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SUMMARY

It is well known that there is a large degree of uncertainty around Rogoff’s consensus half-life of the real exchange
rate. To obtain a more efficient estimator, we develop a system method that combines the Taylor rule and a
standard exchange rate model to estimate half-lives. Further, we propose a median unbiased estimator for the
system method based on the generalized method of moments with non-parametric grid bootstrap confidence
intervals. Applying the method to real exchange rates of 18 developed countries against the US dollar, we find
that most half-life estimates from the single equation method fall in the range of 3–5 years, with wide confidence
intervals that extend to positive infinity. In contrast, the system method yields median-unbiased estimates that are
typically shorter than 1 year, with much sharper 95% confidence intervals. Our Monte Carlo simulation results
are consistent with an interpretation of these results that the true half-lives are short but long half-life estimates
from single-equation methods are caused by the high degree of uncertainty of these methods. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reviewing the literature on purchasing power parity (PPP), which uses single-equation methods to
estimate the half-lives of real exchange rate deviations from PPP, Rogoff (1996) found a remarkable
consensus on 3- to 5-year half-life estimates. This formed an important piece of Rogoff’s ‘PPP puzzle’
as the question of how one might reconcile highly volatile short-run movements of real exchange rates
with an extremely slow convergence rate to PPP.

Using Rogoff’s consensus half-life as a starting point, various possible solutions to the PPP puzzle
have been proposed in the literature.1 One important discussion in this context relates to the aggre-
gation bias that may generate upward bias in half-life estimates.2 Another delicate issue is how one
can aggregate micro evidence of price stickiness for dynamic aggregate models, such as in dynamic
stochastic general equilibrium (DSGE) models, which Carvalho and Nechio (2011) have begun to
investigate. Even though aggregation bias is an important potential problem, much more research
seems necessary before a consensus is reached on whether or not the aggregation bias solves the PPP
puzzle, and how we should aggregate for DSGE models.

* Correspondence to: Hyeongwoo Kim, Department of Economics, Auburn University, 0339 Haley Center., Auburn, AL 36849,
USA. E-mail: gmmkim@gmail.com
1 See Murray and Papell (2002) for a discussion of these other solutions which take Rogoff’s consensus half-life as a starting
point.
2 Imbs et al. (2005) point out that sectoral heterogeneity in convergence rates can cause upward bias in half-life estimates, and
claim that this aggregation bias solves the PPP puzzle. While under certain conditions this is possible, the bias can be negligible
under other conditions. For example, Chen and Engel (2005), Crucini and Shintani (2008) and Parsley and Wei (2007) have
found negligible aggregation biases. Broda and Weinstein (2008) show that the aggregation bias of the form that Imbs et al.
(2005) studied is small for their barcode data, even though the convergence coefficient rises as they move to aggregate indexes.
These papers focus on purely statistical findings.
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In this paper, we ask a different question: should we take Rogoff’s remarkable consensus of 3- to
5-year half-life estimates as the starting point for aggregate CPI data? The consensus may at first seem
to support the reliability of these estimates, but Kilian and Zha (2002), Murray and Papell (2002) and
Rossi (2005) have all shown that there is a high degree of uncertainty around these point estimates.
Murray and Papell (2002) conclude that single-equation methods provide virtually no information
regarding the size of the half-lives, indicating that it is not clear if the true half-lives are in fact as slow
as Rogoff’s remarkable consensus implies. If we apply a more efficient estimator to the real exchange
rate data, it may be possible to find faster convergence rates.

For the purpose of obtaining a more efficient estimator, we develop a system method that combines
the Taylor rule and a standard exchange rate model to estimate the half-life of the real exchange rate.
Several recent papers have provided empirical evidence in favor of exchange rate models using Taylor
rules (see Mark, 2009; Engel and West, 2005, 2006; Clarida and Waldman, 2007; Molodtsova and
Papell, 2009; Molodtsova et al., 2008). Therefore, a system method using an exchange rate model with
the Taylor rule is a promising way to improve on single-equation methods to estimate the half-lives.

Because standard asymptotic theory usually does not provide adequate approximations for the esti-
mation of half-lives of real exchange rates, we use a non-parametric bootstrap method to construct
confidence intervals. For this purpose, we propose the grid bootstrap method for our generalized
method of moments (GMM) estimator along with its asymptotic distribution. Median unbiased
estimates and bias-corrected confidence bands are reported.3

We apply the system method to estimate the half-lives of real exchange rates of 18 developed coun-
tries against the US dollar. Most of the estimates from the single-equation method fall in the range
of 3–5 years, with wide confidence intervals that extend to positive infinity. In contrast, the system
method yields median unbiased estimates that are typically substantially shorter than 3 years, with
much sharper confidence intervals, predominantly ranging from three quarters to 5 years. We imple-
ment an array of Monte Carlo simulations in order to understand why one might obtain much longer
half-lives from single-equation estimators than that of our system method. Our findings imply that the
high estimates of the persistence parameter by single-equation estimators in the literature may well be
caused by large standard errors of the single-equation estimators.

In recent papers that use two-country exchange rate models with Taylor rules cited above, the
authors assume that Taylor rules are adopted by the central banks of both countries. As some countries
may not use Taylor rules, we remain agnostic about the monetary policy rule in the foreign country
and assume that the Taylor rule is employed only by the home country. None of these papers with
Taylor rules estimates the half-lives of real exchange rates.

Kim and Ogaki (2004), Kim (2005) and Kim et al. (2007) use system methods to estimate the
half-lives of real exchange rates. However, they use conventional monetary models based on money
demand functions without Taylor rules. Another important point of difference of these works from the
present paper is that their inferences are based on asymptotic theory, while ours are based on the grid
bootstrap.

The rest of the paper is organized as follows. Section 2 describes our baseline model. We construct
a system of stochastic difference equations for the exchange rate and inflation, explicitly incorporating

3 Kehoe and Midrigan (2007) and Crucini et al. (2013) show that the persistence of the real exchange rate can be understood
in the context of the New Keynesian Phillips Curve (NKPC) framework with Calvo (1983) pricing. That is, a higher degree of
price inertia may cause more persistent real exchange rate deviations. Interestingly, the contrast between the single-equation
methods and our system method in the context of the PPP literature is similar to the contrast between single-equation methods
for the NKPC and system methods for DSGE models with the NKPC observed in the literature for closed-economy models.
Single-equation methods such as Galí and Gertler’s (1999) GMM yield small standard errors for the average price duration
based on standard asymptotic theory. However, Kleibergen and Mavroeidis (2009), who take into account the weak identification
problem of GMM, report that the upper bound of their 95% confidence interval for the price duration is infinity. The estimators
of average price duration in system methods for DSGE models in Christiano et al. (2005) and Smets and Wouters (2007), among
others, may be more efficient.
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a forward-looking Taylor rule into the system. Section 3 explains our estimation methods. In Section 4,
we report our empirical results. Section 5 provides explanations on our Monte Carlo simulation
schemes and findings. Section 6 presents our conclusions.

2. THE MODEL

2.1. Gradual Adjustment Equation

We start with a univariate stochastic process of real exchange rates. Let pt be the log-domestic price
level, p�t the log-foreign price level and et the log-nominal exchange rate as the price of one unit of
the foreign currency in terms of the home currency. We denote by st the log of the real exchange rate,
p�t C et � pt .

We assume that PPP holds in the long run. In other words, we assume that a cointegrating vector
Œ1 �1 �1�0 exists for a vector

�
pt p

�
t et

�0
, where pt ; p�t and et are difference stationary processes.

Under this assumption, the real exchange rate can be represented as the following stationary univariate
autoregressive process of degree one:

stC1 D d C ˛st C "tC1 (1)

where ˛ is a positive persistence parameter that is less than one.
Admittedly, estimating the half-lives of real exchange rates with an AR(1) specification may not

be ideal, because the AR(1) model is misspecified and will lead to an inconsistent estimator if the
true data-generating process is a higher-order autoregressive process, AR(p). It is interesting to see,
however, that Rossi (2005) reported similar half-life estimates from both models. Later, in Section 4,
we confirm that this is roughly the case when we apply the single-equation method to our exchange
rate data. Thus, assuming AR(1) seems innocuous for the purpose of estimating the half-life of most
real exchange rates in our data. However, it is still possible that more general AR(p) models yield quite
different half-lives for some exchange rates, particularly when the system method is used because we
often observe hump-shaped responses (Steinsson, 2008). Even though this is an interesting question,
we do not pursue this issue in the current paper because it is not easy to obtain informative saddle-path
solutions for a higher-order system of difference equations.

By rearranging and taking conditional expectations, equation (1) can be written as the following
error correction model of real exchange rates with the cointegrating relation described earlier:

Et�ptC1 D b
�
� � .pt � p

�
t � et /

�
C Et�p

�
tC1 C Et�etC1 (2)

where � D E
�
pt � p

�
t � et

�
; b D 1 � ˛; d D �.1 � ˛/�; "tC1 D "1;tC1 C "2;tC1 � "3;tC1 D

.etC1 � EtetC1/C
�
p�tC1 � Etp�tC1

�
� .ptC1 � EtptC1/ ; and Et"tC1 D 0. E.�/ denotes the uncon-

ditional expectation operator, while Et .�/ is the conditional expectation operator on It , the economic
agent’s information set at time t . Note that this model is consistent with a single-good version of
Mussa’s (1982) model.4 Note that b is the convergence rate .D 1 � ˛/, which is a positive constant
less than unity by construction.

