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This paper presents a set of rate of uniform consistency results for kernel estima-
tors of density functions and regressions functions+ We generalize the existing
literature by allowing for stationary strong mixing multivariate data with infinite
support, kernels with unbounded support, and general bandwidth sequences+ These
results are useful for semiparametric estimation based on a first-stage nonpara-
metric estimator+

1. INTRODUCTION

This paper presents a set of rate of uniform consistency results for kernel
estimators of density functions and regressions functions+ We generalize the
existing literature by allowing for stationary strong mixing multivariate data
with infinite support, kernels with unbounded support, and general bandwidth
sequences+

Kernel estimators were first introduced by Rosenblatt ~1956! for density esti-
mation and by Nadaraya ~1964! and Watson ~1964! for regression estimation+
The local linear estimator was introduced by Stone ~1977! and came into prom-
inence through the work of Fan ~1992, 1993!+

Uniform convergence for kernel averages has been previously considered in
a number of papers, including Peligrad ~1991!, Newey ~1994!,Andrews ~1995!,
Liebscher ~1996!, Masry ~1996!, Bosq ~1998!, Fan and Yao ~2003!, and Ango
Nze and Doukhan ~2004!+

In this paper we provide a general set of results with broad applicability+ Our
main results are the weak and strong uniform convergence of a sample average
functional+ The conditions imposed on the functional are general+ The data are
assumed to be a stationary strong mixing time series+ The support for the data
is allowed to be infinite, and our convergence is uniform over compact sets,
expanding sets, or unrestricted euclidean space+ We do not require the regres-
sion function or its derivatives to be bounded, and we allow for kernels with
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unbounded support+ The rate of decay for the bandwidth is flexible and includes
the optimal convergence rate as a special case+ Our applications include esti-
mation of multivariate densities and their derivatives, Nadaraya–Watson regres-
sion estimates, and local linear regression estimates+ We do not consider local
polynomial regression, although our main results could be applied to this appli-
cation also+

These features are useful generalizations of the existing literature+Most papers
assume that the kernel function has truncated support, which excludes the pop-
ular Gaussian kernel+ It is also typical to demonstrate uniform convergence only
over fixed compact sets, which is sufficient for many estimation purposes but
is insufficient for many semiparametric applications+ Some papers assume that
the regression function, or certain derivatives of the regression function, is
bounded+ This may appear innocent when convergence is limited to fixed com-
pact sets but is unsatisfactory when convergence is extended to expanding or
unbounded sets+ Some papers only present convergence rates using optimal band-
width rates+ This is inappropriate for many semiparametric applications where
the bandwidth sequences may not satisfy these conditions+ Our paper avoids
these deficiencies+

Our proof method is a generalization of those in Liebscher ~1996! and Bosq
~1998!+

Section 2 presents results for a general class of functions, including a vari-
ance bound, weak uniform convergence, strong uniform convergence, and con-
vergence over unbounded sets+ Section 3 presents applications to density
estimation, Nadaraya–Watson regression, and local linear regression+ The proofs
are in the Appendix+

Regarding notation, for x � ~x1, + + + , xd ! � Rd we set 7x7 � max~ 6x16 ,
+ + + , 6xd 6!+

2. GENERAL RESULTS

2.1. Kernel Averages and a Variance Bound

Let $Yi , Xi % � R � Rd be a sequence of random vectors+ The vector Xi may
include lagged values of Yi , e+g+, Xi � ~Yi�1, + + + ,Yi�d !+ Consider averages of
the form

ZC~x! �
1

nh d �
i�1

n

Yi K� x � Xi

h
�, (1)

where h � o~1! is a bandwidth and K~u! : Rd r R is a kernel-like function+
Most kernel-based nonparametric estimators can be written as functions of aver-
ages of this form+ By suitable choice of K~u! and Yi this includes kernel esti-
mators of density functions, Nadaraya–Watson estimators of the regression
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function, local polynomial estimators, and estimators of derivatives of density
and regression functions+

We require that the function K~u! is bounded and integrable:

Assumption 1+ 6K~u!6 � PK � ` and �Rd 6K~u!6du � m � `+

We assume that $Yi , Xi % is weakly dependent+ We require the following reg-
ularity conditions+

Assumption 2+ The sequence $Yi , Xi % is strictly stationary and strong mixing
with mixing coefficients am that satisfy

am � Am�b, (2)

where A � ` and for some s � 2

E6Y0 6s � ` (3)

and

b �
2s � 2

s � 2
+ (4)

Furthermore, Xi has marginal density f ~x! such that

sup
x

f ~x! � B0 � ` (5)

and

sup
x

E~6Y0 6s 6X0 � x! f ~x!� B1 � `+ (6)

Also, there is some j * � ` such that for all j � j *

sup
x0 , xj

E~6Y0Yj 6 6X0 � x0 , Xj � xj ! fj ~x0 , xj !� B2 � `, (7)

where fj~x0, xj ! denotes the joint density of $X0, Xj % +

Assumption 2 specifies that the serial dependence in the data is strong mix-
ing, and equations ~2!–~4! specify a required decay rate+ Condition ~5! speci-
fies that the density f ~x! is bounded, and ~6! controls the tail behavior of the
conditional expectation E~6Y06s 6X0 � x!+ The latter can increase to infinity in
the tails but not faster than f ~x!�1+ Condition ~7! places a similar bound on
the joint density and conditional expectation+ If the data are independent or
m-dependent, then ~7! is immediately satisfied under ~6! with B2 � B1

