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THE INTEGRATED MEAN SQUARED
ERROR OF SERIES REGRESSION AND
A ROSENTHAL HILBERT-SPACE

INEQUALITY

BRUCE E. HANSEN
University of Wisconsin

This paper develops uniform approximations for the integrated mean squared error
(IMSE) of nonparametric series regression estimators, including both least-squares
and averaging least-squares estimators. To develop these approximations, we also
generalize an important probability inequality of Rosenthal (1970, Israel Journal of
Mathematics 8, 273–303; 1972, Sixth Berkeley Symposium on Mathematical Statis-
tics and Probability, vol. 2, pp. 149–167. University of California Press) to the case
of Hilbert-space valued random variables.

1. INTRODUCTION

This paper introduces uniform approximations for the integrated mean squared
error (IMSE) of nonparametric series regression estimators. Bounds for the IMSE
of series regression estimators have been obtained by Newey (1997) but ours are
the first uniform approximations. Related papers include Andrews (1991) who
studied the asymptotic normality of series estimators, and Newey (1995), de Jong
(2002), Chen (2007, Chap. 76), and Song (2008) who studied uniform conver-
gence. The difference is that we are interested in directly characterizing the IMSE
and not just a bound on the rate of convergence. The theory rests developing a
bound on the expectation of the norm of the inverse of the sample design matrix,
and for this we use an argument due to Ing and Wei (2003). Our results apply to a
wide variety of series regressions, including polynomial and spline expansions.

We also extend the results to averaging estimators, which are weighted averages
of least-squares estimators of individual series estimators. Averaging estimators
are strict generalizations of standard estimators and thereby can achieve lower
IMSE. See Hansen (2007) and Hansen and Racine (2012). We obtain uniform
approximations to the IMSE of averaging estimators. This result is derived in the
slightly more restricted setting of nested series estimators.
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To develop these approximations, we also introduce a generalization of the
classic Rosenthal inequality. The related inequalities of Marcinkiewicz and
Zygmund (1937), Rosenthal (1970, 1972), and Burkholder (1973) are founda-
tional for many problems in applied probability and statistics. The classical form
of these inequalities is for real-valued random variables. In this paper we gen-
eralize the Rosenthal inequality to allow for random variables taking values in a
Hilbert space, which includes the case of random matrices. The result is a sim-
ple extension of a Banach space inequality obtained by De Acosta (1981) and a
Hilbert space inequality due to Utev (1985).

2. A HILBERT-SPACE ROSENTHAL INEQUALITY

The following is a generalization of the one-sided (upper) inequalities of
Marcinkiewicz and Zygmund (1937) and Rosenthal (1970, 1972) to the case of
Hilbert spaces. For 2 ≤ p < 3 it is based on a Banach space inequality obtained
by De Acosta (1981), and for p ≥ 3 it is derived from a Hilbert space inequality
of Utev (1985) following a suggestion of Ibragimov (1997).

THEOREM 1. For any p ≥ 2 there is a finite constant Ap such that for any
independent centered array of random variables ξni taking values in a Hilbert
space with norm ‖·‖ such that E‖ξni‖p <∞,

E

∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
p

≤ Ap

⎧⎨⎩
(

n∑
i=1

E‖ξni ‖2

)p/2

+
n∑

i=1

E‖ξni‖p

⎫⎬⎭ . (1)

For p ≥ 2 we have Ap =
(

2B1/p
p +1

)p
where Bp is the constant from the mar-

tingale generalization of Rosenthal’s inequality (Burkholder, 1973, p. 40 or Hall
and Heyde, 1980, Thm. 2.12), and for p ≥ 3 we have Ap = 2pCp where Cp is the
exact Rosenthal constant in the independent symmetric case from Ibragimov and
Sharakhmetov (1997). If p = 2, the expression simplifies to

E

∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
2

=
n∑

i=1

E‖ξni ‖2 . (2)

Inequalities of the form (1) are widely used in probability and statistical theory.
They are commonly applied to random variables, and this is sufficient for many
purposes (as the bound can be applied separately to each element in the ma-
trix ξni ). However, for some purposes it is essential for the bound to involve the
same norm as used on the left-side.

Remark 1. The constant Ap in (1) depends only on p, not on the underlying
probability structure nor the specific norm.
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Remark 2. Theorem 1 applies to random vectors and matrices for any Hilbert

space norm, for example, the Euclidean norm ‖a‖ = (tra′a
)1/2 for vectors and

the Frobenius norm ‖A‖F = (trA′A
)1/2

for matrices.

Remark 3. When ξni are identically distributed across i for given n, then we
can write (1) as

E

∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
p

≤ Ap

{(
nE‖ξni ‖2

)p/2 +nE‖ξni ‖p
}
. (3)

If the distribution of ξni does not depend on n, then the first term on the
right-hand-side of (3) is of order O(n p/2) which dominates the second term
which is of order O(n) (unless p = 2 in which case they are the same). How-
ever, this relative ranking can change when the distribution of ξni changes
with n.

Remark 4. Using Loeve’s Cr inequality (e.g., Davidson, 1994, p. 140), we can
bound (1) by 2Apn p/2−1∑n

i=1E‖ξni ‖p , or 2Apn p/2
E‖ξni ‖p in the case where

ξni are identically distributed across i for given n. However, these bounds are
often significantly less tight, so are not typically preferred.

Remark 5. Some other moment bounds for matrices, Hilbert-space variables
and Banach-valued variables can be found in de la Peña and Giné (1999) and Nze
and Doukhan (2004). A review of moment bounds in econometrics can be found
in Lai and Wei (1984).

Remark 6. Theorem 1 is restricted to independent variables. Rosenthal-type
inequalities for dependent random variables can be found in Utev (1991), de la
Peña, Ibragimov, and Sharakhmetov (2003), and Nze and Doukhan (2004). It
would be greatly desirable to extend Theorem 1 to allow for dependence. How-
ever, our proof builds on results (De Acosta, 1981; Utev, 1985) which are re-
stricted to independent sequences.

Remark 7. The constant Ap may not be the best possible. See Bestsennaya
and Utev (1991) and Ibragimov and Sharakhmetov (2002) for sharp bounds on
moments of sums and the best constant in Rosenthal’s inequality for the case of
random variables and p an even integer, and Ibragimov and Ibragimov (2008) for
the case of random variables with zero odd moments.