2.2. The Taylor Rule Model

We assume that the uncovered interest parity (UIP) holds. That is:

Et�etC1 D it � i
�
t (3)

4 We added a domestic price shock, ptC1 � EtptC1, which has a conditional expectation of zero given the information at
time t .
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where it and i�t are domestic and foreign interest rates, respectively.5

The central bank in the home country is assumed to continuously set its optimal target interest rate�
iTt
�

by the following forward-looking Taylor rule:6

iTt D Nr C ��Et�ptC1 C �xxt

where Nr is a constant that includes a certain long-run equilibrium real interest rate along with a target
inflation rate,7 and �� and �x are the long-run Taylor rule coefficients on expected future inflation8

.Et�ptC1/ and current output deviations9 .xt /, respectively. We also assume that the central bank
attempts to smooth the interest rate by the following rule:

it D .1 � �/i
T
t C �it�1

that is, the current actual interest rate is a weighted average of the target interest rate and the previous
period’s interest rate, where � is the smoothing parameter. Then, we can derive the forward-looking
version Taylor rule equation with interest rate smoothing policy as follows:

it D .1 � �/ Nr C .1 � �/��Et�ptC1 C .1 � �/�xxt C �it�1 (4)

Combining equations (3) and (4), we obtain the following:

Et�etC1 D .1 � �/ Nr C .1 � �/��Et�ptC1 C .1 � �/�xxt C �it�1 � i
�
t (5)

D �C � s�Et�ptC1 C �
s
xxt C �it�1 � i

�
t

where � D .1 � �/ Nr is a constant, � s� D .1 � �/�� and � sx D .1 � �/�x are short-run Taylor rule
coefficients.

Now, let us rewrite equation (2) as the following equation in level variables:

EtptC1 D b�C EtetC1 C .1 � b/pt � .1 � b/et C Etp
�
tC1 � .1 � b/p

�
t (2’)

Taking differences and rearranging, equation (2’) can be rewritten as follows:

Et�ptC1 D Et�etC1 C ˛�pt � ˛�et C
�
Et�p

�
tC1 � ˛�p

�
t C �t

�
(6)

where ˛ D 1 � b and �t D �1;t C �2;t � �3;t D .et � Et�1et /C
�
p�t � Et�1p�t

�
� .pt � Et�1pt /.

From equations (4), (5) and (6), we construct the following system of stochastic difference
equations:24 1 �1 0

�� s� 1 0

�� s� 0 1

3524Et�ptC1
Et�etC1

it

35 D
24 ˛ �˛ 00 0 �

0 0 �

3524�pt�et
it�1

35C
24Et�p�tC1 � ˛�p

�
t C �t

�C � sxxt � i
�
t

�C � sxxt

35 (7)

5 The UIP often fails to hold when one tests it by estimating a single regression equation,�etC1 D ˇ
�
it � i

�
t

�
C "tC1. This

indicates that it is not ideal to assume the UIP in our model, and future research should remove this assumption. We believe,
however, that our initial attempt should start with the UIP, because it is difficult to write an exchange rate model with the Taylor
rule without the UIP for our purpose of getting more information from the model. Further, Taylor rule-based exchange rate
models in the literature often assumes the UIP.
6 We remain agnostic about the policy rule of the foreign central bank, because the Taylor rule may not be employed in some
countries.
7 See Clarida et al. (1998, 2000) for details.
8 It may be more reasonable to use real-time data instead of final release data. However, doing so will introduce another
complication as we need to specify the relation between the real-time price index and the consumer price index, which is
frequently used in the PPP literature. Hence we leave the use of real-time data for future research.
9 If we assume that the central bank responds to expected future output deviations rather than current deviations, we can simply
modify the model by replacing xt with EtxtC1. However, this does not make any significant difference to our results.
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For notational simplicity, let us rewrite equation (7) in matrix form as follows:

AEtytC1 D Byt C xt (7’)

and thus

EtytC1 D A�1Byt C A�1xt (8)

D Dyt C ct

where D D A�1B and ct D A�1xt .10 By eigenvalue decomposition, equation (8) can be rewritten as
follows:

EtytC1 D VƒV�1yt C ct (9)

where D D VƒV�1 and

V D

264 1 1 1
˛�s�
˛��

1 1
˛�s�
˛��

1 0

375 ; ƒ D
24 ˛ 0 0

0 �
1��s�

0

0 0 0

35
Pre-multiplying equation (9) by V�1 and redefining variables:

EtztC1 D ƒztCht (10)

where zt D V�1yt and ht D V�1ct .
Note that, among non-zero eigenvalues in ƒ; ˛ is between 0 and 1 by definition, while
�

1��s�

�
D �

1�.1��/��

�
is greater than unity as long as 1 < �� < 1

1��
. Therefore, if the long-run infla-

tion coefficient �� is strictly greater than one, the system of stochastic difference equations (7) has a
saddle path equilibrium, where rationally expected future fundamental variables enter in the exchange
rate and inflation dynamics.11 On the contrary, if �� is strictly less than unity, which might be true in
the pre-Volker era in the US, the system would have a purely backward looking solution, where the
solution would be determined by past fundamental variables and any martingale difference sequences.

Assuming �� is strictly greater than one, we can show that the solution to equation (7) satisfies the
following relation (see Appendix A for the derivation):

�etC1 D O�C
˛� s�
˛ � �

�ptC1 �
˛� s�
˛ � �

�p�tC1 C
˛� s� � .˛ � �/

˛ � �
i�t

C
� s�
�
˛� s� � .˛ � �/

�
.˛ � �/�

1X
jD0

�
1 � � s�
�

	j
EtftCjC1 C !tC1

(11)

where

O� D
˛� s� � .˛ � �/

.˛ � �/
�
� s� � .1 � �/

� �
10 It is straightforward to show that A is non-singular and thus has a well-defined inverse.
11 The condition �� < 1

1��
is easily met for all sample periods we consider in this paper.
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ft D �
�
i�t � Et�p

�
tC1

�
C
� sx
� s�
xt

!tC1 D
� s�
�
˛� s� � .˛ � �/

�
.˛ � �/�

1X
jD0

�
1 � � s�
�

	j �
EtC1ftCjC1 � EtftCjC1

�
C

� s�
˛ � �

�tC1 �
˛� s� � .˛ � �/

˛ � �
	tC1

and

Et!tC1 D 0

Or, equation (11) can be rewritten with full parameter specification as follows:

�etC1 D O�C
˛��.1 � �/

˛ � �
�ptC1 �

˛��.1 � �/

˛ � �
�p�tC1 C

˛��.1 � �/ � .˛ � �/

˛ � �
i�t

C
��.1 � �/.˛��.1 � �/ � .˛ � �//

.˛ � �/�

1X
jD0

�
1 � ��.1 � �/

�

	j
EtftCjC1 C !tC1

(11’)

Here, ft is a proxy variable that summarizes the fundamental variables such as foreign ex ante real
interest rates and domestic output deviations.

Note that if �� is strictly less than unity, the restriction in equation (11) may not be valid, since the
system would have a backward-looking equilibrium rather than a saddle path equilibrium.12 In other
words, exchange rate dynamics critically depends on the size of �� . However, as mentioned in the
Introduction, we have some supporting empirical evidence of this requirement for the existence of a
saddle path equilibrium, at least for the post-Volker era. We believe, therefore, that our specification
remains valid for our purpose in this paper.

One related study, recently put forward by Clarida and Waldman (2007), investigates exchange
rate dynamics when central banks employ Taylor rules in a small open-economy framework
(Svensson, 2000).

In their paper, they derive the dynamics of real exchange rates by combining the Taylor rule and the
uncovered interest parity (or real interest parity), so that the real exchange rate is mainly determined
by the ex ante real interest rate. In their model, the real interest rate follows an AR(1) process of
which the autoregressive coefficient is a function of the Taylor rule coefficients. When the central bank
responds to inflation more aggressively, the economy returns to its long-run equilibrium at a faster
rate. Therefore, the half-life of PPP deviations is negatively affected by �� .

It should be noted that their model does not explicitly incorporate the commodity view of PPP in
the sense that real exchange rate dynamics are mainly determined by the portfolio market equilibrium
conditions. In contrast to their model, we combine a single good version of Mussa’s (1982) model (2)
with the UIP as well as the Taylor rule. Under this framework, no policy parameters can affect the
half-life of the PPP deviations because real exchange rate persistence is mainly driven by commodity
arbitrages. On the other hand, policy parameters do affect volatilities of inflation and the nominal
exchange rate in our model. For example, the more aggressively the central bank responds to inflation,
the less volatile inflation is, which leads to a less volatile nominal exchange rate.