2 +
In many applications ~such as density estimation! Yi is bounded+ In this case

we can take s �`, ~4! simplifies to b � 2, ~6! is redundant with ~5!, and ~7! is
equivalent to fj~x0, xj ! � B2 for all j � j *+
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The bound ~7! requires that $X0, Xj % have a bounded joint density fj~x0, xj !
for sufficient large j, but the joint density does not need to exist for small j+
This distinction allows Xi to consist of multiple lags of Yi + For example, if Xi �
~Yi�1,Yi�2, + + + ,Yi�d ! for d � 2 then fj~x0, xj ! is unbounded for j � d because
the components of X0 and Xj overlap+

THEOREM 1+ Under Assumptions 1 and 2 there is a Q � ` such that for n
sufficiently large

Var~ ZC~x!! �
Q

nh d
. (8)

An expression for Q is given in equation (A.5) in the Appendix.

Although Theorem 1 is elementary for independent observations, it is non-
trivial for dependent data because of the presence of nonzero covariances+ Our
proof builds on the strategy of Fan and Yao ~2003, pp+ 262–263! by separately
bounding covariances of short, medium, and long lag lengths+

2.2. Weak Uniform Convergence

Theorem 1 implies that 6 ZC~x!� E ZC~x!6� Op~~nh d!�102! pointwise in x � Rd+
We are now interested in uniform rates+ We start by considering uniformity
over values of x in expanding sets of the form $x : 7x7 � cn% for sequences cn

that are either bounded or diverging slowly to infinity+ To establish uniform
convergence, we need the function K~u! to be smooth+We require that K either
has truncated support and is Lipschitz or that it has a bounded derivative with
an integrable tail+

Assumption 3+ For some L1 � ` and L � `, either K~u! � 0 for 7u7 � L
and for all u,u ' � Rd

6K~u!� K~u ' !6 � L17u � u ' 7, (9)

or K~u! is differentiable, 6~]0]u!K~u!6� L1, and for some n� 1, 6~]0]u!K~u!6�
L17u7�n for 7u7 � L+

Assumption 3 allows for most commonly used kernels, including the poly-
nomial kernel class cp~1 � x 2! p , the higher order polynomial kernels of Müller
~1984! and Granovsky and Müller ~1991!, the normal kernel, and the higher
order Gaussian kernels of Wand and Schucany ~1990! and Marron and Wand
~1992!+ Assumption 3 excludes, however, the uniform kernel+ It is unlikely that
this is a necessary exclusion, as Tran ~1994! established uniform convergence
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of a histogram density estimator+ Assumption 3 also excludes the Dirichlet ker-
nel K~x! � sin~x!0~px!+

THEOREM 2+ Suppose that Assumptions 1–3 hold and for some q � 0 the
mixing exponent b satisfies

b �

1 � ~s � 1!�1 �
d

q
� d�

s � 2
(10)

and for

u �

b� 1 � d �
d

q
� ~1 � b!0~s � 1!

b� 3 � d � ~1 � b!0~s � 1!
(11)

the bandwidth satisfies

ln n

nuh d
� o~1! . (12)

Then for

cn � O~~ ln n!10dn102q ! (13)

and

an � � ln n

nh d�102

, (14)

sup
7x7�cn

6 ZC~x!� E ZC~x!6 � Op~an ! . (15)

Theorem 2 establishes the rate for uniform convergence in probability+ Using
~10! and ~11! we can calculate that u � ~0,1# and thus ~12! is a strengthening
of the conventional requirement that nh d r `+ Also note that ~10! is a strict
strengthening of ~4!+ If Yi is bounded, we can take s � `, and then ~10! and
~11! simplify to b � 1 � ~d0q!� d and u� ~b� 1 � d � ~d0q!!0~b� 3 � d !+
If q � ` and d � 1 then this simplifies further to b � 2 and u � ~b � 2!0
~b� 2!, which is weaker than the conditions of Fan and Yao ~2003, Lem+ 6+1!+
If the mixing coefficients have geometric decay ~b � `! then u � 1 and ~15!
holds for all q+

It is also constructive to compare Theorem 2 with Lemma B+1 of Newey
~1994!+ Newey’s convergence rate is identical to ~15!, but his result is restricted
to independent observations, kernel functions K with bounded support, and
bounded cn+

730 BRUCE E. HANSEN



2.3. Almost Sure Uniform Convergence

In this section we strengthen the result of the previous section to almost sure
convergence+

THEOREM 3+ Define fn � ~ln ln n!2 ln n. Suppose that Assumptions 1–3 hold
and for some q � 0 the mixing exponent b satisfies

b �

2 � s�3 �
d

q
� d�

s � 2
(16)

and for

u �

b�1 �
2

s
��

2

s
� 3 �

d

q
� d

b� 3 � d
(17)

the bandwidth satisfies

fn
2

nuh d
� O~1! . (18)

Then for

cn � O~fn
10d n102q ! , (19)

sup
7x7�cn

6 ZC~x!� E ZC~x!6 � O~an ! (20)

almost surely, where an is defined in (14).