3. MOMENT BOUNDS FOR SERIES REGRESSION

Consider a sample of independently and identically distributed (iid) observations
(yi , zi), i = 1, ...,n where zi ∈ Z, a compact subset of Rq . Define the condi-
tional mean g(z) = E (yi | zi = z). We examine the estimation of g(z) by series
regression. For m = 1, ...,Mn, let xm(z) denote a sequence of Km × 1 vector of
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functions from a series expansion. For example, a power series sets xm(z) =
(1, z, z2, ..., zm) and a quadratic spline sets xm(z) = (1, z, z2, (z − τ1)

2 1(z >
τ1), ..., (z − τm)

2 1(z > τm)). Set xmi = xm(zi ), a Km × 1 regressor vector.
The m’th series estimator of g(z) is

ĝm(z)= xm(z)
′β̂m ,

where

β̂m =
(

n∑
i=1

xmi x
′
mi

)−1 n∑
i=1

xmi yi

is the least squares coefficient from a regression of yi on xmi .
Many of the challenges arising in the theory of series regression stem from the

inversion of the sample design matrix

Q̂m = 1

n

n∑
i=1

xmi x
′
mi

as an estimate of

Qm = E (xmi x
′
mi

)
.

In this section we describe some properties of the moments of Q̂m and Q̂−1
m .

Define

ζm = sup
z∈Z

(
xm(z)

′ Q−1
m xm(z)

)1/2
, (4)

the largest normalized Euclidean length of the regressor vector. Under standard
conditions for series regression (including compact support for the regressors),
ζm will be a bounded function of the dimension Km. For example, when xmi

is a power series, then ζ 2
m = O(K 2

m) (see Andrews, 1991), and when xmi is a
regression spline, then ζ 2

m = O(Km) (see Newey, 1995). For further discussion
see Newey (1997) and Li and Racine (2006).

We will also define the array of constants

�nm =
(
ζ 2

m Km

n

)1/2

(5)

which will appear frequently in our bounds.
For convenience, we will state our moment bounds under the assumption that

Qm = IKm . Since the estimator ĝm(z) is invariant to rotations of the regressor
vector xmi , this is without loss of generality for most results of interest.

For any matrix A let ‖A‖F = (trA′A
)1/2 denote the Frobenius norm. The

space of �× m matrices with the Frobenius norm is a Hilbert space, allowing the
application of Theorem 1.
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LEMMA 1. If Qm = IKm , for any 0< p ≤ 2,

E
∥∥Q̂m − IKm

∥∥p
F ≤ �

p
nm (6)

and for any p > 2

E
∥∥Q̂m − IKm

∥∥p
F ≤ Ap�

p
nm

(
1 +2p�

p−2
nm

)
. (7)

As shown by Ing and Wei (2003), the moment bound of Lemma 1 plus the
following regularity conditions can be used together to establish moment bounds
on the inverse moment matrix.

Assumption 1.

1. For some δ > 0, sup1≤m≤Mn
ζ 2

m K 1+δ
m /n −→ 0.

2. For some α > 0, η > 0, and ψ < ∞, for all �′ Qm� = 1 and 0 ≤ u ≤ η,
supm P

(∣∣�′xmi
∣∣ ≤ u
)≤ψuα.

Assumption 1.1 puts a bound on the number of series terms Km relative to the
sample size. For a polynomial series expansion this requirement is satisfied when
K 3+δ

m /n = o(1) and for a spline expansion it is satisfied when K 2+δ
m /n = o(1). It

indirectly bounds the number of models Mn.
Assumption 1.2 is an unusual requirement. It specifies that the all linear com-

binations �′xmi have a Lipschitz continuous distribution near the origin. This is
used to ensure existence of the expectation of the inverse of the sample design
matrix.

Our next set of results are bounds for the spectral norm ‖A‖S = (λmax
(A′A))1/2 of the inverse design matrix.

LEMMA 2. Under Assumption 1 and Qm = IKm , for any p> 0 and η > 0 there
is an n sufficiently large such that

E

∥∥∥Q̂−1
m

∥∥∥p

S
≤ 1 +η. (8)

LEMMA 3. Under Assumption 1 and Qm = IKm , for any 0< p < 2 and η > 0
there is an n sufficiently large such that

E

∥∥∥Q̂−1
m − IKm

∥∥∥ p

S
≤ (1 +η)� p

nm , (9)

and for any p ≥ 2 and η > 0, there is an n sufficiently large such that

E

∥∥∥Q̂−1
m − IKm

∥∥∥ p

S
≤ (1 +η) A1/2

2 p �
p
nm . (10)
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4. INTEGRATED MEAN SQUARED ERROR

The integrated mean-squared error (IMSE) of the estimator ĝm(z) is

I M S En(m)=
∫
Z
E (̂gm(z)− g(z))2 f (z)dz, (11)

where f (z) is the marginal density of zi . We are interested in an approximation
for I M S En(m) which is uniform across the expansions m.

It will be useful to set up some notation. Let

βm = (E (xmi x
′
mi

))−1
E (xmi yi )

denote the linear projection coefficient, emi = yi − x ′
miβm be the projection error,

and ei = yi −g(zi) be the regression error. Define the approximation error rm (z)=
g(z)− xm(z)′βm and rmi = rm (zi ), and observe that emi = rmi +ei . Since emi is a
projection error, E (xmiemi )= 0, and since ei is a regression error, E (xmiei )= 0.
It follows that E (xmirmi ) = 0. Set φ2

m = E
(
r2

mi

)
and Qm = E

(
xmi x ′

mi

)
. Let

σ 2
i = E

(
e2

i | zi
)

and σ 2
mi = E

(
e2

mi | zi
)
, and set �m = E

(
xmi x ′

miσ
2
i

)
and �∗

m =
E
(
xmi x ′

miσ
2
mi

)
.

By definition, g(z)= xm(z)′βm +rm (z), so

ĝm(z)− g(z)= xm(z)
′ (β̂m −βm

)−rm (z). (12)

Thus∫
Z
(ĝm(z)− g(z))2 f (z)dz =

∫
Z

rm (z)
2 f (z)dz

−2
(
β̂m −βm

)′∫
Z

xm(z)rm (z) f (z)dz

+(β̂m −βm
)′∫
Z

xm(z)xm (z)
′ f (z)dz

(
β̂m −βm

)
= E
(

r2
mi

)
−2
(
β̂m −βm

)′
E (xmirmi )

+(β̂m −βm
)′
E
(
xmi x

′
mi

) (
β̂m −βm

)
= φ2

m + (β̂m −βm
)′

Qm
(
β̂m −βm

)
,

the second equality since integration over the density f (z) is the same as taking
expectations, and the third using the fact that E (xmirmi )= 0. Taking expectations,
we have found that

I M S En(m)= φ2
m +E

((
β̂m −βm

)′
Qm
(
β̂m −βm

))
. (13)

The standard asymptotic covariance matrix for β̂m is n−1 Q−1
m �∗

m Q−1
m . Substitut-

ing this covariance matrix for the expectation in (13) we might expect I M S En(m)
to be close to

I ∗
n (m) = φ2

m + 1

n
tr
(

Q−1
m �∗

m

)
. (14)
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Furthermore, we might expect �∗
m � �m , so that perhaps I M S En(m) might be

close to

In(m) = φ2
m + 1

n
tr
(

Q−1
m �m

)
. (15)

To show that I M S E∗
n(m) is uniformly close to both I ∗

n (m) and In(m), we add
the following regularity conditions.

