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The exact mean integrated squared error ~MISE! of the nonparametric kernel den-
sity estimator is derived for the asymptotically optimal smooth polynomial ker-
nels of Müller ~1984, Annals of Statistics 12, 766–774! and the trapezoid kernel
of Politis and Romano ~1999, Journal of Multivariate Analysis 68, 1–25! and is
used to contrast their finite-sample efficiency with the higher order Gaussian ker-
nels of Wand and Schucany ~1990 Canadian Journal of Statistics 18, 197–204!+
We find that these three kernels have similar finite-sample efficiency+ Of greater
importance is the choice of kernel order, as we find that kernel order can have a
major impact on finite-sample MISE, even in small samples, but the optimal ker-
nel order depends on the unknown density function+ We propose selecting the
kernel order by the criterion of minimax regret, where the regret ~the loss relative
to the infeasible optimum! is maximized over the class of two-component mixture-
normal density functions+ This minimax regret rule produces a kernel that is a
function of sample size only and uniformly bounds the regret below 12% over
this density class+

The paper also provides new analytic results for the smooth polynomial ker-
nels, including their characteristic function+

1. INTRODUCTION

This paper is concerned with the choice of kernel for univariate nonparametric
density estimation+ A variety of kernel functions have been proposed+ Some
references include Parzen ~1962!, Epanechnikov ~1969!, Müller ~1984!, Silver-
man ~1986!, Wand and Schucany ~1990!, Scott ~1992!, Politis and Romano
~1999!, and Abadir and Lawford ~2004!+

A common measure to evaluate the efficiency of a density estimator is mean
integrated squared error ~MISE!+ As asymptotic MISE ~AMISE! is easier to
calculate than exact MISE, it has been common to analyze AMISE and adopt
kernel functions that minimize AMISE+ Marron and Wand ~1992! refocused
attention on the exact finite-sample MISE in their study of the higher order
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Gaussian kernels of Wand and Schucany ~1990!, showing that AMISE can be
quite misleading in many cases of interest+

We extend this literature by developing new expressions for the exact MISE
of several important kernel density estimators, including the asymptotically opti-
mal smooth symmetric polynomial kernels of Müller ~1984!, the infinite-order
Dirichlet kernel, and the trapezoid kernel of Politis and Romano ~1999!+ We
compute the MISE when the sampling densities are normal mixtures as in Mar-
ron and Wand ~1992!+

As an important by-product, we obtain convenient expressions for the char-
acteristic functions of the smooth polynomial kernels, a class that includes the
Epanechnikov, the biweight, and most higher order polynomial kernels used in
empirical practice+ Kernel characteristic functions are useful for many pur-
poses, including computationally efficient density estimation as discussed in
Silverman ~1986!+

Our calculations show that the choice between the higher order Gaussian ker-
nels and the smooth polynomial kernels has only a small impact on MISE,
whereas the choice of kernel order has a large impact on MISE+ Efficiency gains
~and losses! from higher order kernels can be quite substantial even in small
samples+ The practical problem is that the ideal kernel order depends on the
unknown density+

To provide a practical solution to the problem of kernel order selection, we
suggest the decision theoretic criterion of minimax regret+ This criterion picks
the kernel order to minimize the maximal percentage deviation between the
actual MISE and the infeasible optimal MISE over a set of candidate density
functions+ The minimax regret kernel order is a function only of sample size
and thus can be implemented in practice+ We calculate the minimax regret rule
by maximizing the regret over all two-component mixture-normal densities+We
find that the minimax regret kernel order is increasing in sample size, and this
rule uniformly bounds the regret below 12%+

We should mention two caveats at the outset+ First, higher order kernel den-
sity estimators are not constrained to be nonnegative and thus may violate the
properties of a density function+ A practical solution to this problem ~when it
arises! is to remove the negative part of the estimator and rescale the positive
part to integrate to one+ As shown by Hall and Murison ~1993! this does not
affect the AMISE+ However, the impact of this procedure on the finite-sample
MISE is unclear+ Second, our MISE calculations implicitly assume that the den-
sity has support on the entire real line ~our analysis is for mixture-normal den-
sities!+ The existence of a boundary can have substantial effects on the estimation
problem and hence on the MISE+

The remainder of the paper is organized as follows+ Section 2 introduces nota-
tion+ Section 3 presents new results concerning smooth polynomial kernels+ Sec-
tion 4 computes the characteristic functions and roughness of these kernels+
Section 5 presents the exact MISE of the density estimates, when the underly-
ing density is a mixture of normals as in Marron and Wand ~1992!+ Section 6
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presents a numerical analysis of the MISE of the various kernels+ We find that
the MISE can be greatly influenced by the order of the kernel, even in small
samples, and that the selection of kernel order is essential to accurate estima-
tion+ We find that the higher order Gaussian kernels of Wand and Schucany
~1990! are the most reasonable candidates for finite-sample efficient estima-
tion+ Section 7 proposes the selection of kernel order using minimax regret+
Section 8 is a brief conclusion+ Proofs are presented in the Appendix+ Further
numerical results and details, in addition to the compute code for the calcula-
tions, are available at http:00www+ssc+wisc+edu0;bhansen0papers0mise+html+