The primary difference between Theorems 2 and 3 is the condition on the
strong mixing coefficients+

2.4. Uniform Convergence over Unbounded Sets

The previous sections considered uniform convergence over bounded or slowly
expanding sets+We now consider uniform convergence over unrestricted euclid-
ean space+ This requires additional moment bounds on the conditioning vari-
ables and polynomial tail decay for the function K~u!+

THEOREM 4+ Suppose the assumptions of Theorem 2 hold with h � O~1!
and q � d. Furthermore,
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sup
x
7x7qE~6Y0 6 6X0 � x! f ~x!� B3 � `, (21)

and for 7u7 � L

6K~u!6 � L27u7�q (22)

for some L2 � `. Then

sup
x�Rd
6 ZC~x!� E ZC~x!6 � Op~an ! .

THEOREM 5+ Suppose the assumptions of Theorem 3 hold with h � O~1!
and q � d. Furthermore, (21), (22), and E7X072q � ` hold. Then

sup
x�Rd
6 ZC~x!� E ZC~x!6 � O~an !

almost surely.

Theorems 4 and 5 show that the extension to uniformity over unrestricted
euclidean space can be made with minimal additional assumptions+ Equa-
tion ~21! is a mild tail restriction on the conditional mean and density function+
The kernel tail restriction ~22! is satisfied by the kernels discussed in Sec-
tion 2+2 for all q � 0+

3. APPLICATIONS

3.1. Density Estimation

Let Xi � Rd be a strictly stationary time series with density f ~x!+ Consider the
estimation of f ~x! and its derivatives f ~r!~x!+ Let k~u! : Rd r R denote a multi-
variate pth-order kernel function for which k ~r!~u! satisfies Assumption 1 and
�6u 6 p�r 6k~u!6du � `+ The Rosenblatt ~1956! estimator of the r th derivative
f ~r!~x! is

Zf ~r! ~x! �
1

nh d�r �
i�1

n

k ~r!� x � Xi

h
�,

where h is a bandwidth+
We first consider uniform convergence in probability+

THEOREM 6+ Suppose that for some q � 0, the strong mixing coefficients
satisfy (2) with

b � 1 �
d

q
� d, (23)
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h � o~1! , and (12) holds with

u �

b� 1 �
d

q
� d

b� 3 � d
. (24)

Suppose that supx f ~x! � ` and there is some j * � ` such that for all j � j *,
supx0 , xj

fj ~x0 , xj ! � ` where fj~x0, xj ! denotes the joint density of $X0, Xj %.
Assume that the pth derivative of f ~r!~x! is uniformly continuous. Then for any
sequence cn satisfying (13),

sup
7x7�cn

6 Zf ~r! ~x!� f ~r! ~x!6 � Op�� ln n

nh d�2r�102

� h p� . (25)

The optimal convergence rate (by selecting the bandwidth h optimally) can be
obtained when

b � 1 � d �
d

q
�

d

p � r
�2 �

d

2q
� (26)

and is

sup
7x7�cn

6 Zf ~r! ~x!� f ~r! ~x!6 � Op�� ln n

n
�p0~d�2p�2r!� . (27)

Furthermore, if in addition supx7x7qf ~x! � ` and 6k ~r!~u!6� L27u7�q for 7u7
large, then the supremum in (25) or (27) may be taken over x � Rd.

Take the simple case of estimation of the density ~r � 0!, second-order ker-
nel ~ p � 2!, and bounded cn ~q � `!+ In this case the requirements state that
b � 1 � d is sufficient for ~25! and b � 1 � 2d is sufficient for the optimal
convergence rate ~27!+ This is an improvement upon the work of Fan and Yao
~2003, Thm+ 5+3!, who ~for d � 1! require b � 5

2
_ and b � 15

4
_ for these two

results+
An alternative uniform weak convergence rate has been provided by Andrews
~1995, Thm+ 1~a!!+ His result is more general in allowing for near-epoch-
dependent arrays, but he obtains a slower rate of convergence+

We now consider uniform almost sure convergence+

THEOREM 7+ Under the assumptions of Theorem 6, if b � 3 � ~d0q! � d
and (18) and (19) hold with

u �

b� 3 �
d

q
� d

b� 3 � d
,
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then

sup
7x7�cn

6 Zf ~r! ~x!� f ~r! ~x!6 � O�� ln n

nh d�2r�102

� h p�
almost surely. The optimal convergence rate when

b � 3 � d �
d

q
�

d

p � r
�3 �

d

2q
�

is

sup
7x7�cn

6 Zf ~r! ~x!� f ~r! ~x!6 � O�� ln n

n
�p0~d�2p�2r!� (28)

almost surely.

