 
change over the course of the sample. The most common method is 
to use intercept and slope dummies to capture “regime shifts.” By 
including dummies, the analyst is admitting that the estimated rela- 
tionship is not constant, but is attempting to go ahead with the analysis. 
The immediate questions are the following: Of what use are these 
regression results? Do they have any predictive content? If events can 
arise which shift the regression slopes in an arbitrary way, how can 
we exclude such events from arising in the future? 
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If it is believed that the regression coefficients are shifting because 
of economic events, then it is (at least in principle) possible to explicitly 
model these events. Perhaps simply allowing for interaction among 
regressors (which can be thought of as allowing the regression coef- 
ficients to depend linearly upon other regressors) will adequately cap- 
ture the ‘ ‘parameter shifts, ’ ’ but more complicated interactions may 
be required in particular applications. 

A final alternative is to use a so-called random coefficient model 
such as that of Cooley and Prescott ( 1976). Cooley and Prescott model 
the regression coefficients as random walks that are independent of the 
regression error. Such models are highly nonlinear and can be estimated 
by maximum likelihood. A fundamental feature of this approach is 
that the coefficient variation is not modeled explicitly. Indeed, the 
specification is quite nonparametric in spirit. This allows for a large 
degree of flexibility, but with a reduction of precision vis-a-vis more 
structural approaches. If the alternative is to include slope dummies 
for the points of “structural change”, then the Cooley-Prescott ap- 
proach has a natural advantage as it incorporates uncertainty over future 
values of the parameters into estimated prediction intervals, while 
inclusion of slope dummies does not. Incidentally, it should be noted 
that the “meta-parameters” in random coefficient models are of course 
assumed constant, and the methods described in Nytlom (1989) could 
be used to design powerful tests of this hypothesis, if desired. 

3. HAS THE NATURE OF OUTPUT 
FLUCTUATIONS CHANGED? 

A major debate in macroeconomics concerns the stability of the 
process describing aggregate output. A common argument by Keynes- 
ians is that institutional changes have decreased output fluctuations in 
the postwar period (see, for example, Tobin, 1980, p. 47). This view 
has been challenged recently by Romer ( 1986a, 1986b, 1989), who 
argues that the perceived decrease in output fluctuations may be a 
figment of poorly measured prewar data. It is also commonly asserted 
that the behavior of output during the great depression is fundamentally 
different than in neighboring years. DeLong and Summers (1988), for 
example, argue that shocks to GNP were more persistent during the 
depression than in the predepression and post-World War II years. All 
of these debates concern whether or not the distribution of the output 
process has changed. We follow DeLong and Summers in using the 
corrected GNP data provided by Romer ( 1989) and excluding the pre- 
1888 data as unreliable. 
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Table 2: GNP Equation 

aI a* 

Sample period 
1889-1987 0.012 

(0.005) 

1889- 1929 0.02 1 
(0.006) 

1930- 1947 0.01 I 
(0.018) 

1948-1987 0.019 
(0.005) 

Individual L, 
Joint Lc = 0.72 

0.03 
R’ = 0.13 

0.36 
(0.11) 

-0.12 
(0.13) 

0.60 

(0.14) 

0.05 
(0.15) 

0.19 

0.0022 
(0.0004) 

0.0013 
(0.0003) 

0.0054 
(0.0015) 

0.0006 

(0.0001) 

0.45* 

*Rejects stability at the asymptotic 10 percent level. 

An AR( 1) model seems a reasonable univariate description for 
growth rates of U.S. output: 

AYI = a, + a,Ay,_, + e, E(ef) = d, 

where Ay, denotes the first difference of the log of annual per capita 
real GNP. 

DeLong and Summers (1988) argue that the parameter describing 
persistence, 01 I, has changed over time (most importantly, was sub- 
stantially higher during the Depression and World War II). Table 2 
reports model estimates for the periods 1889- 1987,1889- 1929,1930- 
1947, and 1948- 1987 as recommended by DeLong and Summers. The 
standard errors are calculated using White’s heteroskedasticity-robust 
covariance matrix estimator. The L stability tests are calculated on the 
full sample. 