2. NOTATION

For any function g, let g ~m!~x! � ~d m0dx m!g~x! denote its mth derivative+ Let
f~x!, fs~x! � s�1f~x0s!, and fs

~m!~x! � s�1�mf~m!~x0s! denote the stan-
dard normal density, the scaled normal density, and its mth derivative,
respectively+

We call K ~x! a symmetric kernel function if K ~x! � K ~�x! and
*R K~x! dx � 1+ Following Müller ~1984!, we say that K is s-smooth if K ~s�1! is
absolutely continuous on R+ If the kernel has bounded support, this requires
that the ~s � 1!th derivative equals zero at the boundaries+

For integer r � 1, a kernel function K is of order 2r if *�`
` x kK~x! dx � 0 for

all k � 2r yet *�`
` x 2rK~x! dx � 0+ In particular, a kernel is second-order if

*�`
` x 2K~x! dx � 0+
Pochhammer’s symbol is denoted by

~a!n � )
j�0

n�1

~a � j !�
G~a � n!

G~a!
+

A useful result is Legendre’s duplication formula:

�1

2
�

m

�
~2m!!

m!22m
+ (1)

We will be making extensive use of special functions, for which a useful
reference is Magnus, Oberhettinger, and Soni ~1966!+ Many can be represented
as generalized hypergeometric functions

p Fq~a1, + + + ,ap ;c1, + + + , cq ; x! � (
j�0

` ~a1!j + + + ~ap !j x j

~c1!j + + + ~cq !j j!
+ (2)

For a review of the latter see Abadir ~1999!+ In particular, for integer m � 0,
our results will make use of the Gegenbauer polynomials

Cm
l~x! �

1

G~l! (k�0

@m02# ~�1!kG~l� m � k!~2x!m�2k

k!~m � 2k!!
(3)
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and the spherical Bessel function

jm~x! � (
k�0

` ~�1!k

�3

2
�

m�k

k!

� x

2
�m�2k

(4)

�

� x

2
�m

�3

2
�

m

0 F1�3

2
� m;�

x 2

4
�+

The Gegenbauer polynomials have several hypergeometric representations,
including

x�1C2m�1
l ~x! � ~�1!m�1

2~l!m
~m � 1!! 2 F1�1 � m,m � l;

3

2
; x 2�+ (5)

See Magnus et al+ ~1966, p+ 220!+

3. SMOOTH POLYNOMIAL KERNELS

Using a random sample with n real observations X1, + + + , Xn drawn indepen-
dently from a distribution with density f ~x!, the nonparametric Rosenblatt ker-
nel estimator of f ~x! is

fn~x! �
1

nh (i�1

n

K� x � Xi

h
�,

where K is a kernel function and h is a bandwidth+ The MISE of fn is

MISEn~h,K, f ! ��
�`

`

E~ fn~x!� f ~x!!2 dx+

For the moment, restrict attention to s-smooth, second-order kernels with
bounded support+ Müller ~1984! and Granovsky and Müller ~1991! found that
the MISE of fn

~s! is minimized by setting K to equal

Ms~x! �

�1

2
�

s�1

s!
~1 � x 2 !s+ (6)

This class includes the uniform ~s � 0!, Epanechnikov ~s � 1!, biweight ~s � 2!,
and triweight ~s � 3!+ Furthermore, as s diverges, the optimal smooth kernel
approaches the Gaussian kernel, as
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lim
sr`

1

M2s
Ms� x

M2s
� � f~x!+

Now consider the more general case of s-smooth bounded-support kernels of
order 2r+ Müller ~1984! and Granovsky and Müller ~1991! found that the MISE
of fn

~s! is minimized by using a polynomial kernel of order s � r � 1 in x 2+ We
now present several alternative representations for this kernel+

THEOREM 1+ Müller’s s-smooth, 2rth-order kernel on @�1,1# is

M2r, s~x! � Br, s~x!Ms~x!, (7)

where

Br, s~x! �

�3

2
�

r�1
�3

2
� s�

r�1

~s � 1!r�1
(
k�0

r�1
~�1!k�1

2
� s � r�

k

x 2k

k!~r � 1 � k!!�3

2
�

k

(8)

� ~�1!r�1

�1

2
�

r

~s � 1!r�1�s �
1

2
� x�1C2r�1

s�102~x! (9)

�
s!

�s �
1

2
� (m�0

r�1

~�1!m
�1

2
�

m
�2m � s �

1

2
�

~s � m!!
C2m

s�102~x!+ (10)

Furthermore

M2r, s~x! � (
m�0

r�1

~�1!m
�1

2
�

m�s

m!22m�1

2
�

2m�s

M2m�s
~2m! ~x!+ (11)

Equation ~8! gives an explicit formula for the kernel, whereas ~9!–~11! give
alternatives+ For numerical computation, the formula ~7!–~8! is numerically
reliable+
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Granovsky and Müller ~1991! examined the limit as s r `+ They showed
that

lim
sr`

1

M2s
M2r, s� x

M2s
� � G2r ~x!�

~�1!rf~2r�1! ~x!

