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Estimation and inference in cointegrated models is examined in the presence of deterministic 
trends in the data. It is suggested that trends be excluded in the levels regression for maximal 
efficiency. Fully modified test statistics are asymptotically chi-square. A chi-square test for the 
validity of trend exclusion is presented. The asymptotic distributions of standard cointegration 
test statistics are shown to depend both upon regressor trends and estimation detrending 
methods. 

1. Introduction 

A vector of random variables is said to be cointegrated if a linear 
combination of the variables has a stationary distribution, yet considered 
individually, each element is integrated of order one [Z(l)]. The latter 
processes are nonstationary in levels, but stationary after differencing. A new 
body of statistical theory has developed for the estimation of these cointe- 
grating vectors; see, for example, Engle and Granger (19871, Stock (1987), 
Johansen (1988a, b), Park and Phillips (1988,1989), Phillips (1988,1991), 
Phillips and Hansen (19901, and Sims, Stock, and Watson (1990). Much of 
this literature has abstracted away from the presence of deterministic trends 
in the regressors. Many macroeconomic variables which are commonly de- 
scribed as Z(1) such as GNP, consumption, or the price level are actually best 
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thought of as ‘Z(1) with drift’, which is the sum of an Z(1) process with 
zero-mean increments and a linear trend. The theoretical literature and 
econometric practice has been to detrend the data, often by inclusion of a 
linear trend in the levels regression. This has the advantage of rendering 
estimates of the cointegrating vector invariant to the presence of trends and 
simplifies the asymptotic theory. 

Some exceptions should be noted. West (1988) explicitly examines the case 
of a single nonstationary regressor without detrending. His analysis, however, 
does not generalize to multiple regression, as pointed out by Park and 
Phillips (1988). These authors provide a preliminary analysis of the effects of 
failing to detrend when the regressors have drift (their theorems 3.5 and 3.61, 
but emphasize the degenerate nature of their limiting representations and 
fail to consider inference based upon these estimates or contrast the relative 
efficiency of these estimates versus those obtained under detrending. 
Johansen (1988b) sets up a Gaussian vector autoregression (VAR) with 
possible drift estimated by maximum likelihood without detrending and finds 
that likelihood ratio and Wald test statistics are asymptotically chi-squared. 
Sims, Stock, and Watson (1990) allow for trends in a VAR framework and 
achieve similar results. 

This paper examines regression estimation methods, focusing on the semi- 
parametric corrections proposed in Phillips and Hansen (1990) and the 
residual-based tests for cointegration proposed in Engle and Granger (1987) 
and Phillips and Ouliaris (1990). The central result is that d&rending has 
adverse effects upon the precision of estimation, while the asymptotic distribu- 
tions of the Phillips-Hansen fully modified test statistics are chi-square 
regardless of detrending procedures. The maintained assumption is that the 
cointegrating error is stationary, as might be expected from a theory of 
long-run equilibrium. General trend processes are allowed for the regressors. 
A second result uncovered is that cointegration tests are not invariant to the 
actual trends in the data, if the data is not detrended. The distributions 
under the null and alternative hypotheses are sensitive to the true trend 
processes and detrending procedures. 

Section 2 introduces the model. Section 3 outlines a theory of least squares 
estimation. Section 4 develops an asymptotic theory of fully modified estima- 
tion. Section 5 develops a theory of inference for tests on the cointegrating 
vector and for the presence of a trend in the cointegrating relationship. 
Section 6 examines residual-based tests of the hypothesis of no cointegration. 
Some extensions are discussed in section 7. Proofs of the theorems are left to 
the appendix. 

The notation follows that of Phillips and Hansen (1990). The symbol * 
denotes weak convergence, = denotes equality in distribution, and [*I 
denotes ‘integer part’. Brownian motion B(r) on [O, 11 is frequently written as 
B to achieve notational economy. Similarly, the integral /dB(s)ds is written 
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more simply as /a’B. Vector Brownian motion with covariance matrix 0 is 
written BM(fi). We use 11 All to represent the Euclidean norm tr(A’A)‘/’ of 
the matrix A. Finally, all limits given in the paper are as the sample size 
T + CC unless otherwise stated. 

2. Model 

We shall be working with an (n + l)-dimensional time series {y,}; parti- 
tioned as 

Y: = Yl, > Y;, (1 ) (1) 
n 

and generated by the system 

Yl, = ‘y’Y2, + U1r, (2) 

y2t =IJlk, + S2t9 (3) 

AS,, = u2t. (4) 

The initialization of this system is at t = 0 and y0 may be any random 
variable. Our first assumption characterizes the innovation vector u, = 

(z&, u;J. 