Alternative results for strong uniform convergence for kernel density esti-
mates have been provided by Peligrad ~1991!, Liebscher ~1996, Thms+ 4+2 and
4+3!, Bosq ~1998, Thm+ 2+2 and Cor+ 2+2!, and Ango Nze and Doukhan ~2004!+
Theorem 6 contains Liebscher’s result as the special case r � 0 and q �`, and
he restricts attention to kernels with bounded support+ Peligrad imposes r-mixing
and bounded cn+ Bosq restricts attention to geometric strong mixing+

3.2. Nadaraya–Watson Regression

Consider the estimation of the conditional mean

m~x! � E~Yi 6Xi � x!+

Let k~u! : Rd r R denote a multivariate symmetric kernel function that satis-
fies Assumptions 1 and 3 and let �6u 62 6k~u!6du � `+ The Nadaraya–Watson
estimator of m~x! is

[m~x! �
�
i�1

n

Yi k� x � Xi

h
�

�
i�1

n

k� x � Xi

h
� ,

where h is a bandwidth+

THEOREM 8+ Suppose that Assumption 2 and equations (10)–(13) hold and
the second derivatives of f ~x! and f ~x!m~x! are uniformly continuous and
bounded. If
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dn � inf
6x 6�cn

f ~x! � 0,

h � o~1! , and dn
�1 an

* r 0 where

an
* � � log n

nh d �102

� h 2, (29)

then

sup
6x 6�cn

6 [m~x!� m~x!6 � Op~dn
�1 an

*! . (30)

The optimal convergence rate when b is sufficiently large is

sup
6x 6�cn

6 [m~x!� m~x!6 � Op�dn
�1� ln n

n
�20~d�4!� . (31)

THEOREM 9+ Suppose that the assumptions of Theorem 8 hold and equa-
tions (16)–(19) hold instead of (10)–(13). Then (30) and (31) can be strength-
ened to almost sure convergence.

If cn is a constant then the convergence rate is an, and the optimal rate is
~n�1 ln n!20~d�4!, which is the Stone ~1982! optimal rate for independent and
identically distributed ~i+i+d+! data+ Theorems 8 and 9 show that the uniform
convergence rate is not penalized for dependent data under the strong mixing
assumption+

For semiparametric applications, it is frequently useful to require cnr ` so
that the entire function m~x! is consistently estimated+ From ~30! we see that
this induces the additional penalty term dn

�1 +
Alternative results for the uniform rate of convergence for the Nadaraya–

Watson estimator have been provided by Andrews ~1995, Thm+ 1~b!! and Bosq
~1998, Thms+ 3+2 and 3+3!+Andrews allows for near-epoch-dependent arrays but
obtains a slower rate of convergence+ Bosq requires geometric strong mixing, a
much stronger moment bound, and a specific choice for the bandwidth parameter+

3.3. Local Linear Regression

The local linear estimator of m~x!� E~Yi 6Xi � x! and its derivative m ~1!~x! are
obtained from a weighted regression of Yi on Xi � xi + Letting ki � k~~x � Xi !0h!
and ji � Xi � x, the local linear estimator can be written as

� Km~x!

Km ~1! ~x!� � � �
i�1

n

ki �
i�1

n

ji
' ki

�
i�1

n

ji ki �
i�1

n

ji ji
' ki
�

�1

� �
i�1

n

ki Yi

�
i�1

n

ji ki Yi
� +
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Let k~u! be a multivariate symmetric kernel function for which �6u 64 6k~u!6du �
` and the functions k~u!, uk~u!, and uu 'k~u! satisfy Assumptions 1 and 3+

THEOREM 10+ Under the conditions of Theorem 8 and dn
�2 an

* r 0 where
an
* is defined in (29) then

sup
6x 6�cn

6 Km~x!� m~x!6 � Op~dn
�2 an

*! .

THEOREM 11+ Under the conditions of Theorem 9 and dn
�2 an

* r 0 where
an
* is defined in (29) then

sup
6x 6�cn

6 Km~x!� m~x!6 � O~dn
�2 an

*!

almost surely.

These are the same rates as for the Nadaraya–Watson estimator, except the
penalty term for expanding cn has been strengthened to dn

�2 + When cn is fixed
the convergence rate is Stone’s optimal rate+

Alternative uniform convergence results for pth-order local polynomial esti-
mators with fixed cn have been provided by Masry ~1996! and Fan and Yao
~2003, Thm+ 6+5!+ Fan and Yao restrict attention to d � 1+ Masry allows d � 1
but assumes that ~ p � 1! derivatives of m~x! are uniformly bounded ~second
derivatives in the case of local linear estimation!+ Instead, we assume that the
second derivatives of the product f ~x!m~x! are uniformly bounded, which is
less restrictive for the case of local linear estimation+
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APPENDIX

Proof of Theorem 1. We start with some preliminary bounds+ First note that Assump-
tion 1 implies that for any r � s,

�
Rd
6K~u!6r du � PK r�1m� PK s�1m+ (A.1)

Second, assuming without loss of generality that B0 � 1 and B1 � 1, note that the Lr

inequality, ~5!, and ~6! imply that for any 1 � r � s

E~6Y0 6r 6X0 � x! f ~x!� ~E~6Y0 6s 6X0 � x!!r0s f ~x!