12 If the system has a purely backward-looking solution, the conventional structural vector autoregressive (SVAR) estimation
method may apply.
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One interesting feature arises when another policy parameter, �, varies. As the value for � increases,
the volatility of �ptC1 decreases. This is due to the uncovered interest parity condition. A higher
value of �, higher interest rate inertia, implies that the central bank changes the nominal interest rate
less. Therefore, �etC1 should change less due to the uncovered interest parity. When ˛ D �, it can
be shown that after the initial cost-push shock, price does not change at all (see Appendix B). That
is, �ptC1 instantly jumps and stays at its long-run equilibrium value of zero. Hence the convergence
toward long-run PPP should be carried over by the exchange rate adjustments. When ˛ < �, price
must decrease after the initial cost-push shock, since the nominal exchange rate movement is limited
by the uncovered interest parity and domestic interest rate inertia.

3. ESTIMATION METHODS

We discuss two estimation strategies here: a conventional univariate equation approach and the GMM
system method (Kim et al., 2007).

3.1. Univariate Equation Approach

A univariate approach utilizes equation (1) or (2). For instance, the persistence parameter ˛ in equation
(1) can be consistently estimated by the conventional least squares method under the maintained coin-
tegrating relation assumption. Once we obtain the point estimate of ˛, the half-life of the real exchange
rate can be calculated by ln.:5/

ln˛ . Similarly, the regression equation for the convergence parameter b can
be constructed from equation (2) as follows:

�ptC1 D b
�
� �

�
pt � p

�
t � et

��
C�p�tC1 C�etC1 C Q"tC1 (2")

where Q"tC1 D �"tC1 D � .etC1 � EtetC1/�
�
p�tC1 � Etp�tC1

�
C .ptC1 � EtptC1/ and Et Q"tC1 D 0.

3.2. GMM System Method

Our second estimation strategy combines equation (11) with (1). The estimation of equation (11)
is a challenging task, however, since it has an infinite sum of rationally expected discounted future
fundamental variables. Following Hansen and Sargent (1980, 1982), we linearly project Et .�/ onto
t ,
the econometrician’s information set at time t , which is a subset of It . Denoting OEt .�/ as such a linear
projection operator onto 
t , we can rewrite equation (11) as follows:

�etC1 D O�C
˛� s�
˛ � �

�ptC1 �
˛� s�
˛ � �

�p�tC1 C
˛� s� � .˛ � �/

˛ � �
i�t

C
� s�.˛�

s
� � .˛ � �//

.˛ � �/�

1X
jD0

�
1 � � s�
�

	j
OEtftCjC1 C �tC1

(12)

where

�tC1 D !tC1 C
� s�
�
˛� s� � .˛ � �/

�
.˛ � �/�

1X
jD0

�
1 � � s�
�

	j �
EtftCjC1 � OEtftCjC1

�
and

OEt�tC1 D 0
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by the law of iterated projections.
For appropriate instrumental variables that are in 
t , we assume 
t D ¹ft ; ft�1; ft�2; : : :º. This

assumption would be an innocent one under the stationarity assumption of the fundamental variable,
ft , and it can greatly lessen the burden in our GMM estimation by significantly reducing the number
of coefficients to be estimated.

Assume, for now, that ft is a zero mean covariance stationary, linearly indeterministic stochastic
process, so that it has the following Wold representation:

ft D c.L/�t (13)

where �t D ft � OEt�1ft and c.L/ is square summable. Assuming that c.L/ D 1C c1LC c2L2C : : :
is invertible, equation ( 13) can be rewritten as the following autoregressive representation:

b.L/ft D �t (14)

where b.L/ D c�1.L/ D 1� b1L� b2L2 � : : :. Linearly projecting
P1
jD0

�
1��s�
�

�j
EtftCjC1 onto


t , Hansen and Sargent (1980) show that the following relation holds:

1X
jD0

ıj OEtftCjC1 D  .L/ft D

"
1 �

�
ı�1b.ı/

��1
b.L/L�1

1 � .ı�1L/
�1

#
ft (15)

where ı D 1��s�
�

.
For actual estimation, we assume that ft can be represented by a finite order AR(r) process, i.e.

b.L/ D 1 �
Pr
jD1 bjL

j , where r < 1.13 It can then be shown that the coefficients of  .L/ can be
computed recursively (see Sargent, 1987) as follows:

 0 D .1 � ıb1 � : : : � ı
rbr /

�1

 r D 0

 j�1 D ı j C ı 0bj

where j D 1; 2; : : : ; r . We then obtain the following two orthogonality conditions:

�etC1 D O�C
˛� s�
˛ � �

�ptC1 �
˛� s�
˛ � �

�p�tC1 C
˛� s� � .˛ � �/

˛ � �
i�t

C
� s�
�
˛� s� � .˛ � �/

�
.˛ � �/�

. 0ft C  1ft�1 C : : :C  r�1ft�rC1/C �tC1

(16)

ftC1 D k C b1ft C b2ft�1 C : : :C brft�rC1 C �tC1 (17)

13 We can use conventional Akaike information criteria or Bayesian information criteria in order to choose the degree of such
autoregressive processes.
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where k is a constant scalar and OEt�tC1 D 0. 14;15

Finally, the system method (GMM) estimation utilizes all aforementioned orthogonality conditions,
equations (2"), (16) and (17). That is, a GMM estimation can be implemented by the following 2.pC2/
orthogonality conditions:

Ex1;t .stC1 � d � ˛st / D 0 (18)

OEx2;t��

 
�etC1 � O� �

˛�s�
˛��

�ptC1 C
˛�s�
˛��

�p�tC1 �
˛�s��.˛��/

˛��
i�t

�
�s� .˛�

s
��.˛��//

.˛��/�
. 0ft C  1ft�1 C : : :C  r�1ft�rC1/

!
D 0 (19)

OEx2;t�� .ftC1 � k � b1ft � b2ft�1 � : : : � brft�rC1/ D 0 (20)

where x1;t D .1 st /
0 ; x2;t D .1 ft /

0 and  D 0; 1; : : : ; p.16;17

3.3. Median Unbiased Estimator and Grid-t Confidence Intervals

We correct for the bias in our ˛ estimates by the grid-t method, which is similar to that by Hansen
(1999) for the least squares estimator. It is straightforward to generate pseudo samples for the orthog-
onality condition (20) by the conventional residual-based bootstrapping. However, there are some
complications in obtaining samples directly from equations (18) and (19), since p�t is treated as a
forcing variable in our model. We deal with this problem as follows.

In order to generate pseudo samples for the orthogonality conditions (18) and (19), we denote Qpt as
the relative price index pt � p�t . Then, equations (2") and (16) can be rewritten as follows:

� QptC1 D b� � b . Qpt � et /C�etC1 C Q"tC1

�etC1 D O�C
˛� s�
˛ � �

� QptC1 C
˛� s� � .˛ � �/

˛ � �
i�t

C
� s�.˛�

s
� � .˛ � �//

.˛ � �/�
. 0ft C : : :C  r�1ft�rC1/C �tC1

Or, in matrix form:

� QptC1
�etC1

�
D CC S�1



�.1 � ˛/

0

�
Œ Qpt � et �

C S�1

264 0
˛�s��.˛��/

˛��
i�t C

�s�.˛�s��.˛��//
.˛��/�

�

. 0ft C : : :C  r�1ft�rC1/

375C S�1


Q"tC1
�tC1

� (21)

14 Recall that Hansen and Sargent (1980) assume a zero-mean covariance stationary process. If the variable of interest
has a non-zero unconditional mean, we can either demean it prior to the estimation or include a constant but leave its
coefficient unconstrained. West (1989) showed that the further efficiency gain can be obtained by imposing additional
restrictions on the deterministic term. However, the imposition of such an additional restriction is quite burdensome, so we
simply add a constant here.
15 In actual estimations, we normalized equation (16) by multiplying .˛ � �/ to each side in order to reduce nonlinearity.
16 p does not necessarily coincide with r .
17 In actual estimations, we again use the aforementioned normalization.
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where C is a vector of constants and S is


1 � 1

::: �
˛�s�
˛��

1

�
.

Then, by treating each grid point ˛ 2 Œ˛min; ˛max� as a true value, we can generate pseudo samples of
� QptC1 and�etC1 through conventional bootstrapping. 18 The level variables Qpt and et are obtained by
numerical integration. It should be noted that all other parameters are treated as nuisance parameters
.�/.19 Following Hansen (1999), we define the grid-t statistic at each grid point ˛ 2 Œ˛min; ˛max� as
follows:

tn.˛/ D
ǪGMM � ˛

se . ǪGMM/
(22)

where se . ǪGMM/ denotes the robust GMM standard error at the GMM estimate ǪGMM. Implementing
GMM estimations for B bootstrap iterations at each of N grid point of ˛, we obtain the (ˇ quantile)
grid-t bootstrap quantile functions, q�

n;ˇ
.˛/ D q�

n;ˇ
.˛; �.˛//. Note that each function is evaluated at

each grid point ˛ rather than at the point estimate.20

In Appendix C, we derive the asymptotic distribution of the grid-t statistic (22) as follows. Under
the local to unity .˛ D 1C c=n/ framework:

tn.˛/)
S01
�
G0c�

�1
c Gc

��1
G0c�

�1
c Nc�

S01
�
G0c�

�1
c Gc

��1
S1
�1=2

where Nc ; �c ; and Gc are defined in (C4), (C5) and (C6).
Finally, we define the 95% grid-t confidence interval as follows:®

˛ 2 R W q�n;2:5%.˛/ � tn.˛/ � q
�
n;97:5%.˛/

¯
(23)

and the median unbiased estimator as

˛MUE D ˛ 2 R; s.t. tn.˛/ D q
�
n;50%.˛/ (24)

In Appendix C, we also show that the grid bootstrap confidence bands are correctly sized under
some regularity conditions described in Assumption 1.