The random sequence {ut} is mean zero and a-mixing 

with mixing coefficients (Y, such that ~~=1~~-2)/4” < CC 

and SU~,EIU~LL,I~ < 00 for some v > 2. In addition, 

0 = lim T+m(l/T)E(&S;-) > 0. (U) 

Condition (U) permits quite general forms of temporal dependence, hetero- 
geneity, and endogeneity. Note that 0 > 0 requires that S,, is Z(l), but 
excludes cointegration among the elements of S,, and ‘multicointegration’ 
[see Granger and Lee (199011. (U> implies that the partial sum process 
S, = ciuj satisfies the multivariate invariance principle 

T- 1’2SITrl * B( r) = BM( a), O<r<l. (5) 

The univariate result was shown by Herrndorf (1984) and was extended to 
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the multivariate case by Phillips and Durlauf (1986). (U) also implies conver- 
gence to the matrix stochastic integral 

T-‘&u; - jiBdR’+A, A = &&), 
1 0 0 

as shown by Hansen (1990, theorem 4.1). We partition B, A, and R 
conformably with u , : 

(6) 

The restriction to univariate models (yi, is scalar) is unimportant. The 
generalization to arbitrary dimensions is straightforward and omitted. Also, 
an intercept is excluded from (2) only in order to ease exposition of the main 
argument. It should be emphasized that our results in no way depend upon 
this abstraction. 

The m elements of k, in (3) are positive integer powers of time. That is, 

k, = (~PI tP2 . . . tpm)‘, 1 sp, < ... <P,. (K) 

In most applications k, will be either a time trend (p = 1) or a quadratic 
(pl = 1, p2 = 2). For expositional ease we will refer to k, as the ‘trend’, and 
variables which are projected orthogonal to k, as being ‘detrended’. This is 
not meant to restrict attention to linear trends, and the extra generality 
which is allowed will remain implicit. Set 

6,=diag{ TP~,TP~,...,TPm}, 

so that 

6,‘k [rrl + k( r) = ( rpI rp* . . . rPm)‘, 

uniformly over r E [O, 11. Indeed for k, = tP, 

sup 1 &‘k,,,, - k(r) I= sup 
r 
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Note as well that under (K), /dkk’ > 0. For example, if k, = (t t2),, then 

In Phillips and Hansen (1990) and Phillips and Ouliaris (1990), the distri- 
butional theory was derived under the assumption that n= 0. In this paper 
we take the polar case in which L’ is full rank, 

rank(n) =m sn. (RI 

3. Least squares estimation 

Although (21 does not include k, as a regressor, Park and Phillips 
(1988,1989) and Phillips and Hansen (1990) primarily consider estimation of 
the unrestricted model 

Y1t = a'yZr + P’k, + ult = y’xI + ulr, (7) 

where y = (a’, p’)‘, x, = (y;,, kil’. Denote the least squares estimate of y in 
(7) by q and the estimated residuals by Li,,. Even if we maintain p = 0, 
unrestricted estimation of (7) is advantageous as the estimate & is invariant 
to the presence of drift in the regressors, i.e., to the values of II. The 
covariate k, in (7) detrends y,,, leaving the stochastic trend S,,. This device 
is an important component of the asymptotic theory developed in earlier 
work. 

The alternative is to estimate (2) by least squares; equivalently, estimate (7) 
subject to the constraint 

p=o. (8) 

Denote the restricted estimate of (Y by & and the residuals from the 
restricted estimates by filr. Throughout this paper, we will use hats (^> and 
tildes (-1 on y and (Y to refer to the unrestricted and restricted regressions, 
respectively. In the restricted regression, yzI is not detrended by k,, so its 
behavior is driven in part by the asymptotic behavior of k(r). 

In order to develop an asymptotic theory, we have to find an appropriate 
weighting matrix which allows the reweighted regressors to converge weakly 
to a full-ranked process. Phillips and Hansen (1990) have shown [remark (e) 
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following their theorem 3.21 that if we set 

_@/2nT--1/2 
22 

6,’ i 
3 (9) 

then 

(10) 

where W,(r) = fl;21/2B2(r) = BM(Z,). J, is a full-ranked process, in the 
sense that liJ,J; > 0 a.s. [see Phillips and Hansen (1990, lemma A2)l. 

A similar result is needed for y,, alone. This is complicated by the fact 

that if we define rm as the right-most column of II, then 

T-“+ 2P,) 

and this limit n x rz moment matrix has rank one. [Note that r,,, # 0 under 
(WI 

If n > m, we need to develop a sequence of weights which yield a 
nondegenerate design matrix in the limit. Construct an n x (n - m) matrix 
II* which spans the null space of 17 and 

c= [C,,C,] = (zz*(n*‘R22zI*)-1’2,zz(zm)-1). (11) 

Under (U), n*‘fi,,II* > 0 so C is well-defined. Note that 

Defining the weight matrix p, = diag{l,_,fi, S,}, we can see 
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where 

W,_,(r) = C;B,( r) = ( ZI*‘0n2217*)-“217*‘Bz( r) =BM( I,_,). 

(12) 

It is clear that the limit process JR is full-ranked; that is, /dJ,JA > 0 a.s. This 
allows the derivation of a nondegenerate asymptotic theory. 

Theorem 1. (a) If (U) and (K) hold, then 

(b) If in addition (RI holds, then 

where A,, = C~=OE(~20~,j) and J, and JR are giuen in (10) and (12). 

The distributions in Theorem 1 are plagued by a number of nuisance 
parameters; particularly, A,, and w2, which describe the nature of the serial 
and long-run dependence of uZ1 and u tt. This implies that unadjusted least 
squares does not lead to a parameter-invariant theory of inference. Two 
alternatives are available: inclusion of stationary covariates to orthogonalize 
the error term or the semi-parametric correction of Phillips and Hansen 
(19901, which they call fully modified estimation. Both procedures can yield 
mixture normal asymptotics. In the next section we will consider the 
Phillips-Hansen approach, but the main results will apply to both proce- 
dures. See Phillips (1988,1991) or Johansen (1988a, b) for discussions of 
alternative parametric approaches. 

