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Abstract

Threshold regression methods are developed for non-dynamic panels with individual-
speci"c "xed e!ects. Least squares estimation of the threshold and regression slopes is
proposed using "xed-e!ects transformations. A non-standard asymptotic theory of
inference is developed which allows construction of con"dence intervals and testing of
hypotheses. The methods are applied to a 15-year sample of 565 US "rms to test whether
"nancial constraints a!ect investment decisions. ( 1999 Elsevier Science S.A. All rights
reserved.

JEL classixcation: C33; C12; C13

Keywords: Threshold regression; Panel data; Liquidity constraints; Investment; Non-
standard distribution

1. Introduction

Are regression functions identical across all observations in a sample, or do
they fall into discrete classes? This question may be addressed using threshold
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regression techniques. Threshold regression models specify that individual
observations can be divided into classes based on the value of an observed
variable. Despite their intuitive appeal, econometric techniques have not been
well developed for threshold regression.

This paper introduces econometric techniques appropriate for threshold
regression with panel data. Least squares estimation methods are described.
An asymptotic distribution theory is derived which is used to construct
con"dence intervals for the parameters. A bootstrap method to assess the
statistical signi"cance of the threshold e!ect is also described. The methods
are similar to those developed in earlier work by the author (Hansen, 1996,
1999).

The methods are used to investigate whether "nancial constraints a!ect
the investment practices of "rms. The classical theory of the "rm suggests
that "nancing should have no allocative e!ects (e.g., the Modigliani-Miller
theorem). Investment decisions should only be based on the marginal Q of
a speci"c project, since banks will be willing to extend "nance. In the context
of imperfect information, external "nancing may be limited, and debt-
constrained "rms may need to "nance investment out of cash #ow. If this
is the case, investment will be correlated with cash #ow for constrained
"rms. This observation led Fazzari et al. (1988) to divide a sample of
US "rms into classes based on their degree of "nancial constraints and
estimate the di!ering e!ects of cash #ow on investment among these
classes. Their analysis su!ered from two problems. First, they used an endo-
genous variable (dividend to income ratio) rather than an exogenous vari-
able to form their sample splits. Second, they used an ad hoc method to
select their sample splits. We repeat their analysis on an analogous data
set using appropriate econometric techniques and "nd qualitatively similar
results.

Other authors have investigated the implications of non-linear q models of
investment. Abel and Eberly (1994) propose a model which implies that the
response of investment to q may be non-linear in q. Abel and Eberly (1996) use
panel data to estimate a similar model, and "nd evidence for non-linearities in
the investment function. Barnett and Sakellaris (1998) "nd similar results using
a threshold regression approach. Hu and Schiantarelli (1998) use a switching
regression framework to study the same problem. Our paper extends and
reinforces this growing literature.

The next section introduces the model and notation. Section 3 discusses
estimation by "xed e!ects. Section 4 outlines our asymptotic theory of inference.
A distribution theory is developed for the threshold estimate and the slope
coe$cients. Section 5 reports the empirical application to "rms' investment
decisions. Section 6 concludes. Proofs of the asymptotic theory are provided in
the appendix. GAUSS programs and data which replicate the empirical work
are available from the author's homepage.
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2. Model

The observed data are from a balanced2 panel My
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The observations are divided into two &regimes' depending on whether the
threshold variable q

it
is smaller or larger than the threshold c. The regimes are

distinguished by di!ering regression slopes, b
1

and b
2
. For the identi"cation of

b
1

and b
2
, it is required that the elements of x

it
are not time invariant. We also

assume that the threshold variable q
it

is not time invariant. The error e
it

is
assumed to be independent and identically distributed (iid) with mean zero and
"nite variance p2. The iid assumption excludes lagged dependent variables from
x
it
. It is unclear how to extend the results to allow for dynamic models and/or

heteroskedastic errors. The analysis is asymptotic with "xed ¹ as nPR.

3. Estimation

3.1. Least squares estimation

One traditional method to eliminate the individual e!ect k
i

is to remove
individual-speci"c means. While straightforward in linear models, the non-
linear speci"cation (1) calls for a more careful treatment. Note that taking

2 It is unknown if the results extend to unbalanced panels.
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averages of (1) over the time index t produces
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Taking the di!erence between (2) and (3) yields
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denote the stacked data and errors for an individual, with one time period
deleted. Then let >H, XH(c) and eH denote the data stacked over all individuals,
for example
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Using this notation, (4) is equivalent to

>H"XH(c)b#eH. (5)
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For any given c, the slope coe$cient b can be estimated by ordinary least
squares (OLS). That is,

bK (c)"(XH(c)@XH(c))~1XH(c)@>H. (6)

The vector of regression residuals is

e( H(c)">H!XH(c)bK (c)

and the sum of squared errors is

S
1
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">H{(I!XH(c)@(XH(c)@XH(c))~1XH(c)@)>H. (7)

Chan (1993) and Hansen (1999) recommend estimation of c by least squares.
This is easiest to achieve by minimization of the concentrated sum of squared
errors (7). Hence the least squares estimators of c is

c("argmin
c

S
1
(c). (8)

It is undesirable for a threshold c( to be selected which sorts too few observations
into one or the other regime. This possibility can be excluded by restricting the
search in (8) to values of c such that a minimal percentage of the observations
(say, 1% or 5%) lie in each regime.