4. EMPIRICAL RESULTS

This section reports estimates of the persistence parameter ˛ (or convergence rate parameter b) and
their implied half-lives resulting from the two estimation strategies discussed above.

We use CPIs to construct real exchange rates with the US dollar as a base currency. We consider
19 industrialized countries that provide 18 real exchange rates.21 For interest rates, we use quarterly
money market interest rates that are short-term interbank call rates rather than conventional short-term
Treasury bill rates, since we incorporate the Taylor rule in the model where a central bank sets its
target short-term market rate. For output deviations, we consider two different measures of output
gaps: quadratically detrended real GDP gap (see Clarida et al. 1998) and unemployment rate gaps (see

18 Historical data were used for the initial values and the foreign interest rate i�t .
19 See Hansen (1999) for detailed explanations.
20 If they are evaluated at the point estimate, the quantile functions correspond to Efron and Tibshirani’s (1993) bootstrap-t
quantile functions.
21 Among the 23 industrialized countries classified by IMF, we dropped Greece, Iceland and Ireland due to lack of reasonable
number of observations. Luxembourg was also dropped because of its currency union with Belgium.
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Table I. GMM estimation of the US Taylor rule estimation

Deviation Sample period �� (SE) �x (SE) � (SE)

Real GDP 1959:Q1–2003:Q4 1.466 (0.190) 0.161 (0.054) 0.820 (0.029)
1959:Q1–1979:Q2 0.605 (0.099) 0.577 (0.183) 0.708 (0.056)
1979:Q3–2003:Q4 2.517 (0.306) 0.089 (0.218) 0.806 (0.034)

Unemployment 1959:Q1-2003:Q4 1.507 (0.217) 0.330 (0.079) 0.847 (0.028)
1959:Q1–1979:Q2 0.880 (0.096) 0.217 (0.072) 0.710 (0.057)
1979:Q3–2003:Q4 2.435 (0.250) 0.162 (0.078) 0.796 (0.034)

Notes:
(i) Inflation is the quarterly change in log CPI level .lnpt� lnpt�1/.
(ii) Quadratically detrended gaps are used for real GDP output deviations.
(iii)Unemployment gaps are 5-year backward moving average unemployment rates minus current
unemployment rates.
(iv) The set of instruments includes four lags of federal funds rate, inflation, output deviation, long-short
interest rate spread, commodity price inflation, and M2 growth rate.

Boivin, 2006).22;23 The data frequency is quarterly and from the IFS CD-ROM. The sample period is
from 1979:Q3 to 1998:Q4 for Eurozone countries, and from 1979:Q3 to 2003:Q4 for the rest of the
countries.

Based on the empirical evidence of the US Taylor rule, our sample period starts from 1979:Q3. As
discussed in Section 2, the inflation and exchange rate dynamics may greatly depend on the size of the
central bank’s reaction coefficient to expected inflation. We showed that the rationally expected future
fundamental variables appear in the exchange rate and inflation dynamics only when the long-run
inflation coefficient �� is strictly greater than unity. Clarida et al. (1998, 2000) provide important
empirical evidence for the existence of a structural break in the US Taylor rule. Put differently, they
show that �� was strictly less than one during the pre-Volker era, while it became strictly greater than
unity in the post-Volker era.

We implement similar GMM estimations for equation (4) as in Clarida et al. (2000),24;25 with a
longer sample period and report the results in Table I (see the note to Table I for a detailed explana-
tion). We use two output gap measures for three different subsamples. Most coefficients were highly
significant and specification tests by J -test were not rejected.26 More importantly, our requirement for
the existence of a saddle path equilibrium was met in the post-Volker era rather than the pre-Volker era.
Therefore, we may conclude that this provides an empirical justification for the choice of our sample
period.

We report our GMM version median unbiased estimates and the 95% grid-t confidence intervals
in Table II. We implemented estimations using both gap measures, but report the full estimates with
unemployment gaps in order to save space.27 We chose N D 30 and B D 500, totaling 15,000 GMM
simulations for each exchange rate. We chose p D r D 8 by the conventional Bayesian information
criteria, and standard errors were adjusted using the QS kernel estimator with automatic bandwidth
selection in order to deal with unknown serial correlation problems. For comparison, we report the
corresponding estimates by the least squares in Table III.

22 We also tried the same analysis with the cyclical components of real GDP series from the HP filter with 1600 of smoothing
parameter. The results were quantitatively similar.
23 The unemployment gap is defined as a 5-year backward moving average subtracted by the current unemployment rate. This
specification makes its sign consistent with that of the conventional output gap.
24 They used GDP deflator inflation along with the CBO output gaps (and HP detrended gaps).
25 Unlike Clarida et al. (2000), we assume that the Fed targets current output gap rather than future deviations. However, this
does not make any significant changes to our results. Also, we include one lag of interest rate rather than two lags for simplicity.
26 J -test statistics are available upon request.
27 The results with quadratically detrended real GDP gaps were quantitatively similar.
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Table II. GMM median unbiased estimates and 95% grid-t confidence Intervals

Country ǪGMM CIgrid-t HL HL CIgrid-t J (pv)

Australia 0.884 [0.837, 0.943] 1.404 [0.977, 2.953] 5.532 (0.700)
Austria 0.804 [0.786, 0.826] 0.793 [0.721, 0.904] 8.173 (0.417)
Belgium 0.816 [0.794, 0.844] 0.852 [0.751, 1.019] 7.942 (0.439)
Canada 1.000 [0.967, 1.000] 1 [5.109, 1) 4.230 (0.836)
Denmark 0.937 [0.874, 1.000] 2.675 [1.290, 1) 6.272 (0.617)
Finland 0.948 [0.897, 1.000] 3.235 [1.587, 1) 7.460 (0.488)
France 0.799 [0.777,0.822] 0.772 [0.688,0.885] 8.517 (0.385)
Germany 0.786 [0.767, 0.809] 0.721 [0.652, 0.819] 9.582 (0.296)
Italy 0.832 [0.806, 0.864] 0.945 [0.805, 1.181] 4.228 (0.836)
Japan 0.754 [0.729, 0.782] 0.613 [0.549, 0.706] 9.800 (0.279)
Netherlands 0.838 [0.798, 0.883] 0.984 [0.766, 1.388] 6.638 (0.576)
New Zealand 0.805 [0.786, 0.828] 0.799 [0.718, 0.918] 6.874 (0.550)
Norway 0.873 [0.785,0.971] 1.271 [0.716,5.983] 8.225 (0.412)
Portugal 0.792 [0.779, 0.806] 0.741 [0.694, 0.803] 6.132 (0.633)
Spain 0.896 [0.856,0.943] 1.581 [1.114,2.954] 6.738 (0.565)
Sweden 1.000 [0.945, 1.000] 1 [3.088, 1) 7.107 (0.525)
Switzerland 0.831 [0.795, 0.870] 0.937 [0.755, 1.240] 9.136 (0.331)
UK 0.778 [0.756,0.806] 0.690 [0.620,0.801] 17.49 (0.025)
Median 0.832 [0.795, 0.867] 0.941 [0.753, 1.211] —

Notes:
(i) The US dollar is the base currency.
(ii) Unemployment gaps are used for output deviations.
(iii) Sample periods are 1979:Q2–1998:Q4 (78 observations) for Eurozone countries and 1979:Q2–2003:Q4
(98 observations) for non-Eurozone countries.
(iv) CIgrid-t denotes the 95% confidence intervals that were obtained by 500 residual-based bootstrap
replications on 30 grid points (Hansen, 1999).
(v) J denotes the J -statistic and pv is its associated p-values.