4. Fully modified estimation 

The fully modified estimates proposed in Phillips and Hansen (1990) make 
use of firstistage estimates of the long-run covariance matrix 0. While any 
consistent estimate of 0 will produce the same asymptotic distributions, we 
discuss a specific class of kernel estimates for concreteness. Set ~2, = (Lilt, &)l, 
where filt is the least squares residual as defined before and fix1 is the 
residual from a regression of Ay,, upon Ak,. This requires the knowledge of 
the drifts Ak, which drive y21. Frequently k, is simply a time trend, in which 
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case Ak, is a constant and Li,, = uZt -I&. If k, is a quadratic in time, then 
Aki = (1, t) and CZt is obtained by detrending Ay,,. 

The class of positive semidefinite kernel estimates of 0 we consider is 

given by 

A = ; w(j/M)T-'~L;t_jq, 

j= -T t 

where the kernel weights w( * ) satisfy 

For all x E R, lw( x)1 I 1 and w(x) = w( -x); w(0) = 1; 

w(x) is continuous at zero and for almost all x E R; 

/,lw( x)1 dx < w; for all A E R, /mmw( x)epixh 2 0. ( W) 

This class of estimates has its origin in the literature on spectral density 
estimation. (When U, is weakly stationary, 0 is proportional to its spectral 
density matrix at frequency zero.) 

Kernels which satisfy (W) include 

Bartlett: 

W(X) = 
l-lx1 for Ixlll, 
0 otherwise; 

Parzen: I 0 1 - 6x2 + 61~1~ for otherwise; 05 1x1 I+, 

w(x) = 2(1- 1x1)” for $5 1x1 I 1, 

Quadratic Spectral: 

25 
w(x) = g 

sin( 6rrx/5) 

677x/5 

In a recent study of kernel estimates of covariance matrices, Andrews 
(1991) shows that the quadratic spectral kernel has the best performance with 
respect to asymptotic truncated mean square error (MSE). In applications, 
however, it is frequently found that the choice of kernel is of secondary 
importance to the choice of the bandwidth parameter M, which is sometimes 
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called the lag truncation number. We assume: 

M+f= as T-m such that M/T1j2 + 0. (W 

Assumptions such as CM) which are used in consistency proofs are not 
particularly helpful for selecting M in applications. It should be noted that 
conditions such as M = o(T’/~) or M = o(T’/~) are frequently imposed as 
technical artifacts of the proof method, and should not be interpreted as 
guides for selection of M in practice. The choice of bandwidth parameter 
may, however, have important influences upon the estimates and test statis- 
tics; hence appropriate care should be exercised in their selection. One 
reasonable approach, dating at least back to Parzen (19571, is to choose M to 
minimize the MSE of hi. A recent exposition of this approach is provided by 
Andrews (1991). Optimal selection rules are given and automatic bandwidth 
estimators proposed. Applied researchers who wish to adopt an automatic 
(or plug-in) estimator of this form are recommended to consult Andrews’ 
paper. 

We also define fi analogously to d using the residuals fin in place of ci,,. 
Partition fi and d conformably with L!. 

Theorem 2. (a> 1. (U>, (K), (W>, and (MI hold, then A -+p 0. (b) r_, in 
addition, (RI holds, then d +p 0. 

Now define the corrected residual, 

which has zero coherence at the origin with uZr. Define the nuisance 
parameter, 

53 

A+= c E(u2&), 
j=O 

and an estimate of A +. 

h”+= ~ W(j/M)T-’ Cl;,l_ja:, 
j=O f 

where 

,. Lit+= Ulr - h,2&21G2,. 

Similarly, define h + using C,, in place of li,,. A similar argument to the 
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proof of Theorem 2 yields 

j=O t j=O 

The fully modified estimate for the unrestricted model is 

and the fully modified estimate for the restricted model is 

(13) 

(14) 

Theorem 3. (a) Zf (U), (K), (W), and (M) hold, then 

T”2@;( q+- y) = (/+;)-1~JUdZ3,.2. 

(b) If, in addition, (RI holds, then 

In (a) and (b), B,.,(r) = B,(r) - w,,L2,‘W2(r> = BM(o,.,), ml,2 = wll - 

6+2G1W21, and B,., is independent of J, and JR. 

The distributions in Theorem 3 are full ranked, median unbiased, and 
mixture normal. Both &+ and &+ are consistent and their limiting distribu- 
tions are free of nuisance dependencies. As is well known, restricted coeffi- 
cient estimation is more efficient than unrestricted estimation. Thus, if 

economic theory suggests that 1 y ,, - y;,cy} should have an equilibrium rela- 
tionship (the discrepancy should not contain a trend), then p = 0 and this 
restriction should be imposed in the estimation process. Estimation of the 
unrestricted model in earlier work has been motivated primarily to render a 

1 

+ 
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tractable asymptotic theory of inference, and not because the restrictions 
were believed to not hold. An asymptotic theory of inference is developed in 
the next section which fills this gap. 