Once c( is obtained, the slope coe$cient estimate is bK "bK (c( ). The residual
vector is e( H"e( H(c( ) and residual variance

p( 2"
1

n(¹!1)
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1

n(¹!1)
S
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3.2. Computation issues

The computation of the least squares estimate of the threshold c involves the
minimization problem (8). Since the sum of squared error function S

1
(c) depends

on c only through the indicator functions I(q
it
)c), the sum of squared error

function is a step function with at most n¹ steps, with the steps occurring at
distinct values of the observed threshold variable q

it
. Thus the minimization

problem (8) can be reduced to searching over values of c equalling the (at most
n¹) distinct values of q

it
in the sample.

To implement the minimization, the following approach may be taken. Sort
the distinct values of the observations on the threshold variable q

it
. Eliminate

the smallest and largest g% for some g'0. The remaining N values constitute
the values of c which can be searched for c( . For each of these N values,
regressions (6) are estimated yielding the sum of squared errors (7). The smallest
value of the latter yields the estimate c( .
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In practice, N may be a very large number, and the optimization search
describe above may be numerically intensive. A simplifying shortcut which
yields nearly identical results is to restrict the search to a smaller set of values of
c. Instead of searching over all values of q

it
(between the g% and (1!g)%

quantile) the search may be limited to speci"c quantiles, perhaps integer valued.
This greatly reduces the number of regressions performed in the search. The
estimates from such an approximation are likely to be su$ciently precise for
most applications of interest. For the empirical work reported in Section 4, we
used the grid M1.00%, 1.25%, 1.50%, 1.75%, 2%,2,99.0%N which contains 393
quantiles.

4. Inference

4.1. Testing for a threshold

It is important to determine whether the threshold e!ect is statistically
signi"cant. The hypothesis of no threshold e!ect in (1) can be represented by the
linear constraint

H
0
: b

1
"b

2
.

Under H
0

the threshold c is not identi"ed, so classical tests have non-standard
distributions. This is typically called the &Davies' Problem' (see Davies, 1977,
1987) and has been recently investigated by Andrews and Ploberger (1994) and
Hansen (1996). The "xed-e!ects equations (4) fall in the class of models con-
sidered by Hansen (1996) who suggested a bootstrap to simulate the asymptotic
distribution of the likelihood ratio test.

Under the null hypothesis of no threshold, the model is
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After the "xed-e!ect transformation is made, we have
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The regression parameter b
1

is estimated by OLS, yielding estimate bI
1
, resid-

uals e8 H
it

and sum of squared errors S
0
"e8 H{e8 H. The likelihood ratio test of H

0
is

based on

F
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"(S

0
!S

1
(c( ))/p( 2. (12)

The asymptotic distribution of F
1

is non-standard, and strictly dominates the
s2
k
distribution. Unfortunately, it appears to depend in general upon moments of

the sample and thus critical values cannot be tabulated. Hansen (1996) shows
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that a bootstrap procedure attains the "rst-order asymptotic distribution, so
p-values constructed from the bootstrap are asymptotically valid.3 Given the
panel nature of the data we recommend the following implementation of the
bootstrap. Treat the regressors x

it
and threshold variable q

it
as given, holding

their values "xed in repeated bootstrap samples. Take the regression residuals
e( H
it
, and group them by individual: e( H

i
"(e( H

i1
, e( H

i2
,2, e( H

iT
). Treat the sample

Me( H
1
, e( H

2
,2, e( H

n
N as the empirical distribution to be used for bootstrapping. Draw

(with replacement) a sample of size n from the empirical distribution and use
these errors to create a bootstrap sample under H

0
. (Notice that the test statistic

F
1

does not depend on the parameter b
1

under H
0
, so any value of b

1
may be

used.) Using the bootstrap sample, estimate the model under the null (11) and
alternative (4) and calculate the bootstrap value of the likelihood ratio statistic
F
1

(12). Repeat this procedure a large number of times and calculate the
percentage of draws for which the simulated statistic exceeds the actual. This is
the bootstrap estimate of the asymptotic p-value for F

1
under H

0
. The null of no

threshold e!ect is rejected if the p-value is smaller than the desired critical value.