Table III. Univariate median unbiased estimates and grid-t
confidence Intervals

Country ǪLS CIgrid-t HL HL CIgrid-t

Australia 0.972 [0.891, 1.000] 6.173 [1.494, 1)
Austria 0.945 [0.866, 1.000] 3.087 [1.205, 1)
Belgium 0.924 [0.847, 1.000] 2.203 [1.045, 1)
Canada 1.000 [0.946, 1.000] 1 [3.122, 1)
Denmark 0.942 [0.866, 1.000] 2.886 [1.200, 1)
Finland 0.959 [0.883, 1.000] 4.107 [1.390, 1)
France 0.931 [0.847, 1.000] 2.432 [1.044, 1)
Germany 0.950 [0.852, 1.000] 3.349 [1.078, 1)
Italy 0.943 [0.859, 1.000] 2.932 [1.138, 1)
Japan 0.952 [0.886, 1.000] 3.511 [1.428, 1)
Netherlands 0.936 [0.839, 1.000] 2.619 [0.990, 1)
New Zealand 0.959 [0.923, 0.997] 4.089 [2.174, 61.29]
Norway 0.934 [0.851, 1.000] 2.529 [1.073, 1)
Portugal 0.975 [0.913, 1.000] 6.765 [1.904, 1)
Spain 0.959 [0.898, 1.000] 4.129 [1.604, 1)
Sweden 0.959 [0.891, 1.000] 4.089 [1.497, 1)
Switzerland 0.951 [0.862, 1.000] 3.481 [1.168, 1)
UK 0.932 [0.845, 1.000] 2.442 [1.028, 1)

Median 0.951 [0.866, 1.000] 3.415 [1.203, 1)

Notes:
(i) The US dollar is the base currency.
(ii) Sample periods are 1979:Q2–1998:Q4 (78 observations) for Eurozone
countries and are 1979:Q2–2003:Q4 (98 observations) for non-Eurozone
countries.
(iii) CIgrid-t denotes the 95% confidence intervals that were obtained
by 500 residual-based bootstrap replications on 30 grid points
(Hansen, 1999).
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Table IV. Univariate median unbiased half-life
estimates: AR(1) vs. AR(p)

Country pMAIC pMBIC HLAR(1) HLIRF

Australia 1 1 6.173 6.173
Austria 1 1 3.087 3.087
Belgium 4 1 2.203 2.884
Canada 6 1 1 1
Denmark 4 1 2.886 3.883
Finland 6 2 4.107 3.631
France 1 1 2.432 2.432
Germany 6 1 3.349 3.386
Italy 3 1 2.932 1
Japan 1 1 3.511 3.511
Netherlands 6 1 2.619 2.882
New Zealand 9 1 4.089 3.895
Norway 1 1 2.529 2.529
Portugal 6 1 6.765 1
Spain 2 1 4.129 12.13
Sweden 4 4 4.089 3.387
Switzerland 1 1 3.481 3.481
UK 3 1 2.442 3.129
Median 3.5 1 3.415 3.496

Notes:
(i) pMAIC and pMBIC denote the lag length chosen by the mod-
ified AIC and modified BIC (Ng and Perron, 2001) with
maximum 12 lags, respectively.
(ii) HLAR(1) refers to the half-life point estimates with an
AR(1) specification and was replicated from Table III for
comparison purposes.
(iii) HLIRF denotes the half-life point estimates obtained
from the impulse-response function with the lag length cho-
sen by pMAIC. HLIRF with pMBIC is not reported because the
estimates are virtually the same as HLAR(1).
(iv) We correct the median bias of each autoregressive
coefficient for higher-order AR(p) conditioning on all other
coefficients.

We note that the system method provides much shorter half-life estimates compared with those
resulting from the single-equation method (see Tables II and III). The median value of the half-life
estimate was 3.42 years from the univariate estimations after adjusting for the median bias using the
grid-t bootstrap. However, the median value of the GMM median unbiased estimates was still below
1 year (0.94 year) when we corrected for the bias.28 Our estimates are roughly consistent with the
average half-life estimates from the micro-data evidence by Crucini and Shintani (2008)29 and the
differences of the point estimates for different countries are very similar to those of Murray and Papell
(2002) for most countries. 30 J -test accepts our model specification for all countries, with the exception
of the UK.31

28 Without bias correction, the median value of the half-life estimate was 2.59 years from the univariate estimations and 0.90
year from the system method. All estimates and the conventional 95% bootstrap confidence intervals are available from authors
upon request.
29 For the OECD countries, their baseline half-life estimates for traded good prices were 1.5 years, and 1.58 and 2.00 years for
all and non-traded good prices.
30 The exceptions to this similarity are Japan and the UK, as our point estimates for these countries are much smaller than
others. Using the same sample period of Murray and Papell (2002), however, we obtained the ˛ estimates of 0.89 and 0.82 for
Japan and the UK, respectively, indicating that these exceptions seem to have arisen from the difference in the sample periods.
31 We also notice that our median-unbiased point estimate Ǫ GMM,MUE is consistent with the price-stickiness parameter estimates
by Gal í and Gertler (1999) who use the New Keynesian Phillips curve specification with Calvo pricing. Recall that a single-good
version model by Kehoe and Midrigan (2007) implies that ˛ coincides with the Calvo probability parameter.
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Figure 1. Kernel density estimate of the persistence parameter: no UIP shock
�
�2v D 0

�
and T D 78.

Regarding efficiency, we obtained substantial efficiency gains from the system method over the
single-equation method. Murray and Papell (2002) report a version of the grid-˛ confidence intervals
(Hansen, 1999) 32 of which upper limits of their half-life estimates are infinity for every exchange
rates they consider. Based on such results, they conclude that single-equation methods may provide
virtually no useful information due to wide confidence intervals.

Our grid-t confidence intervals from the single-equation method were consistent with such a view
(see Table III). The upper limits are infinity for most real exchange rates. However, when we imple-
ment estimations by the system method, our 95% GMM version grid-t confidence intervals were very
compact. Our results can be also considered as a great improvement over Kim et al. (2007), who
acquired limited success in efficiency gains.

Lastly, we compare univariate half-life estimates from an AR(1) specification with those from a
more general AR(p) specification. Following Rossi (2005), we choose the number of lags by the
modified Akaike information criterion (MAIC; Ng and Perron, 2001) with a maximum 12 lags. We
also estimate the lag length by the modified Bayesian Information criteria (MBIC; Ng and Perron,
2001), which yields p D 1 for most real exchange rates. The MAIC chooses p D 1 for 6 out of 18
real exchange rates. For the remaining 12 real exchange rates, we implement the impulse-response
analysis to estimate the half-lives of PPP deviations. As can be seen in Table IV, allowing higher-order
AR(p) processes results in very different half-life estimates from those of the AR(1) specification
for some countries such as Italy, Portugal and Spain. This implies that one has to be careful in inter-
preting the results based on AR(1) models for these exchange rates. For many other real exchange

32 Their confidence intervals are constructed following Andrews (1993) and Andrews and Chen (1994), which are identical to
Hansen’s (1999) grid-˛ confidence intervals if we assume that the errors are drawn from the empirical distribution rather than
the i.i.d. normal distribution.
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Figure 2. Kernel density estimate of the persistence parameter: with UIP shock
�
�2v D �

2
u

�
and T D 78.

rates, however, half-life estimates do not change much, implying that the AR(1) process is not a
bad approximation.

5. MONTE CARLO SIMULATION STUDIES

The empirical results in the previous section are consistent with two possible interpretations. One is
that the true half-lives are short, and long half-life estimates given by single-equation methods are
due to their high degree of uncertainty. Another is that the true half-lives are long, and short half-life
estimates obtained by the system method are due to the bias caused by the misspecification of the
model. For the purpose of obtaining evidence as to which interpretation is more appropriate, this
section provides Monte Carlo simulations based on the DSGE model described in Appendix D, which
is consistent with the model equations above that are used for our estimation.

For the purpose of examining the impact of misspecification, we introduce the UIP shock in addition
to the monetary policy shock. We investigate three possible values for the size of the variance of the
UIP shock

�
�2v
�

relative to that of the monetary shock
�
�2u
�
, i.e. �2v D 0; �2v D �2u ; and �2v D 5�2v .

Recall that our saddle-path equation was derived in the absence of the UIP shock. Putting it differently,
the greater the value for �2v , the more severe is the misspecification of the system method. We also
consider 78 observations .T / for each simulated series that match those of the Eurozone countries,
while T D 500 is also employed in order to see what happens in large samples. We further consider
errors from the standard normal distribution as well as errors from the student-t distribution with three
degrees of freedom .t3/. Variances, 1 and 3 for the standard normal and t3, are rescaled so that they
match with calibrated variances.
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Figure 3. Kernel density estimate of the persistence parameter: with UIP shock
�
�2v D �

2
u

�
and T D 500.

From 500 sets of simulated observations for each case, we estimated kernel density estimates of
the persistence parameter via the single-equation method and the system method. All estimates are
corrected for the median bias before we estimate baseline statistics and density function estimates.33

We report estimated distributions of the persistence parameter in Figures 1–3. We also report vari-
ous statistical properties of singe and system estimators in Table V. We note that the system method
is substantially more efficient than the single-equation method when the number of observations is
small .T D 78/, as we can see in Figures 1 and 2. Even though the single-equation estimator has
somewhat better empirical properties in mean and median values (see Table V), the distributions of the
single-equation estimators are flatter than those of the system method estimators. Therefore, high esti-
mates of the persistence parameter by the single-equation method in the literature may well be caused
by high standard errors. We also note that these results are fairly robust to the size of the UIP shock
and to the underlying distributional assumption of the shocks.