5. Hypothesis testing 

Hypothesis tests of interest will take two forms: (i) restrictions on the 
cointegrating vector cr and (ii> restrictions on p in (7) (most commonly, 
p = 0). The latter test will be of primary importance as a verification that (Y 
can be estimated without inclusion of a trend term in the regression. We 
show that hypothesis tests constructed using the fully modified estimators 
have asymptotic chi-squared distributions. 

5.1. Tests on the cointegrating uector 

We consider test of linear hypotheses 

H,: Q’a = c, rank(Q) = q. 

Define the Wald statistic constructed from E = 2 or ti: 

$,((Y,v) =[cr'a-cl'[P've]-'[~cu-c], 

and covariance matrix estimators 

where 

(15) 

(16) 

and W, .2 is defined similarly to &I. 2. 
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Analysis of the distribution of Wald statistics for hypotheses on (Y using 
the unrestricted estimates &+ is fairly straightforward and is carried out in 
Phillips and Hansen (1990). 

Theorem 4. Zf (151, (U), (K), 049, and 04) hold, then 

G,(G+, r’T) -+d Xi. 

The derivation of Theorem 4 is facilitated by the fact that T(&+-- (~1 has a 
nondegenerate limiting distribution, so all linear combinations of the coeffi- 
cient estimates converge at the same rate. In contrast, differing linear 
combinations of the restricted estimates, Guf, converge at differing rates. This 
problem has not been studied in a general setting in the previous literature. 
The solution is to note that linear combinations of estimates which converge 
at different rates only converge as fast as the slowest elements. Careful 
handling of rank conditions enables the derivation of an asymptotic theory. 

Our derivations will be facilitated by the following lemma: 

Lemma. Zf Q is n xq, rank(Q)=q, and for any partition {n,,n,,...,n,: 
Cfn, = n) there exists an n x q matrix B and an n x n matrix D such that 

QB’=D, rank(D) = q, 

where D is block iower diagonal, in that 

I 

D,, 0 0 ... 

D = D,, D,, o . . . . . . . . . . . . . . . . . . . . 
Dkl Dk2 .” Dkk 

and the {Dij: i = 1,. . . , k) are diagonal matrices of ones and zeros. 

Note that under the null, 

Q’&+- c = e’(&‘- a) = Qc-‘((Y+-(Y), 

where Q = C’Q is of rank q and C is taken from (11). By the lemma, there 
exists an n x q full rank matrix B and a lower triangular matrix D such that 
BQ = D and D has only ones and zeros on the diagonal. Set D as the 
diagonal matrix with the diagonal elements of D, and S as the n X q matrix 
consisting of the nonzero columns of D (which implies that ES = S). Finally, 
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set D,= S’fiTB. We then have 

= mmvTc-‘( &+- a) + oo( 1) 

= ~S’r+-‘(&f-a) +0,(l) 

(17) 

The above construction has shown that with appropriate reweighting, 

Q’(&+- CX) has a full ranked, mixture normal asymptotic distribution. It 
immediately follows that Wald tests of linear hypotheses have limiting 
chi-square distributions. Its implications are given in the following useful 
theorem: 

Theorem 5. zf (~9, W, (RI, W’>, and Wf) hold, then 

(b) 

Theorem 5 shows that the differing rates of convergence of the elements of 
&+ do not invalidate the use of the Wald test for standard linear hypotheses. 
Extension of this result to nonlinear hypotheses, however, does not directly 
follow from the above analysis. This useful extension is left to future 
research. 

5.2. Tests on the regression trend 

The efficiency gains can be realized only if p = 0 in eq. (7). This suggests 
that we may wish to test the hypothesis 

H,: P=O, (18) 

using p^’ from (13). Phillips and Hansen (1990) have derived the limiting 
distribution of this test statistic under the assumption II = 0. We consider 
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here the generic case II f 0. (18) may be written as 

H,: R’y = 0, 

The Wald statistic is 

(19) 

Theorem 6. If (191, (U>, (IQ W), and (Al) hold, then 

G&j+) -+ci xi. 

Theorem 6 allows for general drift in the regressors, yet yields an asymp- 
totic chi-square test. This enables applied researchers to start with the 
unrestricted specification, test for p = 0, and then estimate the restricted 
equation if it is compatible with the data. The standard caveat about 
sequential hypothesis tests should be noted. In a context of low power, mere 
lack of rejection of an hypothesis does not mean that it is in fact true. 
Implementation of such tests should be handled with appropriate caution. 

6. Testing for cointegration 

An important application of our theory is to tests of the hypothesis of no 
cointegration. Engle and Granger (1987) suggested that the residuals from 
OLS estimation of the cointegrating regression be examined for the presence 
of a unit root in the autoregressive representation. They suggested several 
such tests, the most popular probably being the augmented Dickey-Fuller 
(ADF) test, originally suggested by Said and Dickey (1984) in the context of 
univariate unit root testing. A first attempt at a distributional theory was 
provided by Engle and Yoo (1987) and recently extended and generalized by 
Phillips and Ouliaris (1990). 