Assumption 2.

1.
∥∥Q−1

m

∥∥
S ≤ B <∞.

2. 0< σ 2 ≤ σ 2
i ≤ σ 2 <∞.

3. g(z) is continuously differentiable on z ∈Z.
Assumption 2.1 states that the smallest eigenvalue of Qm is bounded above

zero, and thus Qm is uniformly invertible. This is a standard condition which is
satisfied by typical series expansions. For example, Newey (1997) demonstrates
that Assumption 2.1 holds when the support Z of zi is a Cartesian product of
compact connected intervals on which the density f (z) is bounded away from
zero.

Assumption 2.2 controls the degree of conditional heteroskedasticity, bounding
the conditional variance away from zero and infinity. Assumption 2.3 is a mild
smoothness condition.

We can use the the uniform approximations of Lemmas 1–3 to establish the
following technical bound.

LEMMA 4. Under Assumptions 1 and 2, for n sufficiently large, and all
m ≤ Mn,∣∣∣∣∣E((β̂m −βm

)′
Qm
(
β̂m −βm

))− tr
(
Q−1

m �∗
m

)
n

∣∣∣∣∣ ≤ A4�nm
tr
(
Q−1

m �∗
m

)
n

. (16)

Using (13) and Lemma 4, we can show that I ∗
n (m) and In(m) are uniform

approximations to I M S E∗
n (m):

THEOREM 2. Under Assumptions 1 and 2, as n → ∞

sup
1≤m≤Mn

∣∣∣∣ I M S En(m)− I ∗
n (m)

I ∗
n (m)

∣∣∣∣−→ 0 (17)

and

sup
1≤m≤Mn

∣∣∣∣ I M S En(m)− In (m)

In(m)

∣∣∣∣−→ 0. (18)
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Another way of stating these results is that I M S En(m) = I ∗
n (m)(1 + o(1)) =

In(m)(1 +o(1)) uniformly across the series expansions m ≤ Mn.
Interestingly, Theorem 2 does not put a direct bound on the number of models

Mn relative to sample size n. The number of models is only indirectly bounded
through Assumption 1, which primarily bounds the dimensionality of the models.

The uniform approximation provided in Theorem 1 is an important step for
showing that data-dependent choices of model m can be optimal in the sense
of minimizing the IMSE. Hansen (2014) shows that under regularity conditions
cross-validation selection is asymptotically equivalent to selecting the model
which minimizes In(m). Combined with Theorem 2, we conclude that cross-
validation is asymptotically optimal with respect to minimizing IMSE.

5. AVERAGING REGRESSIONS

Reductions in IMSE can be achieved by averaging across the individual series
estimators ĝm(z). Let w = (w1, ...,wMn ) be a set of nonnegative weights which
sum to one. Define the averaging estimator

ĝ(z)=
Mn∑

m=1

wm ĝm(z).

The IMSE of the averaging estimator is

I M S En(w)=
∫
Z
E (̂g(z)− g(z))2 f (z)dz

=
Mn∑

m=1

w2
m

∫
Z
E (̂gm(z)− g(z))2 f (z)dz

+2
Mn∑
�=1

�−1∑
m=1

w�wm

∫
Z
E ((̂gm(z)− g(z)) (ĝ�(z)− g(z))) f (z)dz.

In general, the series regressions need not be nested, but for simplicity we add
that assumption as it greatly simplifies our calculations. Recall that q = dim(zi ).

Assumption 3. For a power series or spline basis sequence τj (z), j = 1,2, ...,

xm(z)= (τ1(z), τ2(z), τ3(z), ..., τm (z)).

Assumption 3 is satisfied by nested power series. It is also satisfied by se-
quences of splines when knots are added but not deleted. With this additional
assumption, we can show that I M S En(w) is uniformly close to
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I ∗
n (w)=

Mn∑
m=1

w2
m

(
φ2

m + 1

n
tr
(

Q−1
m �∗

m

))

+2
Mn∑
�=1

�−1∑
m=1

w�wm

(
φ2
� + 1

n
tr
(

Q−1
m �∗

m

))
.

LetWn be the Mn-dimensional unit simplex.

THEOREM 3. Under Assumptions 1–3, as n → ∞

sup
w∈Wn

∣∣∣∣ I M S En(w)− I ∗
n (w)

I ∗
n (w)

∣∣∣∣−→ 0.

Theorem 3 shows that I ∗
n (w) is a uniformly good approximation to the IMSE

of the averaging estimator, where the uniformity is over all weight vectors.
In analogy to Theorem 2, we might expect that I M S En(w) is also uniformly

close to

In(w)=
Mn∑

m=1

w2
m

(
φ2

m + 1

n
tr
(

Q−1
m �m

))

+2
Mn∑
�=1

�−1∑
m=1

w�wm

(
φ2
� + 1

n
tr
(

Q−1
m �m

))
. (19)

This, however, turns out to be harder to establish. To do so, we need a stronger
condition.

Assumption 4.

1. g(z) has s continuous derivatives on z ∈ Z with s ≥ q/2 for a spline, and
s ≥ q for a power series.

2. φ2
m > 0 for all m.

Assumption 4.1 is a strengthening of the smoothness condition Assumption
2.3 when q ≥ 3 for a spline basis or q ≥ 2 for a power series. Assumption 4.2
specifies that no finite dimensional expansion equals the true regression function,
and thus all expansions are approximations. This is standard in the nonparametrics
literature. It excludes the possibility that the true regression function is a finite
dimensional element of the sieve space (e.g., a linear function).

THEOREM 4. Under Assumptions 1–4, as n → ∞

sup
w∈Wn

∣∣∣∣ I M S En(w)− In(w)

In(w)

∣∣∣∣−→ 0.
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Theorem 4 is relevant for establishing the optimality of cross-validation selec-
tion of the averaging weights. Under similar conditions, Hansen (2014) shows that
the cross-validation weight selection is asymptotically equivalent to selecting the
model which minimizes In(w). Theorem 4 thus establishes that cross-validation
is an asymptotically optimal with respect to IMSE for selection of the averaging
weights.