When misspecification of the system method is very large and the sample size is much larger than
that of the available data, then the cost of misspecification can offset the benefit of efficiency of the
system method. For instance, when T D 500 and �2v D �2v , the difference of standard deviations
becomes quite small, so that the gain of using the system method decreases. However, with reasonable
size of misspecification and realistic sample size, it is likely that the cost of misspecification is much
smaller than the benefit of efficiency.

33 We use interpolations using the estimates from up to 10 grid points to correct for bias in GMM estimates.
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Table V. Statistics of the persistence parameter estimates from simulated data

T UIP shock Distribution Estimator Mean SD Min. Median Max.

78 �2v D 0 Normal Single 0:832 0:080 0:511 0:844 1:004
System 0:793 0:041 0:529 0:797 0:943

t3 Single 0:833 0:076 0:537 0:842 1:030
System 0:805 0:033 0:691 0:804 0:920

78 �2v D �
2
u Normal Single 0:829 0:081 0:459 0:841 1:005

System 0:800 0:050 0:540 0:804 0:940
t3 Single 0:831 0:077 0:470 0:837 1:011

System 0:805 0:044 0:629 0:809 0:927
78 �2v D 5�

2
u Normal Single 0:829 0:079 0:526 0:841 1:006

System 0:809 0:056 0:569 0:817 0:970
t3 Single 0:827 0:079 0:521 0:838 1:009

System 0:809 0:048 0:640 0:809 0:957
500 �2v D 0 Normal Single 0:833 0:026 0:751 0:835 0:892

System 0:814 0:021 0:749 0:812 0:894
t3 Single 0:833 0:026 0:751 0:833 0:952

System 0:823 0:019 0:756 0:822 0:888
500 �2v D �

2
u Normal Single 0:831 0:026 0:745 0:832 0:891

System 0:819 0:023 0:765 0:815 0:894
t3 Single 0:832 0:025 0:719 0:833 0:935

System 0:824 0:020 0:779 0:823 0:884
500 �2v D 5�

2
u Normal Single 0:830 0:026 0:727 0:832 0:894

System 0:831 0:026 0:742 0:833 0:895
t3 Single 0:831 0:025 0:715 0:832 0:915

System 0:834 0:023 0:753 0:834 0:885

Notes:
(i) We obtained these summary statistics from 500 simulated samples.
(ii) T is the number of observations. We set T be 78 from our Eurozone data to see small-sample properties,
while T D 500 for large samples.
(iii) We studied three possible values for the size of the UIP shock, �2v D 0; �

2
v D �

2
u; �

2
v D 5�

2
u , where

�2u D 0:33
2 is the calibrated variance of the monetary policy shock.

(iv) Normal and t3 are the standard normal distribution and the t distribution with 3 degrees of freedom,
respectively, for the underlying distribution of structural shocks. Standard deviations are scaled to match each
of calibrated variance of shocks.

6. CONCLUSION

It is a well-known fact that there is a high degree of uncertainty around Rogoff’s (1996) consen-
sus half-life of the real exchange rate. In response to this fact, this paper proposed a system method
that combines the Taylor rule and a standard exchange rate model. We estimated the half-lives of
real exchange rates for 18 developed countries against the USA and obtained much shorter half-life
estimates than those obtained using the single-equation method. Our Monte Carlo simulation results
are consistent with an interpretation that the large uncertainty of the single-equation estimators is
responsible for the high estimates of the persistence parameter from single-equation methods in the
literature.

We used two types of non-parametric bootstrap methods to construct confidence intervals: the
standard bootstrap and the grid bootstrap for our GMM estimator, where we also demonstrate the
asymptotic properties of the grid bootstrap method. The standard bootstrap evaluates bootstrap quan-
tiles at the point estimate of the AR(1) coefficient, which implicitly assumes that the bootstrap quantile
functions are constant functions. This assumption does not hold for the AR model, and the grid boot-
strap method, which avoids this assumption, has better coverage properties. In our applications, we
often obtain very different confidence intervals for these two methods. 34 Therefore, the violation of
the assumption is deemed quantitatively important.

34 Results from standard bootstrap are available upon request.
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When we use the grid bootstrap method, most of the (approximately) median unbiased estimates
from the single-equation method fall in the range of 3–5 years, with wide confidence intervals that
extend to positive infinity. In contrast, the system method yields median unbiased estimates that are
typically substantially less than 1 year, with much sharper confidence intervals, most of which range
from three quarters to 5 years.

These results indicate that monetary variables from the exchange rate model based on the Taylor
rule provide useful information about the half-lives of real exchange rates. Confidence intervals are
much narrower than those from a single-equation method, indicating that the estimators from the sys-
tem method are significantly sharper. Approximately median unbiased estimates of the half-lives are
typically about 1 year, which is far more reasonable than the consensus 3–5 years from single-equation
methods.35

Our paper is the first step toward a system method with the exchange rate model based on the Taylor
rule. We followed most of the papers in the literature with this type of model by using the uncovered
interest parity to connect the Taylor rule to the exchange rate. Because the uncovered interest parity
for short-term interest rates is rejected by the data, one future direction is to modify the model by
removing the uncovered interest parity. This is a challenging task because no consensus has emerged
as to how the deviation from the uncovered interest parity should be modeled. Even though the AR(1)
specification seems to be a good approximation for most real exchange rates, it is possible that more
general AR(p) models yield quite different half-lives for some exchange rates. This is another chal-
lenging task in our system approach, as it is not easy to obtain informative saddle-path solutions for a
higher-order system of difference equations.
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APPENDIX A: DERIVATION OF EQUATION (11)

Since ƒ in equation (10) is diagonal, assuming 0 < ˛ < 1 and 1 < �� <
1
1��

, we can solve the
system as follows:

´1;t D

1X
jD0

˛jh1;t�j�1 C

1X
jD0

˛jut�j (A1)

´2;t D �

1X
jD0

�
1 � � s�
�

	jC1
Eth2;tCj (A2)

´3;t D h3;t�1 C 	t (A3)

where ut and 	t are any martingale difference sequences.
Since yt D Vzt 24�pt�et

it�1

35 D
264 1 1 1
˛�s�
˛��

1 1
˛�s�
˛��

1 0

375
24 ´1;t´2;t
´3;t

35 (A4)

From first and second rows of equation (A4), we get the following:

�et D
˛� s�
˛ � �

�pt �
˛� s� � .˛ � �/

˛ � �
´2;t �

˛� s� � .˛ � �/

˛ � �
´3;t (A5)

Now, we find the analytical solutions for zt . Since ht D V�1ct

ht D
1

1 � � s�

264�
˛��

˛�s��.˛��/
˛��

˛�s��.˛��/
0

˛�s�
˛�s��.˛��/

�
˛�s�

˛�s��.˛��/
1

0 1 �1

375
24 Et�p�tC1 � ˛�p

�
t C �t C �C �

s
xxt � i

�
t

� s�
�
Et�p�tC1 � ˛�p

�
t C �t

�
C �C � sxxt � i

�
t

� s�
�
Et�p�tC1 � ˛�p

�
t C �t

�
C �C � sxxt � �

s
� i
�
t

35
and thus

h1;t D �
˛ � �

˛� s� � .˛ � �/

�
Et�p

�
tC1 � ˛�p

�
t C �t

�
(A6)

h2;t D
1

1 � � s�



�� s�

˛� s� � .˛ � �/

�
Et�p

�
tC1 � ˛�p

�
t C �t

�
C �C � sxxt � �

s
� i
�
t

�
(A7)
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h3;t D �i
�
t (A8)

Plugging equation (A6) into equation (A1):

´1;t D �
˛ � �

˛� s� � .˛ � �/

1X
jD0

˛j
�
�p�t�j � ˛�p

�
t�j�1 C �t�j�1

�
C

1X
jD0

˛jut�j

D �
˛ � �

˛� s� � .˛ � �/
�p�t C

1X
jD0

˛jut�j �
˛ � �

˛� s� � .˛ � �/

1X
jD0

˛j �t�j�1

(A9)

Plugging equation (A7) into equation (A2):36

´2;t D �
� s�

˛� s� � .˛ � �/

1X
jD0

�
1 � � s�
�

	j �
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�
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�
�
1

�

1X
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�
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�Et i

�
tCj

�
D

˛� s�
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�t �

�
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�
� s�
�
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jD0

�
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Et�p

�
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� s�
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1X
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�
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� sx
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�
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Then, denoting ft as �
�
i�t � Et�p�tC1

�
C

�sx
�s�
xt D �

�
i�t � Et�p�tC1

�
C �x

��
xt

´2;t D
˛� s�

˛� s� � .˛ � �/
�p�t �
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�t�
�
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�

1X
jD0

�
1 � � s�
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	j
EtftCj (A10)

Finally, plugging equation (A8) into equation (A3):

´3;t D �i
�
t�1 C 	t (A11)

Now, plugging equations (A10) and (A11) into equation (A5):

�et D
˛� s�
˛ � �

�pt �
˛� s�
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�p�t C
� s�
˛ � �

�t C
˛� s� � .˛ � �/

.˛ � �/
�
� s� � .1 � �/

� �
C
� s�
�
˛� s� � .˛ � �/

�
.˛ � �/�

1X
jD0

�
1 � � s�
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EtftCj C

˛� s� � .˛ � �/
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˛ � �
	t

(A12)

Updating equation (A12) once and applying the law of iterated expectations:

�etC1 D O�C
˛� s�
˛ � �

�ptC1 �
˛� s�
˛ � �

�p�tC1 C
˛� s� � .˛ � �/
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i�t

C
� s�.˛�

s
� � .˛ � �//
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1X
jD0

�
1 � � s�
�

	j
EtftCjC1 C !tC1

(A13)

36 We use the fact that Et�tCj D 0; j D 1; 2; : : : :
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where

O� D
˛� s� � .˛ � �/

.˛ � �/
�
� s� � .1 � �/

� �

!tC1 D
� s�
�
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�
.˛ � �/�

1X
jD0

�
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EtC1ftCjC1 � EtftCjC1

�
C

� s�
˛ � �

�tC1 �
˛� s� � .˛ � �/
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	tC1

and Et!tC1 D 0.