Phillips and Ouliaris examined both the ADF test and the Phillips’ Z(a) 
and Z(t) tests suggested by Phillips (1987) in the context of univariate unit 
root testing. They derived the asymptotic distributions of the test statistics 
under the assumption that no deterministic trends are present in the regres- 
sors or the regression equation. The tabulated distributions they present 
imply that they understood their results to generalize to the presence of 
trends. It is not clear exactly how they meant this generalization to be 
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allowed [i.e., allowing for trends in the regressors only if trends are included 
in the levels regression as in Park and Phillips (1988) and Phillips and 
Hansen (1990)]. It turns out that the actual limiting distributions are quite 
sensitive to both the actual trends in the regressors as well as the detrending 
procedures, as we now show. Explicitly examined are the Z((Y) and Z(t) 
tests. The results will apply as well to the ADF test. 

Since the null hypothesis is no cointegration, (2) is invalid. We instead 
make the alternative assumption that y,, is generated by 

Y1t =a’Yzt + vt, (21) 

v,=pu,_1 +ult, fJ=l, (22) 

and y2, is generated as before. 
We consider two procedures. The first is the unrestricted OLS regression 

,. 
y1, = ?‘x, + v, 3 

where X, = (y;,, k,). The second is the restricted OLS regression 

Ylt = &'y2, + fit. 

The Phillips’ tests for the unrestricted regression are constructed from the 
OLS residuals L:l as follows. Calculate the first-order serial correlation 
coefficient and residuals 

and the bias correction 

i = t w( j/M)P CE”t_jLt, 
j=l t 

where the kernel weights WC.> satisfy (WI. As discussed earlier, finite sample 
performance of the test may depend critically upon selection of kernel and 
the bandwidth parameter M. See section 4 for discussion and references. 
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The ‘bias-corrected’ serial correlation coefficient estimate is given by 

yielding the test statistics: 

z(pA*) = T(b” - l), 

Z(P) = 
#s* - 1 1 T 

-l/2 ’ 
hIi 

( 1 
co: Al/2 

,,=&_2+2/i, Cy=,cq. 

011 
1 

t 

The statistics for the restricted regression are constructed from 5, in the 
same way. 

Theorem 7. Zf (211, (221, (171, (K), (WI, and (MI hoEd, then 

(a) Z(b*) -/‘Q(w,,J,,dQ(W,,J,), 

0) Z(t”) =+ jo'Q(w,J,, dS(W,,J,)> 

where 

Q( W, X) = W, 
ii 

l;,lw:)“‘, 

S(X) = Wx/( K>K,) l’2, 

W,(r) = W(r) -px(px~)j’x(r), 

K,= (l,-~lW~Xr(~l~f)-l(~)), d = dim(X), 

and WI = BM(1) is independent of .I, and JR, which are defined in (10) and 
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(l2), respectively. If, in addition, (R) holds, then 

(c> Z(F*> -~'Q(w,,J,,dQ(w,,J,), 

(4 Z(i*> -/'Q(w,,J,)dS(W,,J,). 
0 

Theorem 7 is important because it shows that the deterministic trends in 
the data affect the limiting distribution of the test statistics whether or not we 
detrend the data. The distributions of the test statistics from the unrestricted 
regression depend upon JU = CW,’ k’), while the distributions of the test 
statistics from the restricted regression depend upon JR = <W,‘_, k’),. The 
detrending procedure implicit in the unrestricted regression affects the 
limiting distribution by increasing the number of stochastic trends (from 
n - m to n) entering the limiting representation. This has a tendency to shift 
the limiting distribution away from the origin [see the tables in Phillips and 
Ouliaris (199011, increasing the absolute value of the critical value needed for 
rejection, and thus requiring a smaller estimated serial correlation coefficient 
to reject the hypothesis of a unit root. It seems reasonable that excess 
detrending will reduce the test’s power. Careful consideration of the nature 
of the trends in the regressors must be given if tests of the cointegration 
hypothesis are to have the correct size and optimal power. 

Theorem 7 states that the asymptotic distribution of the test statistics 
depends upon the number and nature of the nonstationary variables in the 
regression. Consider the common case k, = t, which implies k(r) = r. The 
asymptotic distributions of the test statistics from the unrestricted regression 
depend upon J, = <W,’ r)r, and thus upon the detrending procedure and the 
number of regressors (n>. In this case, tables Ic and IIc in Phillips and 
Ouliaris (1990) are appropriate. On the other hand, the asymptotic distribu- 
tions of the statistics from the restricted regression depend upon the rank of 
fl. If L’= 0, then Phillips and Ouliaris have shown that the distribution 
depends upon W,, and their tables Ib and IIb provide the appropriate critical 
values. If 17 z 0, Theorem 7 above shows that the distribution of the test 
statistics depends upon JR = CW,‘_, r’)l, and thus the appropriate critical 
values are found from tables Ic and IIc in Phillips and Ouliaris (19901, but 
using n - 1 instead of II. If II = 1, then the appropriate critical values are 
found in the third section of tables 8.5.1 and 8.5.2 of Fuller (1976). I have 
reproduced in tables 1 and 2 the asymptotic critical values for the Z(F*> and 
Z(t’*) statistics from the restricted regression. The absolute value of the 
critical values are reported for one-tailed tests of size lo%, 5%, and l%, for 
the cases of n = 1, 2, and 3. The data is assumed to be demeaned. To obtain 
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Table 1 

Z(p*) critical values, k, = t, restricted regressioua 

10% 5% 1% 

n=l: nzo 18.3 21.8 29.5 
lr=o 17.0 20.5 28.3 

n=2: II#O 23.2 21.1 35.4 
n=o 22.2 26.1 34.2 

n=3: I7#0 27.8 32.2 40.3 
II=0 27.6 32.1 41.1 

aSource: Fuller (1976) and Phillips and Ouliaris (1990). 