4.2. Asymptotic distribution of threshold estimate

When there is a threshold e!ect (b
1
Ob

2
) Chan (1993) and Hansen (1999)

have shown that c( is consistent for c
0

(the true value of c) and that the
asymptotic distribution is highly non-standard. Hansen (1999) argues that the
best way to form con"dence intervals for c is to form the &no-rejection region'
using the likelihood ratio statistic for tests on c. To test the hypothesis
H
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, the likelihood ratio test is to reject for large values of ¸R

1
(c

0
) where

¸R
1
(c)"(S

1
(c)!S

1
(c( ))/p( 2. (13)

Note that the statistic (13) is testing a di!erent hypothesis from the statistic (12)
introduced in the previous section. ¸R
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Theorem 1. Under Assumptions 1}8 given in the Appendix, and H
0
: c"c

0
,

¸R
1
(c)P

d
m

as nPR, where m is a random variable with distribution function

P(m)x)"(1!exp(!x/2))2. (14)

3Since the asymptotic distribution is non-pivotal, bootstrap size will not have an accelerated rate
of convergence relative to conventional asymptotic approximations. A referee suggested that
pre-pivoting as in Beran (1987) may improve the convergence rate. This is an interesting suggestion
and would be a constructive subject for future research.
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Theorem 1 shows that the asymptotic distribution of the likelihood
ratio statistic is non-standard yet free of nuisance parameters. The technical
assumptions include the rather unusual condition that (b

2
!b

1
)P0 as nPR,

and is borrowed from the changepoint literature. The condition means that the
di!erence in the slopes between the two regimes is &small' relative to sample size.
Its practical relevance is that the asymptotic approximation implied by The-
orem 1 is likely to hold better for cases where b

2
!b

1
is small than for cases

where b
2
!b

1
is large. If the threshold e!ect is large, however, the threshold will

be quite precisely estimated.
Since the asymptotic distribution in Theorem 1 is pivotal, it may be used to

form valid asymptotic con"dence intervals. Furthermore, the distribution func-
tion (14) has the inverse

c(a)"!2 log(1!J1!a), (15)

from which it is easy to calculate critical values. For example, the 10% critical
value is 6.53, the 5% is 7.35 and the 1% is 10.59. A test of H

0
: c"c

0
rejects at the

asymptotic level a if ¸R
1
(c

0
) exceeds c(a).

To form an asymptotic con"dence interval for c, the &no-rejection region' of
con"dence level 1!a is the set of values of c such that ¸R

1
(c))c(a), where

¸R
1
(c) is de"ned in (13) and c(a) is de"ned in (15). This is easiest to "nd by

plotting ¸R
1
(c) against c and drawing a #at line at c(a).

One of the convenient features of this con"dence region is that it is a natural
by-product of model estimation. In order to "nd the LS estimate c( , the sequence
of sum of squared errors S

1
(c) were calculated. The likelihood ratio sequence

¸R
1
(c) is a simple re-normalization of these numbers, and require no further

computation.

4.3. Asymptotic distribution of slope coezcients

The estimator bK "bK (c( ) depends on the threshold estimate c( , which appears to
complicate inference on b. Chan (1993) and Hansen (1999) show that the
dependence on the threshold estimate is not of "rst-order asymptotic import-
ance, so inference on b can proceed as if the threshold estimate c( were the true
value. Hence bK is asymptotically normal with a covariance matrix which can be
estimated by
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p( 2.

While we need the assumption that the errors are iid for the purposes of
constructing con"dence intervals for c, it would seem appropriate to relax this
assumption when constructing con"dence intervals for the slope coe$cients. If
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the errors are allowed to be conditionally heteroskedastic, the natural
covariance matrix estimator for bK is
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5. Multiple thresholds

Model (1) has a single threshold. In some applications there may be multiple
thresholds. For example, the double threshold model takes the form

y
it
"k

i
#b@

1
x
it
I(q

it
)c

1
)#b@

2
x
it
I(c

1
(q

it
)c

2
)#b@

3
x
it
I(c

2
(q

it
)#e

it

(16)

where the thresholds are ordered so that c
1
(c

2
. We will focus on this double-

threshold model since the methods extend in a straightforward manner to
higher-order threshold models. We discuss three relevant statistical issues: (1)
Estimation; (2) Testing for the presence of a double threshold; (3) Construction
of con"dence intervals for the threshold parameters c

1
and c

2
.

5.1. Estimation

For given (c
1
, c

2
), (16) is linear in the slopes (b

1
,b

2
, b

3
) so OLS estimation is

appropriate. Thus for given (c
1
, c

2
) the concentrated sum of squared errors

S(c
1
, c

2
) is straightforward to calculate (as in the single threshold model). The

joint LS estimates of (c
1
, c

2
) are by de"nition the values which jointly minimize

S(c
1
, c

2
). While these estimates might seem desirable, they may be quite cumber-

some to implement in practice. A grid search over (c
1
, c

2
) requires approximately

N2"(n¹)2 regressions which may be prohibitively expensive.
A remarkable insight allows us to escape this computational burden. It has

been found (Chong, 1994; Bai, 1997; Bai and Perron, 1998) in the multiple
changepoint model that sequential estimation is consistent. The same logic
appears to apply to the multiple threshold model. The method works as follows.
In the "rst stage, let S

1
(c) be the single threshold sum of squared errors as

de"ned in (7) and let c(
1

be the threshold estimate which minimizes S
1
(c). The

analysis of Chong and Bai suggests that c(
1

will be consistent4 for either c
1

or c
2

(depending on which e!ect is &stronger').