APPENDIX B: THE SOLUTION WHEN ˛ D �

When ˛ equals �, we have the following system of difference equations:24 1 �1 0

�� s� 1 0

�� s� 0 1

3524Et�ptC1
Et�etC1

it

35 D
24 � �� 00 0 �

0 0 �

3524�pt�et
it�1

35C
24Et�p�tC1 � ��p

�
t C �t

�C � sxxt � i
�
t

�C � sxxt

35 (B1)

which can be represented by the following:

EtytC1 D VƒV�1yt C ct (B2)

where

V D

24 0 1 11 1 1

1 1 0

35 ; ƒ D
24 � 0 0

0 �
1��s�

0

0 0 0

35 ; V�1 D

24�1 1 0

1 �1 1

0 1 �1

35
The system yields the same eigenvalues, ˛ D � and �

1�.1��/��
. Therefore, when �� is greater than

one, we have the saddle-path equilibrium as before. By pre-multiplying both sides of (B2) by V�1,
we get

EtztC1 D ƒzt C ht ; (B3)

where V�1yt D zt and V�1ct D ht .
We solve the system as follows:
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´3;t D h3;t�1 C 	t (B6)

where ut and 	t are any martingale difference sequences.
Since yt D Vzt 24�pt�et

it�1

35 D
24 0 1 11 1 1

1 1 0

3524 ´1;t´2;t
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35 (B7)

Now, we find the analytical solutions for zt . Since ht D V�1ct
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thus:
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From equations (B4) and (B8):
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From equations (B5) and (B9):

´2;t D �

1X
jD0

�
1 � � s�
�

	jC1 �
Et�p

�
tCjC1 � �Et�p

�
tCj C Et�tCj C �C �

s
xEtxtCj � �

s
�Et i

�
tCj

�
D
�
1 � � s�

�
�p�t �

�
1 � � s�
�

	
�t �

�
1 � � s�

�
�

� �
�
1 � � s�

� (B12)

� � s�

1X
jD0

�
1 � � s�
�

	jC1 �
Et�p

�
tCjC1 C

� sx
� s�

EtxtCj � Et i
�
tCj

	

Denoting ft as �
�
i�t � Et�p�tC1

�
C

�sx
�s�
xt D �

�
i�t � Et�p�tC1

�
C �x

��
xt :

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 874–903 (2015)
DOI: 10.1002/jae



PURCHASING POWER PARITY AND THE TAYLOR RULE 897

´2;t D
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�
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1X
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From equations (B6) and (B10):
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�
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�
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From equations (B7), (B13) and (B14):
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�
�p�t � �

s
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�
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Updating equation (B15) once and applying the law of iterated expectations:

�ptC1 D O�C
�
1 � � s�

�
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�
1 � � s�

�
i�t � �

s
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�
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where

O� D

�
1 � � s�

��
1 � � s�

�
� �

�

!tC1 D ��
s
�

1X
jD0

�
1 � � s�
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EtC1ftCjC1 � EtftCjC1

�
�

�
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�

	
�tC1 C 	tC1

and

Et!tC1 D 0

Note that there is no inertia for domestic inflation in this solution, since there is no backward-looking
component. Put differently, when there is a shock, �ptC1 instantly jumps to its long-run equilibrium.

Conversely, �etC1 does have inertia. From equation (B7):

�et D ´1;t C�pt (B17)

Plug equation (B11) into (B17) and update it once to get

�etC1 D �ptC1 �
�
1 � � s�

�
�p�tC1 C

1X
jD0

�jut�jC1 �
�
1 � � s�

� 1X
jD0

�j�t�j (B18)

where �ptC1 contains a rational expectation of future fundamentals as defined in equation (B16).
Note that �etC1 exhibits inertia due to the presence of the martingale difference sequences.

In a nutshell, in the special case of � D ˛, domestic inflation instantly jumps to its long-run
equilibrium and all convergence will be carried over by the exchange rate adjustments.
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APPENDIX C: GMM WITH A NEAR-UNIT ROOT AND THE GRID BOOTSTRAP

APPENDIX C.1: ASYMPTOTIC DISTRIBUTION

When the variables are jointly stationary, then the t-ratio tn.˛/ is asymptotically normal and both
conventional inference and the grid bootstrap method provide valid methods for confidence interval
coverage. We are interested in the case where the persistence parameter ˛ is large and possibly equal
to one. The appropriate way to incorporate this into an asymptotic distribution theory is to model ˛ as
local to 1; for example:

˛ D 1C c=n (C1)

With this reparametrization, the localizing parameter c indexes the degree of persistence.
Set ˇ D .˛; d; �/ where � are the parameters in (19)–(20) in addition to ˛ and d: Let mtC1.ˇ/ be

the list of moment functions in (19)–(20) and set

gt .ˇ/ D

0@ st .stC1 � d � ˛st /stC1 � d � ˛st
mtC1.ˇ/

1A
which is the set of moment functions (18)–(20). Define
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nX
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nX
tD1

@

@ˇ0
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Let mtC1; gt ; gn; �n and Gn denote these functions evaluated at the true ˇ: Also, define the
moments �2" D E"2tC1; � D EmtC1"tC1; Q D E @

@	0
mtC1.ˇ/ and M D EmtC1m0tC1:

Given a preliminary estimator ě; the GMM estimator b̌minimizes gn.ˇ/
0�n

�ě��1 gn.ˇ/.
It is well known that under standard conditions the GMM estimator has the asymptotic linear

representation

p
n
�b̌� ˇ� D �G0n��1n Gn

��1
G0n�

�1
n

p
ngn C op.1/ (C2)

To obtain an asymptotic distribution under the local-to-unity assumption ( C1) we have to introduce
additional scale factors so that the moment matrices have non-degenerate limiting distributions. We
define

Dn D



n1=2 0

0 I`C1

�
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where ` D dim .mt /, and

ın D



n1=2 0

0 IpC1

�
where p D dim.ˇ/: We can then write (C2) equivalently as

p
nın

�b̌� ˇ� D �G
0

n�
�1

n Gn

��1
G
0

n�
�1

n

p
nı�1n gn C op.1/ (C3)

where

�n D D
�1
n �nD

�1
n

and

Gn D D
�1
n Gnı

�1
n

Since the errors "tC1 and mtC1 are martingale differences, then

1
p
n

Œnr
X
tD1

�
"tC1
mtC1

	
) W.r/

a Brownian motion with covariance matrix

E

�
"2tC1 "tC1m0tC1

mtC1"tC1 mtC1m0tC1

	
D

�
�2" �

� M

	
Partition W.r/ D .W1.r/;W2.r//. Under the local-to-unity assumption (C1)

n�1=2sŒnr
) W1c.r/

where dW1c.r/ D cW1c.r/C dW1.r/ is a standard diffusion process.
It follows that

p
nı�1n gn D

0B@
1
n

Pn
tD1 st"tC1

1p
n

Pn
tD1 "tC1

1p
n

Pn
tD1 mtC1

1CA
)

0@ R 10 W1cdW1W1.1/

W2.1/

1A
� Nc

(C4)

�n D

0@ 1
n2

Pn
tD1 s

2
t "
2
tC1

1
n3=2

Pn
tD1 st"

2
tC1

1
n

Pn
tD1 st"tC1m0tC1

1
n3=2

Pn
tD1 st"

2
tC1

1
n

Pn
tD1 "tC1

1
n

Pn
tD1 "tC1m0tC1

1
n

Pn
tD1 stmtC1"tC1

1
n

Pn
tD1 mtC1"tC1

1
n

Pn
tD1 mtC1m0tC1

1A
)

0B@
R 1
0 W

2
1c�

2
"

R 1
0 W1c�

2
"

R 1
0 W1c�

0R 1
0 W1c�

2
" �2" �0R 1

0 W1c� � M

1CA
� �c

(C5)
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and

Gn D

0@ � 1
n2

Pn
tD1 s

2
t � 1

n3=2

Pn
tD1 st 0

� 1
n3=2

Pn
tD1 st �1 0

1
n3=2

Pn
tD1

@
@˛

mtC1.ˇ/ 0 1
n

Pn
tD1

@
@	0

mtC1.ˇ/

1A
)