� ~E~6Y0 6s 6X0 � x! f ~x!!r0s f ~x!~s�r!0s

� B1
r0s B0

~s�r!0s

� B1 B0 + (A.2)

Third, for fixed x and h let

Zi � K� x � Xi

h
�Yi +
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Then for any 1 � r � s, by iterated expectations, ~A+2!, a change of variables, and ~A+1!

h�dE6Z0 6r � h�dE�E��K� x � X0

h
�Y0�

r

6X0��
� h�d�

Rd �K� x � u

h
��r

E~6Y0 6r 6X0 � u! f ~u! du

��
Rd
6K~u!6rE~6Y0 6r 6X0 � x � hu! f ~x � hu! du

� �
Rd
6K~u!6r duB1 B0

� PK s�1mB1 B0

[ Tm � `+ (A.3)

Finally, for j � j *, by iterated expectations, ~7!, two changes of variables, and Assump-
tion 1,

E6Z0 Zj 6 � E�E��K� x � X0

h
�K� x � Xj

h
�Y0Yj�6X0 , Xj��

��
Rd
�

Rd �K� x � u0

h
�K� x � uj

h
��E~6Y0Yj 6 6X0 � u0 , Xj � uj !

� fj ~u0 ,uj ! du0 duj

��
Rd
�

Rd
6K~u0 !K~uj !6E~6Y0Yj 6 6X0 � x � hu0 , Xj � x � huj !

� fj ~x � hu0 , x � huj ! du0 duj

� h 2d�
Rd
�

Rd
6K~u0 !K~uj !6du0 duj B2

� h 2dm2B2 + (A.4)

Define the covariances

Cj � E~~Z0 � EZ0 !~Zj � EZj !!+

Assume that n is sufficiently large so that h�d � j *+We now bound the Cj separately for
j � j *, j * � j � h�d , and h�d � 1 � j � `+

First, for j � j *, by the Cauchy–Schwarz inequality and ~A+3! with r � 2,

6Cj 6 � E~Z0 � EZ0 !
2 � EZ0

2 � Tmh d+
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Second, for j * � j � h�d, ~A+4! and ~A+3! for r � 1 combine to yield

6Cj 6 � E6Z0 Zj 6� ~E6Z0 6!2 � ~m2B2 � Tm2 !h 2d+

Third, for j � h�d � 1, using Davydov’s lemma, ~2!, and ~A+3! with r � s we obtain

6Cj 6 � 6aj
1�20s~E6Zi 6s !20s

� 6Aj�b~1�20s! ~ Tmh d !20s

� 6A Tm20sj�~2�20s!h 2d0s,

where the final inequality uses ~4!+
Using these three bounds, we calculate that

nh dVar~ ZC~x!! �
1

n
E��

i�1

n

Zi � EZi�2

� C0 � 2 �
j�1

j *

6Cj 6� 2 �
j�j *�1

h�d

6Cj 6� 2 �
j�h�d�1

`

6Cj 6

� ~1 � 2j * ! Tmh d � 2 �
j�j *�1

h�d

~m2B2 � Tm2 !h 2d

� 2 �
j�h�d�1

`

6A Tm20sj�~2�20s!h 2d0s

� ~1 � 2j * ! Tmh d � 2~m2B2 � Tm2 !h d �
12A Tm20s

~s � 2!0s
h d,

where the final inequality uses the fact that for d � 1 and k � 1

�
j�k�1

`

j�d � �
k

`

x�d dx �
k 1�d

~d� 1!
+

We have shown that ~8! holds with

Q � �~1 � 2j * ! Tm� 2~m2B2 � Tm2 !�
12A Tm20ss

s � 2
�, (A.5)

completing the proof+ �

Before giving the proof of Theorem 2 we restate Theorem 2+1 of Liebscher ~1996!
for stationary processes, which is derived from Theorem 5 of Rio ~1995!+

LEMMA ~Liebscher0Rio!+ Let Zi be a stationary zero-mean real-valued process such
that 6Zi 6 � b, with strong mixing coefficients am. Then for each positive integer m � n
and « such that m � «b04
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P���
i�1

n

Zi� � «� � 4 exp��
«2

64
nsm

2

m
�

8

3
«mb � � 4

n

m
am,

where sm
2 � E~�i�1

m Zi !
2.

Proof of Theorem 2. We first note that ~10! implies that u defined in ~11! satisfies
u � 0, so that ~12! allows h � o~1! as required+

The proof is organized as follows+ First, we show that we can replace Yi with the
truncated process Yi1~6Yi 6� tn! where tn � an

�10~s�1! + Second, we replace the the supre-
mum in ~15! with a maximization over a finite N-point grid+ Third, we use the exponen-
tial inequality of the lemma to bound the remainder+ The second and third steps are a
modification of the strategy of Liebscher ~1996, proof of Thm+ 4+2!+

The first step is to truncate Yi + Define

Rn~x! � ZC~x!�
1

nh d �
i�1

n

Yi K� x � Xi

h
�1~6Yi 6� tn !