6. PROOFS

Proof of Theorem 1. Since ‖·‖ is a Hilbert space norm, we can write ‖x‖2 =〈
x,x
〉

where
〈
x,y
〉

is an inner product. Thus

E

∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
2

= E
〈

n∑
i=1

ξni ,

n∑
j=1

ξnj

〉

=
n∑

i=1

n∑
j=1

E
〈
ξni , ξnj

〉
=

n∑
i=1

E 〈ξni , ξni 〉

=
n∑

i=1

E‖ξni‖2 . (20)

The second and third equalities hold by the linearity of the inner product and

Eξni = 0, and the fourth is the definition ‖x‖2 = 〈x,x 〉 . This is (2).
Define Sn =∑n

i=1 ξni . For any p ≥ 2, De Acosta (1981, Thm. 2.1, part (2))
established the following inequality, valid for Banach-valued random variables
ξni (which includes Hilbert spaces)

E |‖Sn‖−E‖Sn‖|p ≤ 2p Bp

⎧⎨⎩
(

n∑
i=1

E‖ξni ‖2

)p/2

+
n∑

i=1

E‖ξni ‖p

⎫⎬⎭ . (21)

By Minkowski’s inequality, Liapunov’s inequality, (20), and (21),(
E‖Sn‖p)1/p = (E |‖Sn‖−E‖Sn‖+E‖Sn‖|p)1/p

≤ (E |‖Sn‖−E‖Sn‖|p)1/p +E‖Sn‖
≤ (E |‖Sn‖−E‖Sn‖|p)1/p +

(
E‖Sn‖2

)1/2
≤ 2B1/p

p

⎧⎨⎩
(

n∑
i=1

E‖ξni‖2

)p/2

+
n∑

i=1

E‖ξni ‖p

⎫⎬⎭
1/p
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+
(

n∑
i=1

E‖ξni ‖2

)1/2

≤
(

2B1/p
p +1

)⎧⎨⎩
(

n∑
i=1

E‖ξni‖2

)p/2

+
n∑

i=1

E‖ξni‖p

⎫⎬⎭
1/p

which establishes (1) with Ap =
(

2B1/p
p +1

)p
.

For p ≥ 3 we follow a suggestion from Ibragimov (1997, Rem. 1.10) to obtain a
tighter bound. First, to induce symmetry, let ε1, ..., εn be independent Rademacher
random variables independent of ξni . (A Rademacher random variable is a sym-
metric random variable on the two points {−1,1}.) Then by the symmetrization
inequality (e.g., de la Peña and Giné, 1999, Lem. 1.2.6)

E

∥∥∥∥∥
n∑

i=1

ξni

∥∥∥∥∥
p

≤ 2p
E

∥∥∥∥∥
n∑

i=1

εiξni

∥∥∥∥∥
p

. (22)

Since the Hilbert-space variables εiξni are independent and symmetric, we can
apply Corollary 4 of Utev (1985) (given below) so that the right-hand of (22) is
bounded by

2p
E

∣∣∣∣∣
n∑

i=1

‖εiξni ‖ui

∣∣∣∣∣
p

= 2p
E

∣∣∣∣∣
n∑

i=1

‖ξni‖ui

∣∣∣∣∣
p

, (23)

where u1, ...,un are independent Rademacher random variables independent of
ξni and εi , and the equality is ‖εiξni‖ = ‖ξni ‖ . The right-hand moment only in-
volves the sum of the symmetric real-valued random variables ‖ξni‖ui , and thus
we can apply the classic Rosenthal inequality to bound (23) by

2pCp

⎧⎨⎩
(

n∑
i=1

E‖ξni‖2 u2
i

)p/2

+
n∑

i=1

E‖ξni ‖p |ui |p

⎫⎬⎭
= 2pCp

⎧⎨⎩
(

n∑
i=1

E‖ξni‖2

)p/2

+
n∑

i=1

E‖ξni ‖p

⎫⎬⎭ .
See Ibragimov and Sharakhmetov (1997) for the constant Cp . This is (1) for p ≥ 3
with Ap = 2pCp. n

For the convenience of English readers I state here Corollary 4 from Utev
(1985), kindly translated for me by Rustam Ibragimov.

LEMMA 5. (Utev, 1985) Let ψ1, ...,ψn be independent symmetrically dis-
tributed random variables taking values in a separable Hilbert space with



348 BRUCE E. HANSEN

norm ‖·‖ . Let u1, ...,un be independent real-valued Rademacher random vari-
ables independent of ψi . Then for all p ≥ 3

E

∥∥∥∥∥
n∑

i=1

ψi

∥∥∥∥∥
p

≤ E
∣∣∣∣∣

n∑
i=1

‖ψi‖ui

∣∣∣∣∣
p

.

Proof of Lemma 1. Let ‖a‖ = (a′a
)1/2 denote the usual Euclidean norm for

vectors a. It is useful to observe that

E‖xmi‖2 = E trxmi x
′
mi = tr IKm = Km. (24)

Also, since ‖xmi‖ ≤ supz∈Z ‖xm(z)‖ = ζm , then for any q ≥ 2,

E‖xmi‖q = E‖xmi‖q−2 ‖xmi‖2 ≤ ζ q−2
m E‖xmi‖2 = ζ

q−2
m Km . (25)

Thus by the MSE minimizing property of the mean and (25) with q = 4

E
∥∥xmi x

′
mi − IKm

∥∥2
F ≤ E∥∥xmi x

′
mi

∥∥2
F = E‖xmi‖4 ≤ ζ 2

m Km . (26)

Suppose p ≤ 2. By Liapunov’s inequality, Theorem 1 (2), and (26),

E
∥∥Q̂m − IKm

∥∥p
F ≤
(
E
∥∥Q̂m − IKm

∥∥2
F

)p/2

=
⎛⎝n−2

E

∥∥∥∥∥
n∑

i=1

(
xmi x

′
mi − IKm

)∥∥∥∥∥
2

F

⎞⎠p/2

≤
(
E
∥∥xmi x ′

mi

∥∥2
F

n

)p/2

≤
(
ζ 2

m Km

n

)p/2

= �
p
nm ,

which is (6).
Next, suppose p > 2. Using Loeve’s Cr inequality, Liapunov’s inequality, and