2r�1~r � 1!!x
+ (12)

Here G2r are the higher order Gaussian kernels of Wand and Schucany ~1990!
and Marron and Wand ~1992!+

We now show that as the order 2r increases, both classes of kernels approach
the infinite-order Dirichlet kernel D~x! � sin~x!0~px!+

THEOREM 2+

lim
rr`

1

2r
M2r, s� x

2r
� � D~x!+ (13)

THEOREM 3+

lim
rr`

1

M2r � 2
G2r� x

M2r � 2
� � D~x!+ (14)

4. CHARACTERISTIC FUNCTION AND ROUGHNESS

For any function g, let Ig~t ! � *�`
` exp~itx!g~x! dx denote the characteristic

function of g~x!+ For example, the characteristic function of the normal density
is Ef~t ! � exp~�t 202!+

For the higher order Gaussian kernels, the characteristic function EG2r~t ! �
exp~�t 202!(k�0

r�1 t 2k02kk! is given by Wand and Schucany ~1990, p+ 200!+
However, the characteristic function has not been calculated previously for the
smooth polynomial kernels M2r, s+We now show that they consist of linear com-
binations of spherical Bessel functions as defined in ~4!+

THEOREM 4+

GMs~t ! � �3

2
�

s
�2

t
�s

js~t !+

THEOREM 5+

GM2r, s~t ! �
2

Mp �2

t
�s

(
m�0

r�1

as~m!js�2m~t !, (15)
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where

as~m! �

G�1

2
� m � s��1

2
� 2m � s�

m!
+ (16)

For computational purposes, when t is large, the series ~4! can be numeri-
cally unstable, in which case it is preferable to compute jm~t ! using the recurrence

jm�1~t ! �
2m � 1

t
jm~t !� jm�1~t ! (17)

with the initial conditions

j0~t ! �
sin~t !

t
(18)

and

j1~t ! �
sin~t !

t 2
�

cos~t !

t
+

Combining this with Parseval’s equality, we can use ~15! to calculate the
roughness of M2r, s+

THEOREM 6+

R~M2r, s ! ��
�`

`

M2r, s~x!
2 dx

�
~2s!!

p (l�0

r�1

(
m�0

r�1 1~6 l � m 6 � s � 1!as~l !as~m!

~l � m � s!!~m � l � s!!�1

2
� l � m�

1�2s

+

Politis and Romano ~1999! introduced a class of infinite-order “general flat-
top kernels” that have flat characteristic functions at the origin+ Their preferred
kernel is

l2~x! �
2~sin2~x!� sin2~x02!!

px 2
,

which has the trapezoidal characteristic function

Dl2~t ! � ~2 � 6 t 6!� � ~1 � 6 t 6!�,
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where ~t !� � max~t,0!+ We thus call l2~t ! the trapezoid kernel+ It is easy to
calculate that R~l2! � 40~3p!+

Figure 1a displays the four kernels M4,8, M10,8, M20,8, and l2+ The kernels
have been rescaled and normalized so that all have equal roughness+ The basic
shapes of the kernels are similar, with the waviness of the kernels increasing in
kernel order+ The second panel displays the characteristic functions of the same
kernels ~again normalized to have equal roughness!+ Here it is easier to see the

Figure 1. ~a! Polynomial and Trapezoid Kernel Functions+ ~b! Polynomial and Trape-
zoid Characteristic Functions+
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contrasts+As the kernel order increases, the characteristic functions are increas-
ingly flat at the origin, with the high-order polynomial characteristic function
developing a significant negative lobe+

5. EXACT MISE

The exact MISE of the kernel density estimator fn can be written as

MISEn~h,K, f ! �
R~K !

nh
� �1 �

1

n
� I2~h,K, f !� 2I1~h,K, f !� I0~ f !, (19)

where

Ij ~h,K, f ! �
1

p
�

0

`

EK~ht ! j Df ~t !2 dt �
1

ph
�

0

`

EK~t ! j Df� t

h
�2

dt (20)

with EK and Df denoting the characteristic functions of K and f+ Equation ~19! is
shown, for example, in equation ~3+1! of Chiu ~1991!+ We write I0~h,K, f ! �
I0~ f ! because it is independent of K and h+

Marron and Wand ~1992! proposed a test set of mixture-normal density func-
tions for which ~19! is feasible to calculate+ The Marron–Wand densities take
the form

f ~x! � (
k�1

q

wkfsk
~x �mk !+ (21)

The characteristic function of ~21! is

Df ~t ! � (
k�1

q

wk e�sk
2 t 202 exp~itmk !

with square

Df ~t !2 � (
i�1

q

(
k�1

q

wi wk e�sik
2 t 202 cos~tm ik !, (22)

where sik
2 � si

2 � sk
2 and m ik � m i � mk+ We follow Marron and Wand and

restrict attention to this class of density functions for our calculation of exact
MISE+