�
1

nh d �
i�1

n

Yi K� x � Xi

h
�1~6Yi 6 � tn !+ (A.6)

Then by a change of variables, using the region of integration, ~6!, and Assumption 1

6ERn~x!6 �
1

h d �
Rd �K� x � u

h
��E~6Y0 61~6Y0 6 � tn !6X0 � u! f ~u! du

��
Rd
6K~u!6E~6Y0 61~6Y0 6 � tn !6X0 � x � hu! f ~x � hu! du

� �
Rd
6K~u!6E~6Y0 6stn

�~s�1!1~6Y0 6 � tn !6X0 � x � hu! f ~x � hu! du

� tn
�~s�1!�

Rd
6K~u!6E~6Y0 6s 6X0 � x � hu! f ~x � hu! du

� tn
�~s�1! mB1+ (A.7)

By Markov’s inequality and the definition of tn

6Rn~x!� ERn~x!6 � Op~tn
�~s�1! !� Op~an !,

and therefore replacing Yi with Yi1~6Yi 6 � tn! results in an error of order Op~an!+ For
the remainder of the proof we simply assume that 6Yi 6 � tn+

For the second step we create a grid using regions of the form Aj � $x : 7x � xj7 �
an h%+ By selecting xj to lay on a grid, the region $x : 7x7� cn% can be covered with N �
cn

d h�dan
�d such regions Aj + Assumption 3 implies that for all 6x1 � x26 � d � L,

6K~x2 !� K~x1!6 � dK *~x1!, (A.8)

740 BRUCE E. HANSEN



where K *~u! satisfies Assumption 1+ Indeed, if K ~u! has compact support and is
Lipschitz then K *~u! � L11~7u7 � 2L!+ On the other hand, if K~u! satisfies the differ-
entiability conditions of Assumption 3, then K *~u! � L1~1~7u7 � 2L! � 7u � L7�h

1~7u7 � 2L!!+ In both cases K *~u! is bounded and integrable and therefore satisfies
Assumption 1+

Note that for any x � Aj then 7x � xj70h � an, and equation ~A+8! implies that if n is
large enough so that an � L,

�K� x � Xi

h
�� K� xj � Xi

h
�� � an K *� xj � Xi

h
�+

Now define

EC~x! �
1

nh d �
i�1

n

Yi K *� x � Xi

h
�, (A.9)

which is a version of ZC~x! with K~u! replaced with K *~u!+ Note that

E6 EC~x!6 � B1 B0�
Rd

K *~u! du � `+

Then

sup
x�Aj

6 ZC~x!� E ZC~x!6 � 6 ZC~xj !� E ZC~xj !6� an @6 EC~xj !6� E6 EC~xj !6#

� 6 ZC~xj !� E ZC~xj !6� an 6 EC~xj !� E EC~xj !6� 2anE6 EC~xj !6

� 6 ZC~xj !� E ZC~xj !6� 6 EC~xj !� E EC~xj !6� 2an M,

the final inequality because an � 1 for n sufficiently large and for any M � E6 EC~x!6+
We find that

P� sup
7x7�cn

6 ZC~x!� E ZC~x!6 � 3Man�
� N max

1�j�N
P�sup

x�Aj

6 ZC~x!� E ZC~x!6 � 3Man�
� N max

1�j�N
P~6 ZC~xj !� E ZC~xj !6 � M ! (A.10)

� N max
1�j�N

P~6 EC~xj !� E EC~xj !6 � M !+ (A.11)

We now bound ~A+10! and ~A+11! using the same argument, as both K~u! and K *~u!
satisfy Assumption 1, and this is the only property we will use+

Let Zi ~x! � Yi K ~~x � Xi !0h! � EYi K ~~x � Xi !0h!+ Because 6Yi 6 � tn and
6K~~x � Xi !0h!6 � PK it follows that 6Zi ~x!6 � 2tn PK [ bn+ Also from Theorem 1
we have ~for n sufficiently large! the bound
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sup
x

E��
i�1

m

Zi ~x!�2

� Qmh d+

Set m � an
�1tn

�1 and note that m � n and m � «bn04 for «� Man nh d for n sufficiently
large+ Then by the lemma, for any x, and n sufficiently large,

P~6 ZC~x!� E ZC~x!6 � Man !� P���
i�1

n

Zi ~x!� � Man nh d�
� 4 exp��

M 2an
2 n2h 2d

64Qnh d � 6 PKMnh d�� 4
n

m
am

� 4 exp��
M 2 ln n

64Q� 6 PKM
�� 4Anm�1�b

� 4n�M0~64�6 PK ! � 4Anan
1�btn

1�b ,

the second inequality using ~2! and ~14! and the last inequality taking M � Q+ Recalling
that N � cn

d h�dan
�d , it follows from this and ~A+10!–~A+11! that

P� sup
7x7�cn

6 ZC~x!� E ZC~x!6 � 3Man� � O~T1n !� O~T2n !, (A.12)

where

T1n � cn
d h�dan

�d n�M0~64�6 PK ! (A.13)

and

T2n � cn
d h�dnan

1�b�dtn
1�b + (A.14)

Recall that tn � an
�10~s�1! and cn � O~~ ln n!10dn102q!+ Equation ~12! implies that

~ ln n!h�d � o~nu! and thus cn
d h�d � o~nd02q�u!+ Also

an � ~~ ln n!h�dn�1 !102 � o~n�~1�u!02 !+

Thus

T1n � o~nd02q�u�d~1�u!02�M0~64�6 PK ! !� o~1!

for sufficiently large M and

T2n � o~nd02q�u�1�~1�u!@1�b�d�~1�b!0~s�1!#02 !� o~1!

by ~11!+ Thus ~A+12! is o~1!, which is sufficient for ~15!+ �

Proof of Theorem 3. We first note that ~16! implies that u defined in ~17! satisfies
u � 0, so that ~18! allows h � o~1! as required+
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The proof is a modification of the proof of Theorem 2+ Borrowing an argument from
Mack and Silverman ~1982!, we first show that Rn~x! defined in ~A+6! is O~an! when
we set tn � ~nfn!