(25) with q = 2 p,

E
∥∥xmi x

′
mi − IKm

∥∥p
F ≤ 2p−1 (

E
∥∥xmi x

′
mi

∥∥p
F +∥∥IKm

∥∥ p
F

)
= 2p

E‖xmi‖2 p

≤ 2pζ
2 p−2
m Km. (27)
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Then by Theorem 1, (26), and (27)

E
∥∥Q̂m − IKm

∥∥p
F = n−p

E

∥∥∥∥∥
n∑

i=1

(
xmi x

′
mi − IKm

)∥∥∥∥∥
p

F

≤ Ap

⎧⎨⎩
(
E
∥∥xmi x ′

mi − IKm

∥∥2
F

n

)p/2

+ E
∥∥xmi x ′

mi − IKm

∥∥p
F

n p−1

⎫⎬⎭
≤ Ap

⎧⎨⎩
(
ζ 2

m Km

n

)p/2

+ 2pζ
2 p−2
m Km

n p−1

⎫⎬⎭
≤ Ap

⎧⎨⎩
(
ζ 2

m Km

n

)p/2

+2p

(
ζ 2

m Km

n

)(p−1)
⎫⎬⎭

= Ap�
p
nm

(
1 +2p�

p−2
nm

)
, (28)

where the third inequality holds since Km ≤ K p−1
m as p ≥ 2, and the final equality

uses definition (5). This is (7). n

Proof of Lemma 2. The argument follows the proof of Theorem 2 of Ing and
Wei (2003). While that result was developed for autoregressive regression, the
method carries over to the nonparametric setting under Assumption 1.

If p < 1, then(
E

∥∥∥Q̂−1
m

∥∥∥p

S

)1/p ≤ E
∥∥∥Q̂−1

m

∥∥∥
S

so without loss of generality we may assume p ≥ 1. We may also assume that
Km ≥ 1 as for Km = 0 the result is trivial.

Let s > 6/δ be an integer and set J = 2s p. The first step is to establish that for
some B <∞ which depends only on J , α, η, and ψ,(
E

∥∥∥Q̂−1
m

∥∥∥J

S

)1/J

≤ B K 3
m . (29)

The proof of (29) is nearly identical to that of Lemma 1 of Ing and Wei (2003).
The only difference is the method to bound the left side of their equation (2.13)

P

(
t Km⋂
i=1

{∣∣∣�′j xmi

∣∣∣ ≤ 3u−1/(2q)
})

(30)

by the displayed expression above their (2.14). Ing and Wei develop a detailed
argument using the autoregressive structure of their problem. Instead, we use the
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independence of the observations, and then Assumption 1.2, to observe that (30)
equals

P

(∣∣∣�′j xmi

∣∣∣ ≤ 3u−1/(2q)
)t Km ≤ψ t Km

(
3u−1/(2q)

)αt Km

which is smaller than the bound above Ing–Wei’s (2.14). Their argument other-
wise goes through with these substitutions and we find (29).

By Minkowski’s inequality, for any 1 ≤ r ≤ J/2,

(
E

∥∥∥Q̂−1
m

∥∥∥r
S

)1/r ≤ ∥∥IKm

∥∥
S +
(
E

∥∥∥Q̂−1
n − IKm

∥∥∥r
S

)1/r
. (31)

By the norm inequality and the fact that ‖A‖S ≤ ‖A‖F∥∥∥Q̂−1
m − IKm

∥∥∥
S
=
∥∥∥(Q̂m − IKm

)
Q̂−1

m

∥∥∥
S

≤ ∥∥Q̂m − IKm

∥∥
S

∥∥∥Q̂−1
m

∥∥∥
S

≤ ∥∥Q̂m − IKm

∥∥
F

∥∥∥Q̂−1
m

∥∥∥
S
. (32)

Applying the Cauchy–Schwarz inequality

(
E

∥∥∥Q̂−1
m − IKm

∥∥∥r
S

)1/r ≤
(
E
∥∥Q̂m − IKm

∥∥2r
F

)1/2r
(
E

∥∥∥Q̂−1
m

∥∥∥2r

S

)1/2r

. (33)

Set ψ = (1 +η)1/p −1 and

ε = min

[
ψ

2 +ψ ,
(
ψ

2B

)1/s
]
. (34)

Lemma 1 and Assumption 1.1 imply that there is an n sufficiently large such that

(
E
∥∥Q̂m − IKm

∥∥2r
F

)1/2r ≤ A1/2r
2r �nm

(
1 +22r�2r−2

nm

)1/2r ≤ εK −δ/2
m . (35)

Equations (31)–(35) plus
∥∥IKm

∥∥
S = 1 establish that

(
E

∥∥∥Q̂−1
m

∥∥∥r
S

)1/r ≤ 1 +εK −δ/2
m

(
E

∥∥∥Q̂−1
m

∥∥∥2r

S

)1/2r

. (36)
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Iterating (36) s times, starting with r = p,(
E

∥∥∥Q̂−1
m

∥∥∥p

S

)1/p ≤ 1 +εK −δ/2
m

(
E

∥∥∥Q̂−1
m

∥∥∥2 p

S

)1/2 p

≤ 1 +εK −δ/2
m +

(
εK −δ/2

m

)2
+· · ·+

(
εK −δ/2

m

)s (
E

∥∥∥Q̂−1
m

∥∥∥2s p

S

)1/2s p

≤ 1 +ε+ε2 +· · ·+ εs−1 +
(
εK −δ/2

m

)s
B K 3

m

≤ 1

1 −ε +εs B

≤ 1 +ψ
= (1 +η)1/p,

where the third inequality is (29), the fourth inequality uses s > 6/δ, and the final
uses (34). This is (8). n

Proof of Lemma 3. For 0 < p < 2, applying Holder’s inequality to (32), and
then (6) and (8), for some ε > 0

E

∥∥∥Q̂−1
m − IKm

∥∥∥ p

S
≤
(
E
∥∥Q̂m − IKm

∥∥2
F

)p/2
(
E

∥∥∥Q̂−1
m

∥∥∥2 p/(2−p)

S

)(2−p)/2

≤ (1 +ε)(2−p)/2�
p
nm ,

which is (9) with η= (1 +ε)(2−p)/2 −1.
For p ≥ 2, Lemma 1 and Assumption 1.1 imply that for any η > 0 there is an

n sufficiently large such that(
E
∥∥Q̂m − IKm

∥∥2 p
F

)1/2 ≤ A1/2
2 p �

p
nm

(
1 +22 p�

2 p−2
nm

)1/2 ≤ (1 +η)1/2 A1/2
2 p �

p
nm .