From ~22! and equation ~A+7! in the Appendix, or Theorem 2+1 of Marron
and Wand ~1992!, we find that I0~ f !�(i�1

q (k�1
q wi wkfsik

~m ik !+ To calculate
MISEn~h,K, f ! we also need the integrals I1~h,K, f ! and I2~h,K, f !, which may
be calculated by numerical or analytic integration+ Although we use numerical
integration to calculate MISE in the next section we use analytic integration to
verify their accuracy+

Our first result is the integrals for the smooth polynomial kernels+
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THEOREM 7+ For the mixture-normal densities (21),

I1~h,M2r, s , f ! � (
m�0

r�1

~�1!mas~m!Us~h,m!,

I2~h,M2r, s , f ! � (
l�0

r�1

(
m�0

r�1

~�1!l�mas~l !as~m!Vs~h, l,m!,

where as~m! are defined in (16), and

Us~h,m! � (
i�1

q

(
k�1

q

wi wk (
a�0

`
�h

2
�2m�2a

fsik

~2m�2a!~m ik !

a!G�s � 2m � a �
3

2
� , (23)

Vs~h, l,m! � (
i�1

q

(
k�1

q

wi wk

� (
a�0

`
~2a � 2s � 2m � 2l � 1!!�h

2
�2l�2m�2a

fsik

~2l�2m�2a!~m ik !

~a � 2s � 2m � 2l � 1!!G�a � s � 2l �
3

2
�G�a � s � 2m �

3

2
�a!

+

(24)

Our second result is the integrals for the trapezoid and Dirichlet kernels+ This
extends the work of Davis ~1981!, who made similar calculations for D when
f � f+

THEOREM 8+ For the mixture-normal densities (21),

I1~h,l2 , f ! � 2C102�2

h
�� hC1�2

h
�� C0�1

h
�� hC1�1

h
�,

I2~h,l2 , f ! � 4C102�2

h
�� 4hC1�2

h
�� h 2C302�2

h
�� 3C102�1

h
�

� 4hC1�1

h
�� h 2C302�1

h
�,

I1~h,D, f ! � I2~h,D, f !� C102�1

h
�,
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where

Ch~u! �
1

2p (i�1

q

(
k�1

q

wi wk

2h

sik
2h (

a�0

`
g�a � h,

u2sik
2

2
�

�1

2
�

a

a!
��
m ik

2

2sik
2�a

(25)

and

g~a, x! ��
0

x

t a�1e�t dt

is the incomplete gamma function.

Theorems 7 and 8 express the integrals I1~h,K, f ! and I2~h,K, f ! as conver-
gent infinite series+ Methods to numerically evaluate infinite series and other
special functions are discussed in detail in Zhang and Jin ~1996!+ As they dis-
cuss, numerical evaluation of infinite series can fail as a result of accumulated
round-off error when there are alternating signs, which occurs in our expres-
sions+ To investigate their accuracy, we numerically compared the expressions
in Theorems 7 and 8 with numerical integration for the Marron–Wand densi-
ties+ We used Gauss–Legendre quadrature with 8,000 grid points over @0,T #
where T was selected so that the numerical integral of p�1*0

T Df ~t !2 dt was
within 0+01% of the exact value *�`

` f ~x!2 dx+ The results were plotted
against h+ ~See Hansen, 2003+! We found that in some cases the terms in the
series expansions grow sufficiently large such that the numerical results are
unreliable+ This occurred for the polynomial kernels for large h, r, and0or s and
also for the trapezoid kernel for very small h in a few cases+We concluded that
numerical integration was more reliable for evaluation of I1~h,K, f ! and
I2~h,K, f ! for these kernels+

6. ANALYSIS OF MISE

For each kernel we computed MISEn~h,K, f ! on a grid of 3,000 values of h over
the region @0,3h *# , where h * is the Silverman rule-of-thumb bandwidth for a
sample size of 50+ Plots of MISEn~h,K, f ! against h for each model and kernel
indicated that this region appeared to contain the global minimum for all cases+
~See Hansen, 2003+! For given K and f the optimal finite-sample MISE is

MISEn~K, f ! � min
h

MISEn~h,K, f !+

For the kernel classes G2r and M2r, s, MISEn~K, f ! was plotted as a function
of r+ Figures 2 and 3 display these plots for the Marron–Wand densities 1 ~the
Gaussian density! and 3 ~strongly skewed density!+ These densities are shown
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here because are they are extreme cases regarding the gain or loss from the use
of higher order kernels+ Plots for other densities can be seen in Hansen ~2003!+
Plotted are the MISE for the Gaussian kernels G2r and the smooth polynomial
kernels M2r,1, M2r,5, and M2r,8, for 2r � 2, + + + ,20, and for the sample sizes of
n � 50, 200, 500, and 1,000+ The dotted flat lines are the MISE of D and l2,