At first sight, the point estimates from the sample subperiods and 
the L statistics appear to be partially in conflict. The estimates and L 
statistic agree that o* is not constant, but the estimates of the auto- 
regressive parameter indicate a substantial shift over the periods, while 
the L, statistic fails to reject the null that ol is constant. How should 
we interpret this information? 

We first need to think about the finite sample properties of the test 
statistics. Because the distributioual theory presented in the previous 
section is based upon asymptotic approximations, we should be careful 
to check if the approximation is useful in the present context. I gen- 
erated 2,000 samples from the full sample model reported in the first 
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Table 3: Finite Sample Rejection Frequencies of Asymptotic 10 per cent Tests 

L, L2 to21 Joint Lc 

Null 0.11 0.08 O&9 

a!, and C? varying 0.11 0.61 0.25 
a, varying 0.30 0.10 0.17 

line of Table 2 (under the assumption of independently and identically 
distributed normal errors), and applied the individual stability tests for 
the autoregressive coefficient and error variance, as well as the joint 
stability test, using the asymptotic 10 percent critical values. Table 3 
presents some simulation results. The first line reports a measure of 
finite sample size distortion. The table reports rejection frequencies. 
The tests rejected the null hypothesis at rates close to the nominal 
values, indicating quite mild size distortion. The second and third lines 
of Table 3 report the power of the test against particular alternatives. 
The numbers reported are rejection frequencies of the test statistics 
using 1000 samples and the asymptotic 10 percent critical values. The 
second line used data generated from the same model as used under 
the null, except that the autoregressive parameter and error variance 
shift according to the parameter estimates reported in Table 2. The 
third line of Table 3 has only the autoregressive parameter shifting. 

These experiments are designed to answer the question: If the data 
is generated as suggested by the split-sample estimates, what is the 
probability that the test statistics will reject the null hypothesis? The 
answer is quite startling. If both the autoregressive and the error vari- 
ance shift over time, the test will only be able to detect the shift in 
the error variance. The reason apparently is that the shifting error 
variance induces too much noise into the series for the test to be able 
to distinguish parameter variation from sampling variation. But the 
test is able to reject the constant variance hypothesis 61 percent of the 
time. When the error variance is held fixed, then the test on the au- 
toregressive coefficient displays some ability to reject the null 
pothesis, rejecting 30 percent of the time. 

The last simulations suggest that it is difficult to test the stability of 
one set of parameters, if we allow another subset to be shifting over 
time (the null hypothesis for all of the tests is that all of the parameters 
are stable, and this is important in the derivation of the distributional 
theory). Although the results so far seem to suggest strongly that the 
error variance has changed, we just do not know if the autoregressive 



528 B.E. Hansen 

parameter was stable or not. We can partially circumvent this problem 
by using generalized least squares to eliminate the shifts in the error 
variance. Under the assumption that the error variance shifted twice, 
in 1930 and 1948, we can use the estimates from Table 2 to re-estimate 
the equation. This regression is rot reported here, but the main results 
do not change (the L statistic for the AR parameter is 0.18). We 
conclude that the data are not sufficiently informative to determine 
whether or not the autoregressive parameter is stable, given that the 
error variance is unstable. 

This exercise illustrates the limitations of econometric techniques 
and the potential dangers of “ocular” or “eyeball” econometrics. The 
natural impulse to split the sample at some known important date, as 
done by DeLong and Summers, must be resisted. If conventional criti- 
cal values are used (which ignore the fact that the sample split point 
was selected ), then the tests will be biased towards spurious rejection 
of the stability hypothesis. Similarly, visual displays of recursive 
estimates or split-sample estimates such as those in Table 2 must be 
tempered with a large dose of caution. What appears as a significant 
difference may not in fact be significant once the selection of the sam- 
ple split is taken into account. The tests advocated in this paper are 
immune to such criticism because they do not require the selection 
of a breakpoint. On the other hand, these general tests may have 
relatively low power against particular alternatives. As a result, we 
may be unable to extract definitive conclusions from time-series data. 