4The reason why c(
1

is consistent is because the single-threshold sum of squared errors function
S
1
(c) asymptotically converges to a limit function which has two local minima at c

1
and c

2
.
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Fixing the "rst-stage estimate c(
1
, the second-stage criterion is
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and the second-stage threshold estimate is
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Since it is undesirable to have a small number of observations in any given
&regime', we can restrict the search in (18) so that a minimum number of
observations fall in each of the three regimes.

Bai (1997) has shown that c( 3
2

is asymptotically e$cient, but c(
1

is not. This is
because the estimate c(

1
was obtained from a sum of squared errors function

which was contaminated by the presence of a neglected regime. The asymptotic
e$ciency of c( 3

2
suggests that c(

1
can be improved by a third-stage estimation. Bai

(1997) suggests the following rexnement estimator. Fixing the second-stage
estimate c( 3
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Bai (1997) shows that the re"nement estimator c( 3
1

is asymptotically e$cient in
changepoint estimation, and we expect similar results to hold in threshold
regression.

5.2. Determining number of thresholds

In the context of model (16), there are either no thresholds, one threshold, or
two thresholds. In Section 3.1 we introduced F

1
as a test of no thresholds against

one threshold, and suggested a bootstrap to approximate the asymptotic p-
value. If F

1
rejects the null of no threshold, in the context of model (16) we need

a further test to discriminate between one and two thresholds.
The minimizing sum of squared errors from the second-stage threshold

estimate is S3
2
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) with variance estimate p( 2"S3

2
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)/n(¹!1). Thus an approx-

imate likelihood ratio test of one versus two thresholds can be based on the
statistic
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.
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The hypothesis of one threshold is rejected in favor of two thresholds if F
2

is
large.

Since the null asymptotic distribution of the likelihood ratio test is non-
pivotal5 we suggest using a bootstrap procedure to approximate the sampling
distribution. To generate the bootstrap samples, hold the regressors x

it
and

threshold variable q
it
"xed in repeated bootstrap samples. The bootstrap errors

will be drawn from the residuals calculated under the alternative hypothesis, so
should be the residuals from LS estimation of model (16). Group the regression
residuals e( H

it
by individual: e( H

i
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iT
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N as an empirical distribution. Draw (with replacement) error
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The dependent variable y
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which depends on the parameter values bK
1
,bK

2
, and c( , the least-squares estimates

from the single threshold model. From the bootstrap sample, the test statistic
F
2

may be calculated, and this procedure repeated multiple times to calculate
the bootstrap p-value.

From Eq. (21) it is clear that unlike the null sampling distribution of F
1
, which

asymptotically did not depend on c, b
1

or b
2
, the null sampling distribution of

F
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depends asymptotically on both c and the regression parameters b
1

and b
2
,

though it only depends on the latter through b
1
!b

2
. This leads us to expect

that the bootstrap may not produce as accurate critical values for F
2

as for F
1
,

and neither is expected to be second-order accurate.

5.3. Conxdence region construction

We "nally consider the construction of con"dence intervals for the two
threshold parameters Mc

1
, c

2
N. Bai (1997) showed (for the analogous case of

change-point models) that the re"nement estimators of Section 5.1 have the
same asymptotic distributions as the threshold estimate in a single threshold
model. This suggests that we can construct con"dence intervals in the same way
as in Section 4.2.
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5 It is important to remember that this di!ers from the changepoint case (see Chong, 1994, Bai,
1997; Bai and Perron, 1998), where the asymptotic distribution of F

2
is known and pivotal.
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and
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where S3
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and c
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6. Investment and 5nancing constraints

Classical models of the "rm assume the existence of perfect "nancial markets
on which "rms can borrow the needed resources for investment projects.
Alternative models of "nancing place restrictions on the extent of external
"nancing. An important empirical question is whether or not there exist "rms
which behave as though they are subject to such constraints.

A well-cited paper which explored the empirical implications of "nancing
constraints is Fazzari et al. (1988), henceforth FHP. These authors argue that
the presence of "nancing constraints implies that a "rm's cash #ow will be
positively related to its investment rate only when the "rm faces constraints on
external "nancing. If a "rm is free to borrow on external "nancial markets, cash
#ow will be irrelevant for investment. This distinction motivated FHP to test for
"nancing constraints by estimating separate investment regressions for &con-
strained' and &unconstrained' "rms to see if there are di!ering e!ects of contem-
poraneous cash #ow. To distinguish constrained and unconstrained "rms, they
used the dividend to income ratio, as their theory suggests that a "nancially
constrained "rm will choose to retain earnings rather than pay dividends. Hence
the "rms which have low levels of dividend payments are the "nancially
constrained "rms.