Figure 2. MISE, Density 1+
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which are independent of r+ For each plot, the MISEn~K, f ! is normalized rela-
tive to minK MISEn~K, f !+

First examine the flat-top kernels D and l2+ In nearly all cases, the trapezoid
kernel l2 does much better than the Dirichlet kernel D, and in most cases l2

performs quite well relative to other kernel choices+ However, it never has as
low MISE as the best Gaussian or polynomial kernel+

Figure 3. MISE, Density 3+
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Second, compare the smooth polynomial kernels M2r, s across the smooth-
ness index s+We observe that increasing the smoothness order typically improves
the MISE, but the difference diminishes in larger samples+ Indeed, for very large
samples ~not shown!, the best MISE is for small s, but the gain is minimal+
There also appears to be little gain achieved by increasing s above s � 8 ~again
not shown!, so setting s � 8 emerges as a practical recommendation+

Third, compare the MISE of the smooth polynomial kernel M2r,8 and the
Gaussian kernel G2r + In most cases the difference in MISE is quite small, with
the Gaussian kernels achieving lower MISE in small samples and the reverse
in large samples+

Examining the plots of MISEn~K, f !, it is clear that there is no uniformly
optimal choice of kernel K ~including kernel order! across sample sizes n and
densities f+ For any given f there may be a best choice of kernel among those
we consider, but this choice will vary across f+ A data-dependent method such
as cross-validation can possibly be used to select kernel order, which might
enable estimation to adapt to the unknown density f+ This is a difficult prob-
lem, however, and is not pursued further in this paper+

7. MINIMAX REGRET KERNELS

Let K denote a class of kernels, such as the Gaussian class $G2r ; r � 1% or
the polynomial class $M2r, s; r � 1; s � 1% + The problem raised at the end of the
previous section is how to select a kernel K � K when it is known that the
finite-sample optimal choice varies with the true underlying density f+ This sec-
tion proposes a pragmatic solution based on minimax regret, a concept in sta-
tistical decision theory dating back to Savage ~1951!+

For any density f and sample size n, there is a best possible kernel choice
that can be defined as

Kn~ f ! � argmin
K�K

ln MISEn
*~K, f !+

Note that we implicitly define our loss function as ln MISEn
*~K, f ! to eliminate

scale effects+ The regret associated with the use of an arbitrary kernel K is

Regretn ~ f,K ! � ln MISEn~K, f !� ln MISEn~Kn~ f !, f !

� ln� MISEn~K, f !

MISEn~Kn~ f !, f !�,
the percentage deviation of the realized MISE from the optimal value+

For a compact class of density functions F the maximal regret associated
with K is the maximum over f � F

Regretn ~K ! � max
f�F

Regretn ~ f,K !+
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The minimax regret rule is to pick K to minimize the maximum regret

Kn
* � argmin

K�K
Regretn ~K !

with the associated minimized regret

Regretn
* � Regretn ~Kn

*!

� min
K�K

max
f�F

Regretn ~ f,K !+

Note that whereas the small-sample optimal kernel Kn~ f ! depends on the
unknown density f in addition to n, the minimax regret kernel Kn

* only depends
on the sample size n+ The kernel Kn

* guarantees that if the true density f belongs
to F, the percentage deviation of the MISE from the optimum is bounded by
Regretn

* +
For the density class F we use the Marron–Wand mixture-normal class ~21!

with q � 2:

f ~x! �
w

s1

f� x �m1

s1
��
~1 � w!

s2

f� x �m2

s2
�+

Many of the Marron–Wand test densities are in this class, and two normal com-
ponents are sufficient to generate most density shapes of interest+ Because the
regret criterion is invariant to location and scale, we select m2 and s2 so that
EX � 0 and Var~X ! � 1, so the density class is fully described by the remain-
ing parameters ~w,m1,s1!+ We use a grid over these parameters, varying each
in increments of 0+1 over all feasible values+ This results in a density class with
1,887 elements+

Setting K to equal the Gaussian kernel class G2r , Figure 4 plots Regretn~G2r !
as a function of 2r for n � 25, 100, 400, and 800+ The minimax regret solution
rn
* locates its lowest value for any curve+We can see that this solution rn

* varies
from 2 to 8 for the four sample sizes+

We calculated the minimax regret rn
* for the Gaussian kernels G2r as a func-

tion of sample size, and we present the findings in Table 1+ The optimal kernel
order rn

* is strictly increasing with n+ The magnitudes may be surprising to
many readers, as the minimax kernel orders are higher than typically used in
practice+

Let Gn
* denote the Gaussian higher order kernel with r � rn

*, and similarly
Mn, s
* + These are feasible kernel choices as they vary only with sample size+ We

now compare the regret of the feasible kernel choices f, Gn
*, Mn,2

* , and l2+
Figure 5 plots Regretn

* for these kernels as a function of n where the general
kernel class includes G2r, M2r,2, and l2+We see that the standard normal kernel
f has regret that is increasing in n and is clearly dominated by the other choices
except when the sample size is very small+ The trapezoid kernel l2 has high