Y IN 
MODELS 

Many applied time-series regressions take the form of error- 
correction models (ECMs). We can use the L test statistics to assess 
the stability of ECMs. ECMs can generally be written in the form 

AY,, = w + NY,,-, - ah,- J + B’x, L e,, (11) 

where y,, and y,, are individually I( 1) yet jointly cointegrated. The x, 
variables should be 1(O), such as lagged values of Ay,, and Ay,,. 

The difficulty in applying stability tests in the context of ECMs is 
that the levels data y,, and y2, contain stochastic or deterministic trends, 
thus invalidating the distributional theory used to justify the critical 
values reported in Table 1. Therefore, testing the stability of the co- 
integrating parameter cx requires a different theory, which is given in 
Hansen (199lb). If we are interested in the dynamics of an ECM, 
however, we can use our stability tests to test the stability of the 
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coefficients on I(0) variables. In Equation 11, if CY were known, then 
the remaining parameters are all coefficients of I(O) variables. If CY is 
not known but is consistently estimated at a rate faster than the square 
root of the sample size, then the stability test applied to the remaining 
coefficients can proceed as before. 

The easiest way to conduct this test is by using a two-step estimator 
in the spirit of Engle and Granger ( 1987). First estimate the cointe- 
grating vector OL using either OLS or an asymptotically efficient esti- 
mator such as the fully modified (FM) estimator of Phillips and Hansen 
( 1990). Then take the residuals from this first-stage regression and use 
them in the ECM, Equation 11. Because all the variables in this second 
stage are I(O), we can apply the testing procedures of Section 2. 

This procedure is illustrated by the following aggregate consumption 
model using quarterly U.S. data: 

AC, = PI4 I + Wi, + f%An, + f& + e,, (12) 
(13) 

Here, c, is aggregate consumption expenditure, i, is aggregate total 
disposable income, and n, is the inflation rate. In relation to Equation 
11, y,, is cl, y2, is (i,, n,), and xl is (Ai,, AT,). The sample is 1953:2- 
1984:4. The consumption and income data are taken from Blinder and 
Deaton (1985), and the inflation rate is calculated from the implicit 
GNP deflator in the Citibase data base. We will consider Equations 
12 and 13 in both levels and logarithmic specifications for the con- 
sumption and income series. 

The cointegrating regression (Equation 13) in levels without the 
inflation rate was proposed and analyzed in Campbell ( 1987) because 
the model presented in his paper implied that this should be a coin- 
tegrating relationship. Deaton ( 1977) argued that the inflation rate 
should enter into an aggregate consumption function. He pointed out 
that a rate of inflation higher than expected is likely to reduce con- 
sumption expenditure. This is a disequilibrium (or short-run) mecha- 
nism, and suggests that inflation should enter in the dynamic 
relationship (Equation 12), but not in the long-run relationship (Equa- 
tion 13). Deaton’s empirical results, however, suggest that inflation is 
significant in a regression similar to Equation 13. This empirical finding 
was confirmed by the more extensive study of Davidson et al. ( 1978). 
Although there does not appear to be a good theory to explain the 
presence of inflation in the cointegrating relationship, it seems rea- 
sonable to test its presence empirically. 
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We will estimate and evaluate four competing specifications for the 
cointegrating relationship: 

Model A: consumption and income in levels; inflation rate excluded 
Model B: consumption and income in levels; inflation rate included 
Model C: consumption and income in logs; inflation rate excluded 
Model D: consumption and income in logs; inflation rate included. 
We now explore these alternative specifications using the tests for 

cointegration and instability. The parameters of Equation 13 were 
estimated using the fully modified estimator of Phillips and Hansen 
( 1990)? Phillips’ Z(t) test of the null of no cointegration was applied 
to the cointegrating residuals li,. These same cointegrating residuals 
were used in the second step estimation of Equation 12 by OLS. These 
results are reported in Table 4. For each parameter in Equation 12, 
the estimate, standard error, and instability statistic are reported. 