Table 2 

Z(i*) and ADF critical values, k, = t, restricted regression.= 

10% 5% 1% 

n=l: n#O 3.12 
n=o 3.07 

n=2: IZ#O 3.52 
n=o 3.45 

n=3: II#O 3.84 
n=o 3.83 

aSource: Fuller (1976) and Phillips and Ouliaris (1990). 

3.41 3.96 
3.37 3.96 

3.80 4.36 
3.77 4.31 

4.16 4.65 
4.11 4.13 

the critical values for the unrestricted regression, use Phillips and Ouliaris 
(19901, tables Ic and IIc, or tables 1 and 2 here with n # 0 and n + 1. 

The most striking fact about tables 1 and 2 is that the asymptotic critical 
values depend very little upon the nature of the regressors. Essentially, the 
critical values only depend upon the number of nonstationary regressors 
(counting the deterministic trends if included). This suggests a useful practi- 
cal device.’ Since it is advantageous to have a test procedure which does not 
depend upon nuisance parameters (such as knowledge about the true nature 
of trends in the data), it is reasonable to use the larger of the two critical 
values tabulated (if critical values were tabulated also incorporating a 
quadratic in time, then this could be considered in some cases as well). Thus, 
if two regressors are included as independent variables, then the practical 
critical value for the Z(b*) statistic would be 27.1, and for the Z(t’*) statistic 
it would be 3.80. 

As mentioned above, it seems reasonable that cointegration tests con- 
structed using a smaller number of regressors would be more powerful 

‘I owe this suggestion to an anonymous referee. 
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against the alternative of cointegration. Specifically, exclusion of determinis- 
tic trends from equilibrium relationships will increase the likelihood of 
rejection of the null when the data is cointegrated. 

This can be illustrated with a simple Monte Carlo exercise. The model is 

Y1r = aY22 + u,, u, =PUt-I +&It, 

and gl =(a rf, a2,Y are independent N(0, I,) draws, The test statistics are 
invariant to (Y, leaving one nuisance parameter, r, which is set at two values, 
zero and one. The null hypothesis of no cointegration holds when p = 1, and 
the alternative holds for p < 1. 

We estimate the unrestricted model, 

y,, = fi + &y2t + 7j2t + ii,, 

and the restricted model, 

- _ - 
Y I[ = P + a2r + u,. 

The Phillips Z(@*> test using a Bartlett kernel with four lags is mounted on 
the estimated residuals from the two regressions. (A simple Dickey-Fuller 
test would be appropriate in this model, but it seems more reasonable to 
make the correction for possible serial correlation as would be done in 
practice.) Sample size is set at 50, to emphasize small sample considerations, 
and 5,000 replications are used. To assess size distortion, tables 3 and 4 
report the null rejection percentages using the asymptotic critical values (for 
size lo%, 5%, and 1%) under the parameter settings 7~ = 0 and 7~ = 1. The 
first line is the test based on the unrestricted regression, which uses the 
critical values reported in table 1, y1 = 2, II7 f 0. The second and third lines 
are the tests based upon the restricted regression. There are two choices for 
critical values from table 1, n = 1: II # 0 and IT = 0. The first is appropriate 
when r = 1, and the second is appropriate when ir = 0. Tests based on both 
critical values are reported in the second and third lines of the tables. 

The size distortion shown in tables 3 and 4 is fairly mild (especially noting 
that the sample size is only 50). The distortion is generally conservative 
(underrejection). 

We have conjectured that cointegration tests based on the restricted 
regression are more powerful than cointegration tests based on the unre- 
stricted regression. Figs. 1 and 2 show the size-adjusted Monte Carlo power 
functions of the two procedures (using the exact finite-sample critical values 
for tests of size 5%). Rejection frequencies were evaluated at ten values of 
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Table 3 

Case A: rr = 0, percentage rejections under the null (p = 11, standard errors in parentheses. 

10% 5% 1% 

Unrestricteda 6.2% 2.3% 0.3% 
(0.3) (0.2) (0.1) 

Restrictedb 7.0% 2.3% 0.4% 
(0.4) (0.2) (0.1) 

RestrictedC 9.2% 3.6% 0.5% 
(0.4) (0.2) (0.1) 

“Z(p^*) test using critical values from table 1, n = 2, IZ # 0. 
bZ(@*) test using critical values from table 1, n = 1, II # 0. 
‘Z(p*) test using critical values from table 1, n = 1, ll = 0. 

Table 4 

Case B: rr = 1, percentage rejections under the null (p = l), standard errors in parentheses. 