(37)

Then by (33), (37), and (8), we obtain for n sufficiently large

E

∥∥∥Q̂−1
m − IKm

∥∥∥ p

S
≤
(
E
∥∥Q̂m − IKm

∥∥2 p
F

)1/2
(
E

∥∥∥Q̂−1
m

∥∥∥2 p

S

)1/2

≤ (1 +η)A1/2
2 p �

p
nm .

This is (10). n

Proof of Lemma 4. Observe that under Assumption 2.1, the IMSE (16) is
unaffected if we replace the regressors xmi with x∗

mi = Q−1/2
m xmi which has the

implication thatE
(
x∗

mi x
∗′
mi

)= IKm . For convenience and without loss of generality
we shall simply assume that this transformation has been made, or equivalently
that Qm = IKm , and thus we can apply Lemmas 1–3 without modification.
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Define Ŝm = 1

n

∑n
i=1 xmiemi so that β̂m −βm = Q̂−1

m Ŝm. Since Ŝm is the average

of iid mean zero random vectors, we calculate that

E
(
Ŝ′

m Ŝm
)= 1

n
E

(
x ′

mi xmie
2
mi

)
= tr�∗

m

n
.

Thus

E

((
β̂m −βm

)′ (
β̂m −βm

))−( tr�∗
m

n

)
= E
(

Ŝ′
m Q̂−1

m Q̂−1
m Ŝm

)
−
(

tr�∗
m

n

)
= E
(

Ŝ′
m

(
Q̂−1

m Q̂−1
m − IKm

)
Ŝm

)
. (38)

Now define Ŝ0
m = 1

n

∑n
i=1 xmiei and γ̂m = 1

n

∑n
i=1 xmirmi so that Ŝm = Ŝ0

m + γ̂m .

Define Z = (z1, ..., zn) and note that γ̂m is measurable with respect to Z ,

E
(
Ŝ0

m|Z) = 0 and E
(
Ŝ0

m Ŝ0′
m |Z) = 1

n
�̂m where �̂m = 1

n

∑n
i=1 xmi x ′

miσ
2
i . Using

the law of iterated expectations, we find that (38) equals

E

(
E

(
Ŝ′

m

(
Q̂−1

m Q̂−1
m − IKm

)
Ŝm|Z
))

= E
(
γ̂ ′

m

(
Q̂−1

m Q̂−1
m − IKm

)
γ̂m

)
+ 1

n
E tr
((

Q̂−1
m Q̂−1

m − IKm

)
�̂m

)
= 2E
(
γ̂ ′

m

(
Q̂−1

m − IKm

)
γ̂m

)
(39)

+E
(
γ̂ ′

m

(
Q̂−1

m − IKm

)(
Q̂−1

m − IKm

)
γ̂m

)
(40)

+ 2

n
E tr
((

Q̂−1
m − IKm

)
�̂m

)
(41)

+ 1

n
E tr
((

Q̂−1
m − IKm

)(
Q̂−1

m − IKm

)
�̂m

)
. (42)

We now bound the four terms (39)–(42).
> From Assumption 2.2 and (24) we deduce

tr
(
�∗

m

)≥ E(x ′
mi xmiσ

2
i

)
≥ E (x ′

mi xmi
)
σ 2 = Kmσ

2,

so that

Km ≤ tr
(
�∗

m

)
σ 2

. (43)

Furthermore, note that since Km is a nonnegative integer and ζ 2
m = 0 if Km = 0

then (43) implies

ζ 2
m

n
≤ ζ 2

m K 2
m

n
≤ �2

nm
tr
(
�∗

m

)
σ 2

. (44)
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We will also make use of the trace inequality, which states that for symmetric
�× � A and positive semidefinite B,

|tr(AB)| ≤ ‖A‖S tr(B) . (45)

For vectors a, let ‖a‖ = (a′a
)1/2

denote the Euclidean norm. Notice that

E‖xmirmi‖2 = E
(

x ′
mi xmir

2
mi

)
≤ tr
(
�∗

m

)
. (46)

Define

rm = sup
z∈Z

|rm(z)| (47)

which is bounded under Assumption 2.3. Using (44), (46), and (47),

n−3
E‖xmirmi‖4 ≤ r2

mζ
2
mE‖xmirmi‖2

n3
≤ r 2

m

σ 2
�2

nm

(
tr
(
�∗

m

)
n

)2

. (48)

Since ‖a‖ = ‖a‖F , we can apply Theorem 1. Using (1) with p = 4, (46),
and (48),

(
E‖γ̂m‖4

)1/2 ≤ A1/2
4

{(
1

n
E‖xmirmi ‖2

)2

+n−3
E‖xmirmi ‖4

}1/2

≤ A1/2
4

⎧⎨⎩
(

tr
(
�∗

m

)
n

)2

+ r2
m

σ 2
�2

nm

(
tr
(
�∗

m

)
n

)2
⎫⎬⎭

1/2

= A1/2
4

(
1 + r 2

m

σ 2
�2

nm

)1/2
tr
(
�∗

m

)
n

. (49)

Now, consider (39). Using the trace inequality (45), the Cauchy–Schwarz in-
equality, Lemma 3, and (49),

E

∣∣∣γ̂ ′
m

(
Q̂−1

m − IKm

)
γ̂m

∣∣∣≤ E(∥∥∥Q̂−1
m − IKm

∥∥∥
S
γ̂ ′

m γ̂m

)
≤
(
E

∥∥∥Q̂−1
m − IKm

∥∥∥2
S

)1/2(
E‖γ̂m‖4

)1/2

≤ (1 +η)1/2 A3/4
4

(
1 + r2

m

σ 2
�2

nm

)1/2

�nm
tr
(
�∗

m

)
n

. (50)
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Similarly, to bound (40),

E

∣∣∣γ̂ ′
m

(
Q̂−1

m − IKm

)(
Q̂−1

m − IKm

)
γ̂m

∣∣∣
≤ E
(∥∥∥Q̂−1

m − IKm

∥∥∥2
S
γ̂ ′

m γ̂m

)
≤
(
E

(∥∥∥Q̂−1
m − IKm

∥∥∥4
S

))1/2(
E‖γ̂m‖4

)1/2

≤ (1 +η)1/2 A1/2
8 A1/2

4

(
1 + r 2

m

σ 2
�2

nm

)1/2

�2
nm

tr
(
�∗

m

)
n

. (51)

For (41), first observe that tr(�̂m)= 1

n

∑n
i=1 x ′

mi xmiσ
2
i so

E
(
tr(�̂m )

)= E(x ′
mi xmiσ

2
i

)
≤ tr
(
�∗

m

)
.