10s+ Indeed, by ~A+7! and s � 2,

6ERn~x!6 � tn
�~s�1! mB1 � n�~s�1!smB1 � O~an !,

and because

�
n�1

`

P~6Yn 6 � tn !� �
n�1

`

tn
�sE6Yn 6s � E6Y0 6s �

n�1

`

~nfn !
�1 � `,

using the fact that �n�1
` ~nfn !

�1 � `, then for sufficiently large n, 6Yn6 � tn with prob-
ability one+ Hence for sufficiently large n and all i � n, 6Yi 6 � tn, and thus Rn~x! � 0
with probability one+ We have shown that

6Rn~x!� ERn~x!6 � O~an !

almost surely+ Thus, as in the proof of Theorem 2 we can assume that 6Yi 6 � tn+
Equations ~A+12!–~A+14! hold with tn � ~nfn!

10s and cn � O~fn
10d n102q !+ Employing

h�d � O~fn
�2 nu ! and rn � o~fn

�102 n�~1�u!02 ! we find

T1n � cn
d h�drn

�d n�M0~64�6 PK !

� o~fn
�1 nd02q�u�d~1�u!02�M0~64�6 PK ! !

� o~~nfn !
�1 !

for sufficiently large M and

T2n � cn
d h�dnan

1�b�dtn
1�b

� O~fn
�1�~1�b�d !02�~1�b!0s nd02q�u�1�~1�u!~1�b�d !02�~1�b!0s !

� O~~nfn !
�1 !

by ~17! and the fact that ~1 � b!0s � ~1 � b � d !02 is implied by ~16!+ Thus

�
n�1

`

~T1n � T2n ! � `+

It follows from this and ~A+12! that

�
n�1

`

P� sup
7x7�cn

6 ZC~x!� E ZC~x!6 � 3Man� � `,

and ~20! follows by the Borel–Cantelli lemma+ �
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Proof of Theorem 4. Define cn � n102q and

EC~x! �
1

nh d �
i�1

n

Yi K� x � Xi

h
�1~7Xi7� cn !+ (A.15)

Observe that cn
�q � O~an!+ Using the region of integration, a change of variables, ~21!,

and Assumption 1,

6E~ ZC~x!� EC~x!!6 � h�dE�6Y0 6�K� x � X0

h
��1~7X07 � cn !�

� h�d�
7u7�cn

E~6Y0 6 6X0 � u!�K� x � u

h
�� f ~u! du

� h�dcn
�q�

Rd
7u7qE~6Y0 6 6X0 � u!�K� x � u

h
�� f ~u! du

� cn
�q�

Rd
7x � hu7qE~6Y0 6 6X0 � x � hu! f ~x � hu!6K~u!6du

� cn
�q B3m

� O~an !+ (A.16)

By Markov’s inequality

sup
x
6 ZC~x!� E ZC~x!6 � sup

x
6 EC~x!� E EC~x!6� Op~an !+ (A.17)

This shows that the error in replacing ZC~x! with EC~x! is Op~an!+
Suppose that cn � L, 7x7 � 2cn, and 7Xi7 � cn+ Then 7x � Xi7 � cn, and ~22! and

q � d imply that

K� x � Xi

h
� � L2�� x � Xi

h ��
�q

� L2 h qcn
�q � L2 h dcn

�q +

Therefore

sup
7x7�2cn

6 EC~x!6 �
1

nh d �
i�1

n

6Yi 6 sup
7x7�2cn

�K� x � Xi

h
��1~7Xi7� cn !

�
1

n �
i�1

n

6Yi 6L2 cn
�q

� O~an !

and

sup
7x7�2cn

6 EC~x!� E EC~x!6 � O~an ! (A.18)
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almost surely+ Theorem 2 implies that

sup
7x7�2cn

6 EC~x!� E EC~x!6 � Op~an !+ (A.19)

Equations ~A+17!–~A+19! together establish the result+ �

Proof of Theorem 5. Let cn � ~nfn!
102q and let EC~x! be defined as in ~A+15!+ Because

E6Xi 62q � `, by the same argument as at the beginning of the proof of Theorem 3, for
n sufficiently large ZC~x! � EC~x! with probability one+ This and ~A+16! imply that the
error in replacing ZC~x! with EC~x! is O~cn

�q! � O~an!+
Furthermore, equation ~A+18! holds+ Theorem 3 applies because 102q � 10d implies

cn � O~fn
10d n102q !+ Thus

sup
x
6 EC~x!� E EC~x!6 � O~an !