FHP divide their sample into three classes, depending on whether the divi-
dend to income ratio was less than 0.1 for 10 yr in the sample, between 0.1 and
0.2 for over 10 yr, and all other "rms. Thus they are estimating a double-
threshold regression on panel data, where q

it
is the largest dividend-income ratio

over the 10-yr period, and the thresholds c are set at 0.1 and 0.2.
There are two obvious problems with the FHP regression. First, it treats the

dividend-income ratio as exogenous, while their theory explicitly treats dividend
payments as decision variables. The use of an endogenous threshold variable
may bias their results. Second, they select their threshold levels arbitrarily,
rather than estimating these parameters from the sample. In this section we
explore whether our methods allow for a re-appraisal of FHP's analysis.

The original data used by FHP is no longer available. We use a similar
dataset, extracted from the dataset used by Hall and Hall (1993), which is an
unbalanced panel of US "rms originally taken from Compustat. Our methods
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are designed for balanced panels, so we took the subset of 565 "rms which are
observed for the years 1973}1987.

The threshold variable should be an exogenous indicator of a "rm's access to
external "nancing. A natural candidate is the existing debt level. It seems
reasonable to believe that banks will be reluctant to lend money to debt-heavy
"rms. This choice is similar to that of Hu and Schiantarelli (1998) who estimate
a switching regression using the debt}asset ratio as one variable in their
switching equation.

To "x notation, let I
it

be the ratio of investment to capital; Q
it

be the ratio of
total market value to assets; CF

it
be the ratio of cash #ow to assets; and D

it
be

the ratio of long-term debt to assets, where stock variables are de"ned at the end
of year. Summary statistics of the four variables are given in Table 1.

We use the multiple threshold regression model

I
it
"k

i
#h

1
Q

it~1
#h

2
Q2

it~1
#h

3
Q3

it~1
#h

4
D

it~1

# h
5
Q

it~1
D

it~1
#b

1
CF

it~1
I(D

it~1
)c

1
)

#b
2
CF

it~1
I(c

1
(D

it~1
)c

2
)#b

3
CF

it~1
I(c

2
(D

it~1
)#e

it
, (22)

where (22) represents a double threshold model for illustration. Model (22) falls
in the class of models (1) setting q

it
" D

it~1
and x

it
"CF

it~1
. There are also

the additional regressors (Q
it~1

,Q2
it~1

,Q3
it~1

, D
it~1

,Q
it~1

D
it~1

). The latter can
be viewed as a special case of (1) by constraining the slope coe$cients on these
variables to be the same in the two regimes, which has no e!ect on the
distribution theory. The reason model (22) has only the slope coe$cient on cash
#ow switch between regimes is to focus attention on this key variable of interest.
The non-linear terms in the regression (namely, Q2

it~1
, Q3

it~1
, and Q

it~1
D

it~1
)

were included to reduce the possibility of spurious correlations due to omitted
variables bias. The choice of the particular non-linear terms was data-based, as
the variables D2

it~1
and D3

it~1
were insigni"cant and omitted to reduce computa-

tion costs.
To determine the number of thresholds, model (22) was estimated by least

squares, allowing for (sequentially) zero, one, two, and three thresholds. The test
statistics F

1
, F

2
and F

3
, along with their bootstrap6 p-values, are shown in

Table 2. We "nd that the test for a single threshold F
1

is highly signi"cant with
a bootstrap p-value of 0.003, and the test for a double threshold F

2
is also

strongly signi"cant, with a bootstrap p-value of 0.017. On the other hand, the
test for a third threshold F

3
is not close to being statistically signi"cant, with

a bootstrap p-value of 0.723. We conclude that there is strong evidence that
there are two thresholds in the regression relationship. For the remainder of the
analysis we work with this double threshold model.

6 300 bootstrap replications were used for each of the three bootstrap tests.
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Table 1
Summary statistics

Minimum 25% quantile Median 75% quantile Maximum

I
it

0.001 0.049 0.076 0.113 1.66
Q

it~1
0.021 0.371 0.675 1.31 111.8

CF
it~1

!0.94 0.12 0.22 0.32 8.71
D

it~1
0.000 0.089 0.206 0.320 4.67

Table 2
Tests for threshold e!ects

Test for single threshold
F
1

32.6
P-value 0.003
(10%, 5%, 1% critical values) (12.4, 14.8, 26.2)

Test for double threshold
F
2

25.8
P-value 0.017
(10%, 5%, 1% critical values) (12.3, 14.9, 42.9)

Test for triple threshold
F
3

4.2
P-value 0.723
(10%, 5%, 1% critical values) (10.9, 13.3, 22.9)

The point estimates of the two thresholds and their asymptotic 95% and 99%
con"dence intervals are reported in Table 3. The estimates are 0.016 and 0.536,
which are very small (and very large) values in the empirical distribution of
the debt/assets threshold variable. Thus the three classes of "rms indicated by
the point estimates are those with &very low debt', &very high debt' and &other'.
The asymptotic con"dence intervals for the threshold are very tight, indicating
little uncertainty about the nature of this division. More information can be
learned about the threshold estimates from plots of the concentrated likelihood
ratio function ¸R