MISE OF HIGHER ORDER KERNEL ESTIMATORS 1045



regret for small samples but has comparable regret with the optimal Gaussian
and polynomial kernels for large samples+ The optimal Gaussian and poly-
nomial kernels have similar regret for most sample sizes, with that for Gn

*

slightly lower+ Because Gn
* is somewhat easier to manipulate numerically, it is

our recommendation for empirical practice+ A sensible alternative choice is the

Figure 4. Regret of Gaussian Kernels+

Table 1. Minimax regret Gaussian kernel order
by sample size: Regret calculated over two-
component normal mixture densities

2rn
* n

2 n � 40
4 n � 40
6 n � 250
8 n � 530

10 n � 900
12 n � 1,500
14 n � 2,900
16 n � 6,000
18 n � 16,000
20 n � 34,000
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trapezoidal kernel l2, as long as n � 500 ~its regret is bounded below 12% for
such samples!+

Finally, from Figure 5 we find that the regret of Gn
* is uniformly bounded

below 12%+ This means that this kernel choice guarantees that regardless of f
~in the class of two-component mixture-normal distributions! the MISEn

*~Gn
*, f !

cannot differ from the optimal MISEn
*~Kn~ f !, f ! by more than 12%+

8. CONCLUSION

We have found that finite-sample MISE varies considerably across kernel order
2r and underlying density f+ If information about f is known this can be used to
help pick the kernel order+ Otherwise, the minimax regret solution picks the
kernel order to minimize the worst-case regret+We find that by focusing on the
class of mixture-normal densities, we are able to deduce a practical rule for
kernel order selection that bounds the regret below 12% for any sample size+

Our analysis points to the excellent performance of the higher order Gauss-
ian and smooth polynomial kernels+

An important caveat is that minimax regret is defined relative to a density
class F, and we restricted attention to two-component normal mixtures+ If another
set F is selected, the minimax regret kernel can change+ Further investigation

Figure 5. Regret across Kernel Classes+
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of the sensitivity of these recommendations to alternative sets F would be a
useful subject of future research+
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APPENDIX: Proofs

Proof of Theorem 1. Müller ~1984, Thm+ 2+4! and Granovsky and Müller ~1991,
Cor+ 2! show that the optimal kernel is the unique 2rth-order kernel of the form ~7! with
Br, s~x! a polynomial of degree r � 1 in x 2+ Because ~8! takes this form, it is sufficient to
show that Br, s~x!Ms~x! is a valid 2rth-order kernel, that ~8!–~10! are equivalent, and
~11!+

We start by showing the equivalence of ~8!–~10!+ First, because for k � m, ~�m!k �
~�1!km!0~m � k!! , then
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�3

2
�

r�1
�3

2
� s�

r�1

~s � 1!r�1
(
k�0

r�1
~�1!k�1

2
� s � r�

k

x 2k

k!~r � 1 � k!!�3

2
�

k

�

�3

2
�

r�1
�3

2
� s�

r�1

~s � 1!r�1~r � 1!! (k�0

r�1
~1 � r!k�1

2
� s � r�

k

x 2k

k!�3

2
�

k

�

�1

2
�

r

2�3

2
� s�

r�1

~s � 1!r�1~r � 1!! 2 F1�1 � r,
1

2
� s � r ;

3

2
; x 2�

�

~�1!r�1�1

2
�

r

~s � 1!r�1�s �
1

2
� x�1C2r�1

s�102~x!,

where the final equality is ~5!+ This shows the equality of ~8! and ~9!+
Second, let l � s � 1

2
_ + The Gegenbauer polynomials Cm

l~x! satisfy the recurrence
~Magnus et al+, 1966, p+ 222!

~ j � 1!Cj�1
l ~x! � ~2j � 2s � 1!xCj

l~x!� ~ j � 2s!Cj�1
l ~x!+

Thus for any j � 1,

�3

2
�

j

~s � j !!
C2j�1
l ~x! �

�3

2
�

j�1
�2j � s �

1

2
�

~s � j !!
xC2j
l ~x!�

�3

2
�

j�1

~s � j � 1!!
C2j�1
l ~x!+

By back substitution and the fact C1
l~x! � ~2s � 1!x, we find

�3

2
�

r�1

~s � r � 1!!
x�1C2r�1

l ~x! � ~�1!r�1 (
m�1

r�1

~�1!m
�3

2
�

m�1
�2m � s �

1

2
�

~s � m!!
C2m
l ~x!

� ~�1!r�1
1

s!
x�1C1

l~x!

� ~�1!r�12 (
m�0

r�1

~�1!m
�1

2
�

m
�2m � s �

1

2
�

~s � m!!
C2m
l ~x!+

MISE OF HIGHER ORDER KERNEL ESTIMATORS 1049



Hence

~�1!r�1�1

2
�

r

~s � 1!r�1�s �
1

2
� x�1C2r�1

s�102~x! �
s!