10% 5% 1% 

Unrestricted” 

Restrictedb 

RestrictedC 

6.2% 2.2% 0.1% 
(0.3) (0.2) (0.1) 

9.0% 3.6% 0.3% 
(0.4) (0.2) (0.1) 

13.1% 5.3% 0.5% 
(0.5) (0.3) (0.1) 

test using critical values from table 1, n = 2, I7 # 0. 
test using critical values from table 1, n = 1, n # 0. 
test using critical values from table 1, n = 1, II = 0. 

5% Size tests - Case A 

rho 

Fig. 1 
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5% Size tests - Case B 

0 
o 0.5 0.6 0.7 0.8 0.9 10 

rho 

Fig. 2 

the alternative hypothesis, for p = 0.5 to p = 0.95 in steps of 0.05. The figures 
show as expected that the power function of the tests based on the restricted 
residuals are uniformly more powerful than the tests based on the unre- 
stricted residuals. 

7. Extensions 

Without going through the details, some extensions of the results obtained 
in the previous sections are straightforward. 

(a) The asymptotic distribution of full information maximum likelihood 
estimation in the presence of trends [see Phillips (1991) for the analysis 
without trends] will have the same form as in Theorems 3, 5, and 6. 

(b) The analysis could be extended to include models with some trends 
maintained in the linear specification and some excluded, i.e., 

Yl, = '~'~2t + +,k,, + ult, 

~2, = S,, + Gk,,. 

The asymptotic analysis of sections 3, 4, and 5 generalizes in the obvious way. 
That is, coefficient estimates are consistent and fully modified test statistics 
have asymptotic chi-square distributions. The analysis of section 6 also 
generalizes. For example, if n = 2, k,, = (t t2)r, and k,, = t, the asymptotic 
distribution of the tests for cointegration based on the restricted regression 
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(Yl* on yzt and k,,) is given in Theorem 7 with J,(rY=(W,(r),r,r*), 
w, =&VI(l). 

(c) As mentioned in section 6, Theorem 7 (b) and (d) could be extended 
along the lines of Phillips and Ouliaris (1990, theorem 4.2) to encompass the 
Augmented Dickey-Fuller test statistic. 

Appendix 

Proof of Theorem 1 

To show (a), 

by weak convergence of the moment matrices and the Continuous Mapping 
Theorem (CMT). Similarly, (b) follows by the CMT: 

T-1Jj-1&y2,y;tc@1 

1 

Proof of Theorem 2 

The proofs that the elements of fi and d s7are consistent are similar. We 
prove that Gzl +p wz,. First note that 

,. 
u21 = U2t -(I?-II)Ak,, 

where 

J”r= ( $Ak,Ak;)-l$AitAy,t. 
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Under (K), 

TS, l Ak,Tr, + dk( r) uniformly in r, 

where 

dk(r) =dk(r)/dr=(rPl-‘,...,rPm-‘)‘. 

Thus, 

T- ‘/‘ST( fi - II) 

= ;(T6;‘)$ Ak, Ak;(rcS;‘)i -‘$(Tfi;l) 5 AkP,, 
1 1 

‘(dk)(dk) ‘(dk) dB,. 

(A.1) 

(A.21 

Now note that 

= CW(~/M)T-’ CU2t+jUlt 
i t 

- CW(.~/M)T-’ Cu2t+jXi(?-Y) 
I t 

- CW(~/M)T-’ Cult Aki+j(f-n) 
I I 

+ CW(~/M)(~-_)‘T-‘C Ak,+jx:(~-r) 
i t 

=B,,--B,,-B,,+B,,, say. (A.3) 

Condition (U) is stronger than the conditions of lemma 1 of Andrews (19911, 
which is sufficient for his proposition 1, which implies 

JT 
,(o,,-%l) -+p 0. (A.41 
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(A3 

where 

1 

= O,(l). 

Also, 

T-‘&,, Ak:+,(fi-II)@ 
t 

= O,(l), (A.6) 

where 

G,,= T-“2(ti-17)‘S,T-’ 

x F (T6,‘) dk, A~;(TGs’)T-‘/~~,(A-~) 

= q?(1), 
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using (A.11 and (A.2). Finally, 

x ~(~--)T~‘CAk,+jx:(~-r)~ 
II t /I 

(A.71 

(A.4)-(A.71 together imply that 

Combined with condition (M), we find Ljz, -+p u2r. q 

Proof of Theorem 3 

Part (a) follows from the analysis of Phillips and Hansen (1990) and part 
(a) of Theorem 1. Part (b) will follow from Theorem 1 if we show 

From Phillips and Hansen (1990) and Theorem 1 we know that 

T-1’2ti-1Cr5y2,u;=. /1JRdB,.2 + 
1 0 

. 

By the consistency of ,i + we have 

(A.9) 

(A.lO) 

(A.9) and (A.lO) yield (A.8). q 
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Proof of the Lemma 

Without loss of generality we will prove the Lemma for the case that the 
submatrices Dji are scalar. Partition Q’ = (Q,, Q2,. . . , QJ. We construct 
B’ = (B,, B,, . . . , B,) using the following modification of the Gram-Schmidt 
procedure. Set QT = [Q,, . . . , Qi_ll and BF = LB,, . . . , Bi-11. 
(i) If Q,, = Q;Q, = 0, set B, = 0. 

If Q,, > 0, set 4 = Q,/Q,,. 
(ii) If QZ2 = Q;Q2 - Q$QlB;Q2 = 0, set B, = 0. 