Using (44),

n−3 var
(
tr(�̂m )

)= n−4
E

(
‖xmi‖4 σ 4

i

)
≤ ζ 2

mσ
2

n4
E

(
‖xmi‖2 σ 2

i

)
≤ σ 2

σ 2
�2

nm

(
tr
(
�∗

m

)
n

)2

,

and thus(
n−2

E
(
tr(�̂m)

)2)1/2 =
(

1

n3
var
(
tr(�̂m )

)+(1

n
E
(
tr(�̂m)

))2
)1/2

≤
⎛⎝σ 2

σ 2
�2

nm

(
tr
(
�∗

m

)
n

)2

+
(

tr
(
�∗

m

)
n

)2
⎞⎠1/2

=
(

1 + σ 2

σ 2
�2

nm

)1/2
tr
(
�∗

m

)
n

. (52)

By the trace inequality, Lemma 3, and (52),

1

n
E

∣∣∣tr((Q̂−1
m − IKm

)
�̂m

)∣∣∣≤ 1

n
E

(∥∥∥Q̂−1
m − IKm

∥∥∥
S

tr
(
�̂m
))

≤
(
E

(∥∥∥Q̂−1
m − IKm

∥∥∥2
S

))1/2 (
n−1

E
(
tr(�̂m)

)2)1/2

≤ (1+η)1/2 A1/4
4 �nm

(
1+ σ 2

σ 2�
2
nm

)1/2
tr
(
�∗

m

)
n

, (53)
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bounding (41).
Similarly, to bound (42),

1

n
E

∣∣∣tr((Q̂−1
m − IKm

)(
Q̂−1

m − IKm

)
�̂m

)∣∣∣
≤ 1

n
E

(∥∥∥Q̂−1
m − IKm

∥∥∥2
S

tr
(
�̂m
))

≤
(
E

(∥∥∥Q̂−1
m − IKm

∥∥∥4
S

))1/2(
n−2

E
(
tr(�̂m)

)2)1/2

≤ (1 +η)1/2 A1/4
8 �2

nm

(
1 + σ 2

σ 2
�2

nm

)1/2
tr
(
�∗

m

)
n

. (54)

Together, (50), (51), (53), and (54), plus �nm → 0 uniformly in m ≤ Mn under
Assumption 1.1, we find that the absolute value of (39)–(42) is bounded by[(

2 (1 +η)1/2 A3/4
4 + (1 +η)1/2 A1/4

4

)
(1 +o(1))+o(1)

]
�nm

tr
(
�∗

m

)
n

≤ A4�nm
tr
(
�∗

m

)
n

the inequality using 3 ≤ A1/4
4 , sufficiently small η, and sufficiently large n. This

is (16). n

Proof of Theorem 2. Using (13) and (14) we see that

I M S En(m)− I ∗
n (m) = E

((
β̂m −βm

)′
Qm
(
β̂m −βm

))− tr
(
Q−1

m �∗
m

)
n

.

Using Lemma 4 and sup1≤m≤Mn
�nm = o(1)

∣∣∣∣ I M S En(m)− I ∗
n (m)

I ∗
n (m)

∣∣∣∣ ≤ A4�nm
tr
(
Q−1

m �∗
m

)
n

I ∗
n (m)

≤ o(1),

uniformly in m ≤ Mn, which is (17).
Next, since x ′

mi xmi ≤ ζ 2
m = o(n) and E

(
r2

mi

)= φ2
m ≤ In(m)∣∣∣∣ I ∗

n (m)− In (m)

In(m)

∣∣∣∣= tr
(
�∗

m

)− tr(�m)

n In(m)

= E
(
x ′

mi xmir2
mi

)
n In(m)

≤ ζ 2
m

n
= o(1)

uniformly in m ≤ Mn . Combined with (17) this shows (18). n
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Proof of Theorem 3. Define Qm� = E
(
xmi x ′

�i

)
and γm� = E (xmir�i ) .

Using (12),∫
Z
((̂gm(z)− g(z)) (̂g�(z)− g(z))) f (z)dz

=
∫
Z

rm (z)r�(z) f (z)dz − (β̂m −βm
)′ ∫
Z

xm(z)r�(z) f (z)dz

−
∫
Z

rm (z)x�(z)
′ f (z)dz

(
β̂�−β�

)
+(β̂m −βm

)′∫
Z

xm(z)x�(z)
′ f (z)dz

(
β̂�−β�

)
= E (rmi r�i )−γ ′

m�

(
β̂m −βm

)−γ ′
�m

(
β̂�−β�

)
+(β̂m −βm

)′
Qm�
(
β̂�−β�

)
. (55)

Assumption 3 (nested regressors) implies that for m ≤ �, γm� = 0. Notice also
that rmi = g(zi)− x ′

miβm = r�i + x ′
�iβ�− x ′

miβm and thus

E (rmir�i )= E
((

r�i +β ′
�x�i −β ′

m xmi
)

r�i
)

= E
(

r2
�i

)
+β ′

�E (x�i r�i )−β ′
mE (xmir�i )

= φ2
� . (56)

As in the proof of Lemma 4, without loss of generality we assume that Qm = IKm

for all m. Combined with Assumption 3 this implies Qm� = [IKm 0]. Thus for
m ≤ � (55) equals

φ2
� −γ ′

�m

(
β̂�−β�

)+ (β̂m −βm
)′ (
β̂m −βm

)
.

Thus

I M S En(w)− I ∗
n (w)

=
Mn∑

m=1

w2
m

(
E
(
β̂m −βm

)′ (
β̂m −βm

)− tr
(
�∗

m

)
n

)
(57)

+2
Mn∑
�=1

�−1∑
m=1

w�wm

(
E
(
β̂m −βm

)′ (
β̂m −βm

)− tr
(
�∗

m

)
n

)
(58)

−2
Mn∑
�=1

w�γ
′
�E
(
β̂�−β�

)
, (59)

where

γ � =
�−1∑
m=1

wmγ�m = E
(

x�i

�−1∑
m=1

wmrmi

)
. (60)
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From Lemma 4, the absolute value of the sum of (57) and (58) is smaller than

Mn∑
m=1

w2
m A4�nm

tr
(
�∗

m

)
n

+2
Mn∑
�=1

�−1∑
m=1

w�wm A4�nm
tr
(
�∗

m

)
n

≤ A4 max
m≤Mn

�nm

( Mn∑
m=1

w2
m

tr
(
�∗

m

)
n

+2
Mn∑
�=1

�−1∑
m=1

w�wm
tr
(
�∗

m

)
n

)
≤ o(1)I ∗

n (w) (61)

uniformly in w ∈Wn , the final inequality since maxm≤Mn �nm = o(1).
Now consider (59). Notice that