1
(c), ¸R3

2
(c) and ¸R3

1
(c) in Figs. 1}3 (corresponding to the

"rst-stage estimate c(
1

and the re"nement estimators c( 3
2

and c( 3
1
). The point

estimates are the value of c at which the likelihood ratio hits the zero axis, which
is in the far left part of the graph. The 95% con"dence intervals for c

2
and c

1
can

be found from ¸R3
2
(c) and ¸R3

1
(c) by the values of c for which the likelihood ratio

lies beneath the dotted line.
It is interesting to examine the unre"ned "rst-step likelihood ratio function

¸R
1
(c), which is computed when estimating a single threshold model. The
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Table 3
Threshold estimates

Estimate 95% con"dence interval 99% con"dence interval

c( 3
1

0.0157 [0.0139, 0.0181] [0.0120, 0.0239]
c( 3
2

0.5362 [0.5305, 0.5629] [0.5190, 0.5693]

Fig. 1. Con"dence interval construction in single threshold model.

"rst-step threshold estimate is the point where the ¸R
1
(c) equals zero, which

occurs at c(
1
"0.0157. There is a second major dip in the likelihood ratio around

the second-step estimate 0.53. Thus the single threshold likelihood conveys
information that suggests that there is a second threshold in the regression.

Table 4 reports the percentage of "rms which fall into the three regimes each
year. We see that the percentage of "rms in the &very low debt' category ranges
from 10% to 16% of the sample over the years. The &very high debt' "rms range
from 4% to 16% of the sample in a given year. It is interesting to note that the
last two years of the sample (1986 and 1987) saw a large increase in the number
of "rms with very high debt ratios.

The regression slope estimates, conventional OLS standard errors, and
White-corrected standard errors are displayed in Table 5. We see that Q

it~1
and its powers are statistically signi"cant, indicating a positive (and very slightly
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Fig. 2. Con"dence interval construction in double threshold model.

Fig. 3. Con"dence interval construction in double threshold model.

non-linear) relationship between q and investment. The debt level D
it~1

has
a negative and signi"cant e!ect on investment, and there is no apparent
interaction e!ect between q and the debt level.
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Table 4
Percentage of "rms in each regime by year

Year

Firm class 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

D
it~1

)0.0157 16 14 14 15 15 13 13 11 10 10 10 10 10 11
0.0157(D

it~1
)0.5362 78 79 78 81 81 84 82 85 86 85 84 82 77 73

0.5362(D
it~1

6 7 8 5 4 4 5 4 4 5 6 8 13 16

Table 5
Regression estimates: double threshold model

Regressor Coe$cient estimate OLS SE White SE

Q
it~1

0.010 0.001 0.002
Q2

it~1
/103 !0.198 0.026 0.064

Q3
it~1

/106 1.047 0.199 0.448
D

it~1
!0.016 0.005 0.009

Q
it~1

D
it~1

0.001 0.001 0.002
CF

it~1
I(D

it~1
)0.0157) 0.063 0.006 0.014

CF
it~1

I(0.0157(D
it~1

)0.5362) 0.098 0.006 0.010
CF

it~1
I(0.5362(D

it~1
) 0.039 0.012 0.031

The coe$cients of primary interest are those on cash #ow. The point esti-
mates suggest that investment is positively related to cash #ow, with &very low
debt' "rms having a lower coe$cient (about one-third smaller in magnitude)
than the typical "rm. What is quite unexpected is that the "rms with the highest
debt levels have the smallest coe$cient of 0.039. The White standard error on
this last coe$cient, however, is quite high, indicating that there is still consider-
able uncertainty in the estimate.

The conventional OLS standard errors and the White-corrected standard
errors are considerably di!erent, with the White-corrected ones roughly twice
as big. This is evidence in favor of heteroskedasticity, which violates one of
the maintained assumptions of our asymptotic analysis. Based on the theory
(Hansen, 1999) for least squares threshold regression (the model without "xed
e!ects), we would expect the threshold estimates to be consistent and the
distribution theory of Theorem 1 to be correct up to a scale e!ect, so that
asymptotic con"dence intervals would still take the form given in Table 3, but
would require a di!erent critical value.
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7. Conclusion

This paper has developed new empirical methods for panel data. We have
de"ned a threshold regression model with individual-speci"c e!ects, and
shown that the model is rather straightforward to estimate using a "xed-
e!ects transformation. The asymptotic theory is non-standard, but con"-
dence intervals for the threshold can be constructed by inverting the likelihood
ratio statistic, and this construction is a natural by-product of the estimation
method.