�s �
1

2
� (m�0

r�1

~�1!m
�1

2
�

m
�2m � s �

1

2
�

~s � m!!

� C2m
s�102~x!,

showing the equivalence of ~9! and ~10!+
We now show that Br, s~x!Ms~x! is a valid 2rth-order kernel+ First, using ~10! and the

facts that C0
l~x! � 1 and *�1

1 Cm
l~x!Ms~x! dx � 0 for all m � 1,

�
�1

1

Br, s~x!Ms~x! dx �
s!

�s �
1

2
� (m�0

r�1

~�1!m
�1

2
�

m
�2m � s �

1

2
�

~s � m!!
�

�1

1

C2m
l ~x!Ms~x! dx

�
s!

�s �
1

2
� ~�1!0

�1

2
�

0
�s �

1

2
�

s!
�

�1

1

Ms~x! dx � 1+

Thus Br, s~x!Ms~x! is a valid kernel+
Second, using ~9! and the orthogonal properties of the Gegenbauer polynomials, for

any j � 2r � 1

�
�1

1

x jBr, s~x!Ms~x! dx � ~�1!r�1

�1

2
�

r

~s � 1!r�1�s �
1

2
� ��1

1

x j�1C2r�1
s�102~x!Ms~x! dx � 0+

Thus Br, s~x!Ms~x! is of order 2r as required+
Finally, we demonstrate ~11!+ Rodrigues’ formula for the Gegenbauer polynomials

~Magnus et al+, 1966, p+ 221! is

C2m
s�102~x! �

s!~2m � 2s!!

22m~2m!!~2s!!~2m � s!!
~1 � x 2 !�s

d 2m

dx 2m
~1 � x 2 !2m�s+

Using ~1! and ~6!,

C2m
s�102~x!Ms~x! �

�1

2
�

m�s

~m � s!!�s �
1

2
�

s!~2m!!�1

2
�

2m�s�1

M2m�s
~2m! ~x!+
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Combined with ~10! this yields

Mr, s~x! �
s!

�s �
1

2
� (m�0

r�1

~�1!m
�1

2
�

m
�2m � s �

1

2
�

~s � m!!
C2m

s�102~x!Ms~x!

�
s!

�s �
1

2
� (m�0

r�1

~�1!m
�1

2
�

m
�2m � s �

1

2
�

~s � m!!

�1

2
�

m�s

~m � s!!�s �
1

2
�

s!~2m!!�1

2
�

2m�s�1

M2m�s
~2m! ~x!

� (
m�0

r�1

~�1!m
�1

2
�

m�s

m!22m�1

2
�

2m�s

M2m�s
~2m! ~x!,

which is ~11!+ �

Proof of Theorem 2. Let Jv~x! denote the Bessel functions and Pm
~a,b!~x! denote the

Jacobi polynomials+ ~See, e+g+, Ch+ 3 and Sect+ 5+2 of Magnus et al+, 1966+! In particular,

Js�102~x! � �2x

p
�102

js~x! (A.1)

where js~x! is the spherical Bessel function defined in ~4!+
Using results from pp+ 219 and 210 of Magnus et al+ ~1966! and ~1!,

~�1!r�1x�1C2r�1
l ~x! � ~�1!r�1

22r�1~r � 1!!G�r � s �
1

2
�

~2r � 1!!G�s �
1

2
� Pr�1

~s,102!~2x 2 � 1!

�

G�r � s �
1

2
�

�1

2
�

r

G�s �
1

2
� Pr�1

~102, s!~1 � 2x 2 !+ (A.2)

By Magnus et al+ ~1966, p+ 216!, as r r `

1

Mr
Pr�1
~102, s!�1 �

x 2

2r 2�r �2

x
�102

J102~x!�
2

p102 j0~x!�
2 sin~x!

p102x
+ (A.3)

The equalities are ~A+1! and ~18!+ Furthermore, using Stirling’s formula we can show
that
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lim
mr`

G�1

2
� m�

m102G~m!
� 1+ (A.4)

Thus combining ~9! with ~A+2!, and using the limits in ~A+3! and ~A+4!, we obtain as
r r `

1

2r
Br, s� x

2r
� �

s!G�r � s �
1

2
�

2rG�s �
3

2
�G~s � r!

Pr�1
~102, s!�1 �

x 2

2r 2�
r

s!

G�s �
3

2
�

sin~x!

p102x
+

Furthermore, as r r `

Ms� x

2r
� �

�1

2
�

s�1

s!
�1 �

x 2

4r 2�s

r

�1

2
�

s�1

s!
+

Thus as r r `

1

2r
M2r, s� x

2r
� �

1

2r
Br, s� x

2r
�Ms� x

2r
�

r
s!

G�s �
3

2
�

sin~x!

p102x

�1

2
�

s�1

s!