If Qz2>0, set B2=(Q2-Q1BiQ2)/Q22. 
(iii) If Qii = QiQi - QiQ’BF’Q, = 0, set Bi = 0. 

If Qii > 0, set Bi = [ Qi - QpBT’Qi]/Qii. 

This construction yields (BJ which satisfy Q:Bj = 0, i <j, and Q:Bi equals 
either zero or one for each i. Thus 

QB’ = (Q;.Bj) = (Dij), as required. 0 

Proof of Theorem 5 

Part (a) is proved in the text. That is, 

= ( S~(~JR~;)plS)“z~~, (A.ll) 

where 77 = N(0, w,.,Z,), and is independent of I/= S’<j,‘J,J~>-‘S. This 
represents the limit distribution as a variance mixture of normals. 

Similar analysis to that in the text yields 

-1 

TDTQ' T-‘Cr~y2,y;tC 
1 

(A.12) 
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Combining (A.ll) and (A.121 with the fact that W,., +p w1.2 and the CMT 
gives 

Proof of Theorem 6 

Notice that 

say, as T --) 00, where rank(R) = m. Therefore, - 
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Standard manipulations and the CMT yield the result. 0 

Proof of Theorem 7 

The proofs of (a) and (c) are similar. We show cc>. Notice that 

tc, = v, - (6 - a)’ y,, = 6’f& ) (A.13) 

where 

6= q,<1, -(&a)‘)‘, 

Now 

1 

Defining 

(A.14) 

Set= Cej, ej = ("lj, u;jcI)I, 
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we have 

Bt?( r> 
= k(r) i 1 =67(r), say. (A.15) 

Now 

B,(r) = 53W,( r) + o,,C,K,( r), W’WII - @l,c,c;~21. 

(A.16) 

Thus 

= W1/2WJR( r). (A.17) 

We see from (A.131, (A.141, (A.151, and (A.17) that 

(A.18) 
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Now 

i = T-’ 5 w( j/M) xEt_jgI 
j=l t 

= T-’ c w( j/M) c Afir_j Afi, + op( 1) 
i t 

= h'cw( j/M)T-‘C A5,t_jAt>t’ + O,(l) 
j I 

Ai- CT - = b’ B, D, b+o,(% 
i I 

where 

A,= cw( j/M)T-’ Ce,_jei +p A, = E E(e,ej), 
i f j=O 

BT= Cw(j/M)Tel c (6;’ Ak,_, + C;u,,_j)e:, 
i f 

CT= cw( j/M)T-’ ~e,_j(Ak~i3;1 + L&C,), 
j t 

D,= cw( j/M)T-‘c (6;’ Ak,_, + C;u,,_j)(Aki6;1 + u;~C,). 
i t 

NJ>, (WI, and (M) are sufficient for 

A,+, A, = c E( e,ei) 
j=O 

by Andrews (1991, proposition 1). By arguments similar to those used in 
(AS), (A.6), and (A.7), we can show that 

B,+ PO’ c, -+P 0, D, jp 0. 

Thus 

/i =p 
A, 0 - ( 1 () () b+o,W* (A.19) 
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Now by Hansen (1990, theorem 4.1) 

/ ‘B,dB;+A,, 
0 

and by (A.11 and the CMT 

T-1/2~S,,Ak;+,6,1~/1B,dk’, 
1 0 

Tp112 i&lk,e,_, 3 /‘k dB,, 
1 0 

$c?ilk,Ak;S,‘*]‘kdk’. 
I 0 

Combined with (A.131, (A.151, and (A.19), 

T (Sere;+, -A,) S,, Ak;+,6;‘T1/2 
= &‘T-l c 

1 i T1/‘6;‘kte:+, TS,‘k, Ak;+&’ 

(A.20) 
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by (A.17). Putting (A.181 and (A.201 together, 

P~c’,Afi,+,-A 0 
T(b"-1)= 1 / ‘w,, 

0 
dW, j’WR ~WJ, 

0 = 
*-2&f 0 ‘WJ:, 

> 
/ / ’ W,f, 

1 0 0 

as required. 
The proofs of (b) and (d) are similar. We show (d). By the previous 

analysis, 

P~rit*L’,+, -/i 
1 / 

l/2 
,z’/2 0 

‘KR dKR 
l/2 = 

iG112 
I 0 

‘Q( W,, JR) dWJR. 

Defining 0, = c”_, E(e,e(i), 

=T-l~w(j/M)~A~,_jA~,+o,(l) 
i t 

= 6’T-‘cw( j/M) C ASTt-jA5~r6 + O,(l) 
i t 

= SjKkK,. 

Indeed, 
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SO 

fi5 = 

i 

Thus, 

(Lml+1 0) @‘27j 

i 

&/2 

= -1 

-(*n-n, 0) I’J,B, - C;o,, 
0 

= (A.21) 

[using (A.1611. Since 

= (I,_, 0) lf J’ ( o R R)-'~'JRJ~("(~~)=~~--, 

(A.20 equals 

(-(I_,,, 0~((/:i,i:)-1i’JRW~)]il.2=K-“l’2~ 
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Therefore 

iZ1” 
/ 0 

‘Q( WI, JR) dWJR 

(oK;~KJ” 
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