The methods are applied to the investment decisions of a panel of 565 US
"rms for the period 1973}1987. We "nd overwhelming evidence of a double
threshold e!ect which separates the "rms based on their debt to asset ratio. The
estimates are somewhat consistent with the theory of "nancing constraints.
The notable di!erence between our work and that of Fazzari et al. (1988) is that
we are also able to quantify the extent of "nancing constraints in the economy
rather than assuming the degree of such constraints.

Several extensions of our methods would be desirable, including allowing for
heteroskedasticity, lagged dependent variables, endogenous variables, and ran-
dom e!ects. It would also be interesting to compare our results with alternative
approximations based on smooth transition threshold models, which replace
the indicator functions by smooth distribution functions. These would be useful
subjects for future research.
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Appendix. Mathematical proofs

We need the following technical assumptions. Let c
0

denote the true value of
c. Let h"b

2
!b

1
and C"nah, where a3(0, 1/2). Let f

t
(c) denote the density

function of q
it
, set z

it
"C@x

it
,

D(c)"
T
+
t/1

E(z2
it
D q

it
"c) f

t
(c),

and D"D(c
0
). Let f

k@t
(c

1
D c

2
) denote the conditional density of q

ik
given q

it
.
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Assumptions

1. For each t, (q
it
, x

it
, e

it
) are independent and identically distributed (iid) across

i.
2. For each i, e

it
is iid over t, is independent of M(x

ij
, q

ij
)T
j/1

N, and E(e
it
)"0.

3. For each j"1,2,k, P(xj
i1
"xj

i2
"2"xj

iT
)(1, where xj

it
is the jth element

of x
it
.

4. EDx
it
D4(R and EDe

it
D4(R.

5. For some "xed C(R and 0(a(1/2, h"n~aC.
6. D(c) is continuous at c"c

0
.

7. 0(D(R.
8. For k't, f

k@t
(c

0
D c

0
)(R.

Assumptions 1}4 are standard for "xed e!ect panel models with strictly
exogenous regressors. Assumption 5 is more unusual, setting h"n~aCP0 as
nPR. The renormalization is to force h to be &small', reducing the information
in the sample concerning the threshold and hence slowing down the rate of
convergence of the threshold estimate. This assumption need not be viewed as
very restrictive since the rate at which h decreases to zero can be set quite low. It
does suggest, however, that the asymptotic approximation is more likely to
provide good approximations when h is small relative to the case where h is
large.

Assumption 6 excludes threshold e!ects which occur simultaneously in the
marginal distribution of the regressors and in the regression function. Assump-
tion 7 excludes continuous threshold models (see Chan and Tsay, 1998), and
requires that the threshold variable q

it
be continuously distributed with positive

support at the threshold c
0
. Assumption 8 excludes the possibility that q

it
"c

0
for t"1,2,¹.

The proof of the theorem is based on the following lemma. Let &N' denote
weak convergence with respect to the uniform metric, and let j

n
"n1~2a.

Lemma A.1. As nPR, uniformly over v3[!v6 , v6 ],

S
1
(c

0
)!S

1
(c

0
#v/j

n
)Nq(v),

where

q(v)"!D
T
DvD#2Jp2D

T
=(v)

D
T
"D(1!1/¹), and =(v) is a double-sided standard Brownian motion on

(!R,R).

Proof. Let

+z
it
(c)"z

it
I(q

it
)c)!z

it
I(q

it
)c

0
).
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The regression equation (1) holds when c"c
0
, the true value. For values of

cOc
0
, note that (1) can be re-written as

y
it
"k

i
#b@

1
x
it
I(q

it
)c

0
)#b@

2
x
it
I(q

it
'c

0
)#e

it

"k
i
#b@

1
x
it
I(q

it
)c)#b@

2
x
it
I(q

it
'c)

!b@
1
x
it
[I(q

it
)c)!I(q

it
)c

0
)]!b@

2
x
it
[I(q

it
'c)!I(q

it
'c

0
)]#e

it

"k
i
#b@x

it
(c)#(b

2
!b

1
)@x

it
[I(q
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)c)!I(q

it
)c

0
)]#e

it

"k
i
#b@x

it
(c)#n~a+z

it
(c)#e

it
. (A.1)

Eq. (A.1) makes explicit the regression error for cOc
0
. h

The "xed e!ect transformation is linear, so can be applied to (A.1) to yield

yH
i
"b@xH

it
(c)#n~a+zH

it
(c)#eH

it

which is the correct representation of (4) for cOc
0
. Hansen (1999) shows that

the asymptotic distribution of c( is not a!ected by the estimation of b, and this
holds in our environment as well. We can thus simplify matters by assuming that
b is known and only c is estimated, so that the regression residual (for "xed c) is

e(
it
(c)"n~a+zH

it
(c)#eH

it
. (A.2)

Using (A.2),

S(c
0
)!S(c)"

n
+
i/1

T
+
t/1

e(
it
(c

0
)2!