E

∣∣∣∣∣
�−1∑
m=1

wmrmi

∣∣∣∣∣
2

=
�−1∑
m=1

w2
mEr2

mi +2
�−1∑
j=1

j−1∑
m=1

wjwmEr2
j i

≤
Mn∑

m=1

w2
mφ

2
m +2

Mn∑
j=1

j−1∑
m=1

wjwmφ
2
j

≤ I ∗
n (w). (62)

Applying the Cauchy–Schwarz inequality to (60), using (24) and (62), then

∥∥γ �∥∥ ≤
(
E‖x�i‖2

)1/2⎛⎝E ∣∣∣∣∣
Mn∑

m=1

wmrmi

∣∣∣∣∣
2⎞⎠1/2

= K 1/2
� I ∗

n (w)
1/2. (63)

As in the proof of Lemma 2 define γ̂� = n−1∑n
i=1 x�ir�i which is an average of

iid mean zero random vectors so

E‖γ̂�‖2 = 1

n
E

(
x ′
�i x�ir

2
�i

)
≤ ζ 2

� φ
2
�

n
. (64)

By the law of iterated expectations we can deduce that E
(
β̂�−β�

)= EQ̂−1
� γ̂� =

E

(
Q̂−1
� − IK�

)
γ̂�. Thus using the Cauchy–Schwarz inequality, Lemma 3,

and (64),

∥∥E (β̂�−β�
)∥∥≤
(
E

(∥∥∥Q̂−1
� − IK�

∥∥∥2
S

))1/2(
E‖γ̂�‖2

)1/2

≤ 21/2 A1/4
4 �n�

(
ζ 2
� φ

2
�

n

)1/2

. (65)
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Applying the Triangle and Cauchy–Schwarz inequalities, (63), and (65),∣∣∣∣∣
Mn∑
�=1

w�γ
′
�E
(
β̂�−β�

)∣∣∣∣∣≤
Mn∑
�=1

w�
∥∥γ �∥∥∥∥E (β̂�−β�

)∥∥
≤ (1 +η)1/2 A1/4

4 I ∗
n (w)

1/2
Mn∑
�=1

w�

(
�2

n�φ
2
�

)1/2

≤ (1 +η)1/2 A1/4
4 I ∗

n (w)
1/2

( Mn∑
�=1

w��
2
n�φ

2
�

)1/2

≤ o(1)I ∗
n (w), (66)

where the third inequality is Liapunov’s, noting that the weights w� define a
probability measure, and the final inequality uses maxm≤Mn �nm = o(1) and∑Mn
�=1w�φ

2
� ≤ I ∗

n (w).

Together, (61) and (66) show that

sup
w∈Wn

∣∣∣∣ I M S En(w)− I ∗
n (w)

I ∗
n (w)

∣∣∣∣≤ o(1),

as stated. n

Proof of Theorem 4. As discussed in Newey (1997, p. 150), since g(z) has s
continuous derivatives under Assumption 4.1, then

φ2
m = inf

β
E
(
g(zi)−β ′xm(zi )

)2 ≤ inf
β

sup
z

∣∣g(z)−β ′xm(z)
∣∣2 ≤ O

(
K −2s/q

m

)
.

Furthermore, as discussed earlier, ζ 2
m = O(Km) for splines and ζ 2

m = O(K 2
m)

for power series (see Andrews, 1991; Newey, 1995). It follows that ζ 2
mφ

2
m =

O(K 1−2s/q
m ) for splines and ζ 2

mφ
2
m = O(K 2−2s/q

m ) for power series. In either case,
Assumption 4.1 implies there is some D<∞ such that for all m,E

(
x ′

mi xmir2
mi

)≤
ζ 2

mφ
2
m ≤ D.

It follows that

n
∣∣I ∗

n (w)− In(w)
∣∣= Mn∑

m=1

w2
mE

(
x ′

mi xmir
2
mi

)

+2
Mn∑
�=1

�−1∑
m=1

w�wmE

(
x ′

mi xmir
2
mi

)
≤ D. (67)

Below we show that

inf
w

n In(w)→ ∞. (68)
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Together, (67) and (68) imply that as n → ∞

sup
w∈Wn

∣∣∣∣ I ∗
n (w)− In(w)

In(w)

∣∣∣∣ ≤ D

infw n In(w)
−→ 0

as stated.
To complete the proof, we now show (68). Let wn denote the solution to the

infimum problem (68), thus infw In(w)= In(w
n), and rewrite (19) as

n In(w)=
Mn∑

m=1

Mn∑
�=1

wmw�

(
nφ2

m∨�+ gm∧�
)
, (69)

where gm = tr
(
Q−1

m �m
)
.

Notice that n In(w)≥ nφ2
Mn
, which will diverge if Mn is bounded, since φ2

m > 0
for all m by Assumption 4.2. Thus without loss of generality we can assume that
Mn → ∞ as n → ∞.

We prove (68) by contradiction. Suppose (68) is false. Then there is a subse-
quence {n} and a constant B <∞ such that for all n along this subsequence,

n In(w
n) ≤ B. (70)

For some 0< ε < 1 set M∗ so that

KM∗ ≥ B

σ 2ε2
. (71)

Assume that n is sufficiently large so that Mn ≥ M∗.
Note that (70), (69) φ2

m ≥ 0 and gm ≥ 0 imply that

B ≥ n In(w
n)

≥
Mn∑

m=M∗

Mn∑
�=M∗

wn
mw

n
�gm∧�

≥ σ 2
Mn∑

m=M∗

Mn∑
�=M∗

wn
mw

n
� Km∧�

≥ σ 2

( Mn∑
m=M∗

wn
m

)2

KM∗

≥
( Mn∑

m=M∗
wn

m

)2
B

ε2 , (72)

where the third inequality uses gm ≥ σ 2 Km which is implied by Assumption 2.2,
the fourth inequality uses Km∧� ≥ KM∗ for m, �≥ M∗, and the fifth inequality is
(71). (72) implies that
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Mn∑
m=M∗

wn
m ≤ ε. (73)

By a similar argument,

n In(w
n) ≥

M∗−1∑
m=1

M∗−1∑
�=1

wn
mw

n
�nφ2

m∨�

≥
⎛⎝M∗−1∑

m=1

wn
m

⎞⎠2

nφ2
M∗

≥ (1 −ε)2 nφ2
M∗

−→ ∞
the third inequality by (73) and the final convergence since ε < 1 and φ2

M∗ > 0
by Assumption 4.2. This contradicts (70), establishing (68) by contradiction and
completing the proof. n
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