almost surely+ Together, this completes the proof+ �

Proof of Theorem 6. In the notation of Section 2, Zf ~x! � h�r ZC~x! with K~x! �
k ~r!~x! and Yi � 1+ Assumptions 1–3 are satisfied with s � `; thus by Theorem 2

sup
7x7�cn

6 Zf ~r! ~x!� E Zf ~r! ~x!6 � h�r sup
7x7�cn

6 ZC~x!� E ZC~x!6

� Op�h�r� log n

nh d �102�
� Op�� log n

nh d�2r�102�+
By integration by parts and a change of variables,

E Zf ~r! ~x! �
1

h d�r
E�k ~r!� x � Xi

h
��

�
1

h d�r �k ~r!� x � u

h
� f ~u! du

�
1

h d �k� x � u

h
� f ~r! ~u! du

��k~u! f ~r! ~x � hu! du

� f ~x!� O~h p !,

where the final equality is by a pth-order Taylor series expansion and using the assumed
properties of the kernel and f ~x!+ Together we obtain ~25!+ Equation ~27! is obtained by
setting h � ~ ln n0n!10~d�2p�2r! , which is allowed when u � d0~d � 2p � 2r!+ �
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Proof of Theorem 7. The argument is the same as for Theorem 6, except that Theo-
rem 3 is used so that the convergence holds almost surely+ �

Proof of Theorem 8. Set g~x! � m~x! f ~x!, [g~x! � ~nh d !�1 �i�1
n Yi k~~x � Xi !0h!,

and Zf ~x! � ~nh d !�1 �i�1
n k~~x � Xi !0h!+ We can write

[m~x! �
[g~x!

Zf ~x!
�
[g~x!0f ~x!

Zf ~x!0f ~x!
+ (A.20)

We examine the numerator and denominator separately+
First, Theorem 6 shows that

sup
7x7�cn

6 Zf ~x!� f ~x!6 � Op~an
*!

and therefore

sup
7x7�cn

� Zf ~x!f ~x!
� 1� � sup

7x7�cn
� Zf ~x!� f ~x!

f ~x! � �
Op~an

*!

inf
6x 6�cn

f ~x!
� Op~dn

�1 an
*!+

Second, an application of Theorem 2 yields

sup
7x7�cn

6 [g~x!� E [g~x!6 � Op�� log n

nh d �102�+
We calculate that

E [g~x! �
1

h d
E�E~Y0 6X0 !k� x � X0

h
��

�
1

h d �
Rd

k� x � u

h
�m~u! f ~u! du

��
Rd

k~u!g~x � hu! du

� g~x!� O~h 2 !

and thus

sup
7x7�cn

6 [g~x!� g~x!6 � Op~an
*!+

This and g~x! � m~x! f ~x! imply that

sup
7x7�cn

� [g~x!f ~x!
� m~x!� �

Op~an !

inf
6x 6�cn

f ~x!
� Op~dn

�1 an
*!+ (A.21)
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Together, ~A+20! and ~A+21! imply that uniformly over 7x7 � cn

[m~x! �
[g~x!0f ~x!

Zf ~x!0f ~x!
�

m~x!� Op~dn
�1 an

*!

1 � Op~dn
�1 an

*!
� m~x!� Op~dn

�1 an
*!

as claimed+
The optimal rate is obtained by setting h � ~ ln n0n!10~d�4! , which is allowed when

u � d0~d � 4!, which is implied by ~11! for sufficiently large b+ �

Proof of Theorem 9. The argument is the same as for Theorem 8, except that Theo-
rems 3 and 7 are used so that the convergence holds almost surely+ �

Proof of Theorem 10. We can write

Km~x! �
[g~x!� S~x!'M~x!�1N~x!

Zf ~x!� S~x!'M~x!�1S~x!
,

where

S~x! �
1

nh d �
i�1

n � x � Xi

h
�k� x � Xi

h
�,

M~x! �
1

nh d �
i�1

n � x � Xi

h
�� x � Xi

h
�'k� x � Xi

h
�,

N~x! �
1

nh d �
i�1

n � x � Xi

h
�k� x � Xi

h
�Yi +

Defining V � �Rd uu 'k~u! du, Theorem 2 and standard calculations imply that uni-
formly over 7x7 � cn,

S~x! � hV f ~1! ~x!� Op~an
*!,

M~x! � V f ~x!� Op~an
*!,

N~x! � hVg ~1! ~x!� Op~an
*!+

Therefore because f ~1!~x! and g ~2!~x! are bounded, uniformly over 7x7 � cn,

f ~x!�1S~x! � Op~dn
�1~h � an

*!!,

f ~x!�1M~x! � V� Op~dn
�1 an

*!,

f ~x!�1N~x! � Op~dn
�1~h � an

*!!,
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and so

S~x!'M~x!�1S~x!

f ~x!
� Op~dn

�2~h � an
*!2 !� Op~dn

�2 an
*!

and

S~x!'M~x!�1N~x!

f ~x!
� Op~dn

�2 an
*!+

Therefore

Km~x! �

[g~x!� S~x!'M~x!�1N~x!

f ~x!

Zf ~x!� S~x!'M~x!�1S~x!

f ~x!

� m~x!� Op~dn
�2 an

*!

uniformly over 7x7 � cn+ �

Proof of Theorem 11. The argument is the same as for Theorem 10, except that
Theorems 3 and 7 are used so that the convergence holds almost surely+ �
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