n
+
i/1

T
+
t/1

e(
it
(c)2

"

n
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T
+
t/1

eH2
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!

n
+
i/1

T
+
t/1

(n~a+zH
it
(c)#eH

it
)2

"!n~2a
n
+
i/1

T
+
t/1

+zH
it
(c)2!2n~a

n
+
i/1

T
+
t/1

+zH
it
(c)eH

it
. (A.3)

We now show that as nPR, uniformly over v3[!v6 , v6 ],

n~2a
n
+
i/1

T
+
t/1

+zH
it
(c

0
#v/j

n
)2ND

T
DvD. (A.4)

We prove (A.4) for the case v3[0, v6 ]. We will show that for c"c
0
#v/j

n
,

EAn~2a
n
+
i/1

T
+
t/1

+zH
it
(c)2B"j

n

T
+
t/1

E(+zH
it
(c))2PD

T
DvD. (A.5)
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Arguments similar to those in the proof of Lemma A.10 of Hansen (1999) show
that (A.5) implies (A.4) under the assumptions. Expansion of the quadratic yields

T
+
t/1

E(+zH
it
(c))2"

T
+
t/1

E(+z
it
(c))2!

1

¹

T
+
t/1

T
+
k/1

E(+z
it
(c)+z

ik
(c)). (A.6)

Consider the "rst sum on the right-hand-side of (A.6). Observe that since
c"c

0
#v/j

n
Pc

0
,

j
n
P(c

0
(q

it
)c)"v

P(q
it
)c)!P(q

it
)c

0
)

c!c
0

Pvf
t
(c

0
) (A.7)

as nPR. Thus

j
n

T
+
t/1

E(+z
it
(c))2"j

n

T
+
t/1

E(z2
it
I(c

0
(q

it
)c))

"
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t/1

E(z2
it
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P
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t/1

vE(z2
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D q
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"c

0
) f

t
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0
)"vD. (A.8)

Next consider the double-sum on the right-hand-side of (A.6). By Assumption
8, for k't,

P(c
0
(q

ik
)c D c

0
(q

it
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"vj~1
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(c
0
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0
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P0,

and combined with (A.7), for k't,

j
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P(c

0
(q

it
)c, c

0
(q

ik
)c)

"j
n
P(c

0
(q

ik
)c)P(c

0
(q

it
)c D c

0
(q

ik
)c)P0. (A.9)

Eq. (A.9) also holds for k(t by symmetry. Hence

j
n

1

¹
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ik
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by (A.9). Eqs. (A.6), (A.8) and (A.10) imply (A.5) and hence (A.4). Next, we wish to
show that uniformly over v3[!v6 , v6 ],

n~a
n
+
i/1

T
+
t/1

+zH
it
(c

0
#v/j

n
)eH

it
NJp2D

T
=(v). (A.11)

By the properties of least squares projection, +T
t/1

+zH
it
(c)eH

it
"+T

t/1
+zH

it
(c)e

it
, and

since the e
it

are iid,

EAn~a
n
+
i/1

T
+
t/1

+zH
it
(c)eH

itB
2
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n
EA

T
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t/1

+zH
it
(c)e

itB
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"j
n

T
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E(+zH
it
(c))2p2

PD
T
DvDp2 (A.12)

by (A.5). This establishes that the "nite dimensional distributions of the stochas-
tic process are those of the stated double-sided Brownian motion. By arguments
identical to those in the proof of Lemma A.11 of Hansen (1999), (A.12) and
Assumption 1 are su$cient to establish (A.11). Eqs. (A.4) and (A.11) combine
with (A.3) to yield the stated result.

Proof of Theorem 1. Since c( minimizes S(c),

¸R
1
(c

0
)"max

c A
S
1
(c

0
)!S

1
(c)

p( 2 B
"max

v A
S
1
(c

0
)!S

1
(c

0
#v/j

n
)

p( 2 B, (A.13)

where the "nal equality makes the change-of-variables c"c
0
#v/j

n
, Hansen

(1999) shows that under Assumption 1,

v(,j
n
(c(!c

0
)"O

1
(1). (A.14)
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We will not repeat the proof of (A.14) here. The stochastic boundedness of (A.14)
shows that for any g'0, there is some v6 (R such that

P(Dv( D)v6 )*1!g. (A.15)

Let

'C
¸R"max

@v@xv6 A
S
1
(c

0
)!S

1
(c

0
#v/j

n
)

p( 2 B
Np~2max

@v@xv6
q(v)

where the stated weak convergence follows from Lemma A.1 and the continuous
mapping theorem. Eq. (A.15) shows that

P(¸R
1
(c

0
)"

'C
¸R)*1!g.

Since g is arbitrary we conclude that

¸R
1
(c

0
)Np~2 max

~=:v:=
q(v)"m,

say. Hansen (1999, Proof of Theorem 2) shows that the distribution function of
m is P(m)x)"(1!exp(!x/2))2. h
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