We first examine the long-run relationship (Equation 13). All four 
specifications yield reasonable parameter estimates. Particularly inter- 
esting are the near-unity values for the income elasticities when the 
model is estimated in logs. The inflation rate coefficient is negative 
and significant in both specifications. All four specifications reject the 
null of no cointegration at the 5 percent level, but the specifications 
with the inflation rate included reject no cointegration at the 1 percent 
level. 

We now turn to the estimates of the dynamic equation, (12). In all 
specifications, the error-correction term is negative and significant, as 
expected. As predicted by Deaton’s theory, when the inflation rate is 
included, its coefficient has a negative sign, but it is not significantly 
different from zero. In all four equations, none of the regression coef- 
ficients display any evidence of instability. The error variance, how- 
ever, is apparently unstabk in the levels equations (rejecting stability 
at the 1 percent level), but not in the logarithmic equations. 

In summary, the empirical evidence appears to favor the logarithmic 
specification with the inflation rate included. This model strongly re- 
jects no cointegration, has estimated parameters of the proper sign and 
magnitude, and passes the stability tests applied to the dynamic equa- 
tion. It is puzzling, however, that the inflation rate appears significantly 
in the long-run relationship, but not in the short-run relationship. An 
explanation of this phenomenon would be a useful enterprise for future 
research. 

70 calculate the long-run covariance parameters, the residuals were first pre-whitened as 

suggested by Andrews and Monahan ( 1990), and then a quadratic kernel applied using the plug- 

in bandwidth suggested by Andrews (I991 ). 



PARAMETER INSTASILIT “ IN LINEAR MODELS 531 

Table 4: Aggregate Consumption Functions: Estimates and Tests 

Parameter MO& A Model B Model C Model D 

Equation I 3 

QI 

Z(t) 

Equation 12 

PI 

L 

PJ 

L 

RZ 

Joint L,. 

0.93 0.96 I.0 I .02 
(0.01) (0.01) (0.01) (0.01) 

-6.9 - 54.6 
(43.8) (41.1) 

- 3 51** _ . -4 91*** 

- 0.09 
(0.05) 

0.06 

-0.14 

(0.05) 

0.07 

0.65 0.65 

(0.08) (0.07) 

0.28 0.29 

5.70 

(2.52) 

0.18 

393 

(63) 

1.14*** 

0.47 

I .41** 

-8.8 - 0.002 

(3.6) (0.001) 

- 0.63 -0.00015 

(0.69) (0.0002 I ) 

0.04 0.04 

5.78 

(2.43) 

0.19 

382 o.Oooo33 o.oooO32 

(59) (O.ooooo4) (O.OOOOO4) 

I .09*** 0.21 0. I6 

0.48 0.46 0.47 

l-42” 0.44 0.45 

- 0.09 

(0. IO) 

- 3.68** 

-0.11 

(0.05) 

0.09 

0.68 

(0.08) 

0.15 

0.0019 

(0.0007) 

0.07 

- 0.23 

(0.12, 

_ 4 6g*** 

-0.13 

(0.05) 

0.09 

0.67 

(0.07) 

0.15 

0.0019 

(0.0007) 

0.07 

* Rejects at the asymptotic IO per cent level. 

** Rejects at the asymptotic 5 per cent level. 

***Rejects at the asymptotic I per cent level. 

5. CONCLUSION 

This paper has presented a simple yet powerful test for parameter 
instability. No sample-split points or forecast intervals need to be 
chosen. The test only requires that the model be estimated once over 
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the full sample. The asymptotic distribution is nonstandard, depending 
only upon the number of coefficients tested for stability. 

If the test statistics are insignificant, then the investigator can be 
reasonably confident that either the model has been constant over that 
sample or the data is not sufficiently informative to reject this hy- 
pothesis. On the other hand, a significant test statistic suggests the 
presence of model misspecification. It appears that this test statistic 
can provide useful information in practice. 
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