0@� R 10 W 2
1c �

R 1
0 W1c 0

�
R 1
0 W1c �1 0

0 0 Q

1A
� Gc

(C6)

Applying these distributional results to (C3), we find

p
nın

�b̌� ˇ�) �
G0c�

�1
c Gc

��1
G0c�

�1
c Nc (C7)

The asymptotic distribution of b̨ is obtained by taking the first element of this vector. Let S1 D .10/0

be a .p C 2/ � 1 unit vector. Then

n .b̨� ˛/) S01
�
G0c�

�1
c Gc

��1
G0c�

�1
c Nc (C8)

The standard error for b̨ is

n se .b̨/ D �nS01
�
G0n�

�1
n Gn

��1
S1
�1=2

D

�
S01
�

G
0

n�
�1

n Gn

��1
S1

	1=2
)
�

S01
�
G0c�

�1
c Gc

��1
S1
�1=2

Thus the t-ratio for ˛ has the asymptotic distribution

tn.˛/ D
b̨� ˛
se .b̨/ ) S01

�
G0c�

�1
c Gc

��1
G0c�

�1
c Nc�

S01
�
G0c�

�1
c Gc

��1
S1
�1=2

We state this formally.

Proposition 1. Under (C1)

tn.˛/)
S01
�
G0c�

�1
c Gc

��1
G0c�

�1
c Nc�

S01
�
G0c�

�1
c Gc

��1
S1
�1=2 (C9)

where Nc ; �c ; and Gc are defined in equations (C4), (C5) and (C6).

In the special case that "tC1 and mtC1 are uncorrelated, then � D 0 and both �c and Gc are
block diagonal. Then b̨ is asymptotically independent of b̌ and tn.˛/ has a classic Dickey–Fuller
distribution.

However, when "tC1 and mtC1 are correlated so that � ¤ 0, then b̨ and b̌ are not asymptotically
independent. In this case the asymptotic distribution in Proposition 1 is a mixture of a non-standard
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Dickey–Fuller and a standard normal, similar to the result by Hansen (1995) for the case of unit root
testing with covariates. The situation is actually quite similar, as the GMM estimator is a combination
of the (non-standard) least-squares estimator of ˛ with a set of classic moment restrictions.

APPENDIX C.2: GRID BOOTSTRAP

As discussed in Beran (1987) and Hansen (1999, Proposition 1), conventional bootstrap confidence
intervals have asymptotic first-order correct coverage if the parameter estimates (used to construct the
bootstrap distribution) are consistent for the true values, and the asymptotic distribution is continu-
ous in the parameters. Furthermore, the conventional bootstrap generically fails to have asymptotic
first-order correct coverage if these conditions fail.

This theory, plus the distribution theory of Proposition 1 above, helps us understand why the con-
ventional bootstrap will not have correct coverage. The asymptotic distribution (C9) depends on the
parameters c; �2" ; �; M; and Q: The parameter c D n.˛ � 1/ is estimated bybc D n .b̨� 1/, which
is inconsistent, as shown in equation (C8). Consequently, the conventional bootstrap will not have
correct coverage.

In contrast, as discussed in Hansen (1999, Proposition 1), the grid bootstrap confidence interval
for ˛ has asymptotic first-order correct coverage if the remaining parameter estimates are consistent
for the true values and the asymptotic distribution of tn.˛/ is continuous in the parameters. First,
we see by direct examination that the distribution in (C9) is a continuous function of the parameters
c; �2" ; �; M; and Q: Second, the moments �2" ; �; M; and Q are identified and are consistently
estimated by sample averages. For fixed ˛ (equivalently, fixed c) the residual bootstrap method will
consistently estimate these population moments under the auxiliary assumption that the underlying
errors are i.i.d. This meets the conditions for the grid bootstrap and we conclude that the interval for
˛ has asymptotic first-order correct coverage.

Assumption 1. The error vector ."tC1; �tC1; �tC1/ is independent and identically distributed, and has
finite 2C ı moments for some ı > 0: The local-to-unity condition (C1) holds, the autoregressive roots
of (14) lie outside the unit circle, and the set of moment equations (18)–(19)–(20) satisfies the standard
conditions for GMM estimation.

Proposition 2. Let A denote the grid bootstrap confidence interval defined in (24). Under Assump-
tion 1, P .˛ 2 A/! 0:95 as n!1.

We are slightly informal here regarding the regularity conditions and therefore state this result as a
proposition rather than as a formal theorem. There are two important caveats regarding this result.

First, the grid bootstrap confidence interval only works for ˛ and not for the other parameters. This
is because the asymptotic distribution (C7) suggests that the distribution of the entire estimator vector
is non-standard and a function of c, and the grid bootstrap method only ‘solves’ the confidence interval
problem for the single parameter which is the source of the non-pivotalness, in this case ˛: In the
present context this is satisfactory, as our interest focuses on the persistence parameter ˛:

Second, our grid bootstrap method relies on the residual bootstrap, and is therefore critically
dependent on the assumption that the errors are i.i.d. In particular, this excludes conditional
heteroskedasticity. As our application concerns quarterly observations where the degree of
heteroskedasticity is mild, we believe that this limitation is not too restrictive.
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APPENDIX D: STOCHASTIC SIMULATIONS

In this appendix we show the derivation of the model used for the Monte Carlo simulations.

APPENDIX D.1: HOUSEHOLD

Households in the domestic country maximize

E0

1X
tD0

ˇt ln .Ct /

subject to the budget constraint:

Bt CEtB
�
t C PtCt D .1C it�1/ Bt�1 C

�
1C i�t�1

�
EtB

�
t�1 C Yt C Tt

We denote consumption by Ct , domestic bond holdings byBt , nominal exchange rate byEt ,foreign
bond holdings by B�t , the consumer price index by Pt , domestic nominal interest rate by it , foreign
nominal interest rate by i�t , output by Yt and the lump-sum tax by Tt .

From the optimality conditions in both home and foreign households’ maximization problem, we
can derive the UIP condition:

it D Et�etC1 C i
�
t C vt (D1)

where vt denotes the UIP shock. Lower-case variables indicate the logarithm of upper-case variables.

APPENDIX D.2: FIRMS (PRICE SETTING)

We assume that firms’ price setting is summarized in the gradual adjustment model by Mussa (1982):

Et�ptC1 D b
�
� �

�
pt � p

�
t � et

��
C Et�p

�
tC1 C Et�etC1 (D2)

which could be transformed into

Et�ptC1 D .1 � b/�pt � .1 � b/�p
�
t � .1 � b/�et C Et�p�tC1 C Et�etC1

C
�
p�t � Et�1p�t

�
C .et � Et�1et / � .pt � Et�1pt /

(D3)

APPENDIX D.3: CENTRAL BANK

The domestic central banks follows the Taylor type rule:

it D .1 � �/ .��Et� OptC1 C �xxt /C �it�1 C ut (D4)

where xt and ut denote output gap and the monetary policy shock.

APPENDIX D.4: SYSTEM OF EQUATIONS

From equations (D1), (D2), (D3) and (D4), we can derive the system of equations for
�et ; qt ; s

e
t ; � Opt ; � Oet ; it and ��et as follows:

�et D qt C Et�p
�
tC1 C s

e
t
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� Opt D .1 � b/ �
e
t�1� .1 � b/� Oet C s

e
t C

�
� Op�t � �

�e
t�1

�
C
�
� Oet � s

e
t�1

�
� .1 � b/� Op�t CEt� Op

�
tC1

(D5)

it D .1 � �/ ���
e
t C �it�1 C .1 � �/ �xxt C ut

it D s
e
t C i

�
t C vt

�et � Et�ptC1

��et � Et�p
�
tC1

set � Et�etC1

where we define the real exchange rate qt :

qt � p
�
t C et � pt � �

It is assumed that the price is set one period in advance when deriving equation (D5). Three
exogenous variables i�t ; �p

�
t and xt are assumed to follow the VAR(2) model:24 i�t

�p�t
xt

35 D A
24 i�t�1
�p�t�1
xt�1

35C B
24 i�t�2
�p�t�2
xt�3

35C
24 ei;t
e�p�;t
ex;t

35
Parameter matrices A and B as well as the variances of shocks are estimated for the sample

from 1979:Q3 to 1998:Q4. The USA is supposed to be the home country. Hence i�t and �p�t are
the weighted average of policy interest rates and CPI inflation rates for Australia, Austria, Belgium,
Canada, Finland, France, Germany, Italy, Japan, Netherlands, Portugal, Spain, Sweden, Switzer-
land and the UK. We use the weight by the FRB for the effective exchange rate. For xt , we use
unemployment rate gap in Boivin (2006).

APPENDIX D.5: CALIBRATION

We use the estimated parameters for simulation. They are set as follows:

b �� �x � �u

0.168 2.435 0.162 0.796 0.109
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