� D~x!,

establishing ~13!+ �
Proof of Theorem 3. Let Hem~x! denote the hermite polynomials+ By the Rod-

rigues’ formula and a limit property for the Hermite polynomials ~Magnus et al+, 1966,
pp+ 252, 255!, as r r `,

1

M2r � 2
G2r� x

M2r � 2
� �

~�1!rf~2r�1!� x

M2r � 2
�

2r�1~r � 1!!x

�

~�1!r�1He2r�1� x

M2r � 2
�f� x

M2r � 2
�

2r�1~r � 1!!x

r
sin x

px
,

establishing ~14!+ �
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Proof of Theorem 4. From Magnus et al+ ~1966, p+ 401!

�
0

1

cos~tx!~1 � x 2 !s dx � s!�2

t
�s

� p2 t
Js�102~t !� s!�2

t
�s

js~t !,

the second equality using ~A+1!+ Then by the definition of the Fourier transform

HMs~x! �

�1

2
�

s�1

s!
�

�1

1

e itx~1 � x 2 !s dx

�

�3

2
�

s

s!
�

0

1

cos~tx!~1 � x 2 !s dx

� �3

2
�

s

�2

t
�s

js~t !+ �

Proof of Theorem 5. Using ~11!, the derivative property of Fourier transformations,
and Theorem 4,

HM2r, s~x! � (
m�0

r�1

~�1!m
�1

2
�

m�s

m!22m�1

2
�

2m�s

HM2m�s
~2m! ~x!

� (
m�0

r�1
�1

2
�

m�s

m!22m�1

2
�

2m�s

t 2m GM2m�s~t !

� (
m�0

r�1
�1

2
�

m�s

m!22m�1

2
�

2m�s

�3

2
�

2m�s

t 2m�2

t
�2m�s

j2m�s~t !

�
2

Mp �2

t
�s

(
m�0

r�1
G�1

2
� m � s��1

2
� 2m � s�

m!
j2m�s~t !

as stated+ �
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Proof of Theorem 6. By ~A+1! and Magnus et al+ ~1966, p+ 99!,

4

p
�

0

`� 2

t
�2s

js�2l ~t !js�2m~t ! dt

��
0

`� 2

t
�2s�1

Js�2l�102~t !Js�2m�102~t ! dt

�

G~2s � 1!G� 1

2
� l � m�

G� 3

2
� l � m � 2s�G~1 � l � m � s!G~1 � l � m � s!

� �
~2s!!

~l � m � s!!~m � l � s!!� 1

2
� l � m�

1�2s

6 l � m 6 � s � 1

0 6 l � m 6� s � 1

+ (A.5)

By Parseval’s equality, Theorem 5, and ~A+5!,

R~M2r, s ! ��
�`

`

M2r, s~x!
2 dx

�
1

2p
�

�`

`

GM2r, s~t !
2 dt

�
1

p (l�0

r�1

(
m�0

r�1

as~l !as~m!
4

p
�

0

`� 2

t
�2s

js�2l ~t !js�2m~t ! dt

�
~2s!!

p (l�0

r�1

(
m�0

r�1

1~6 l � m 6 � s � 1!
as~l !as~m!

~l � m � s!!~m � l � s!!� 1

2
� l � m�

1�2s

+

�

Proof of Theorem 7. Using expressions ~15! and ~22! we find

I1~h,M2r, s ! �
1

p
�

0

`

GM2r, s~ht ! Df ~t !2 dt

� (
m�0

r�1

as~m!
2

p302 �
0

`� 2

ht
�s

js�2m~ht ! Df ~t !2 dt

� (
m�0

r�1

as~m! (
i�1

q

(
k�1

q

wi wk

2

p302 �
0

`� 2

ht
�s

js�2m~ht !e�sik
2 t 202 cos~tm ik ! dt+

(A.6)
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Using Magnus et al+ ~1966, p+ 402! we find that

1

p
�

0

`

t 2me�s2t 202 cos~tm! dt �
~�1!m

M2ps 2m�1
exp��

m2

2s 2�He2m�m
s
�

� ~�1!mfs
~2m!~m!+ (A.7)

Using ~A+1!, ~4!, and ~A+7!,

2

p302 �
0

`� 2

ht
�s

e�s2t 2
cos~tm!js�2m~ht ! dt

�
1

p
�

0

`� 2

ht
�s�102

e�s2t 2
cos~tm!Js�2m�102~ht ! dt

� (
a�0

` ~�1!a

G�s � 2m � a �
3

2
�a!

�h

2
�2m�2a 1

p
�

0

`

e�s2t 2
cos~tm!t 2m�2a dt

� (
a�0

` ~�1!m

a!G�s � 2m � a �
3

2
� �

h

2
�m�a

fs
~2m�2a!~m!+

Combining this with ~A+6! we obtain ~23!+
Next,

I2~h,M2r, s ! �
1

p
�

0

`

GM2r, s~ht !2 Df ~t !2 dt

� (
l�0

r�1

(
m�0

r�1

as~l !as~m!
4

p2 �
0

`� 2

ht
�2s

js�2l ~ht !js�2m~ht ! Df ~t !2 dt

� (
l�0

r�1

(
m�0

r�1

as~l !as~m! (
i�1

q

(
k�1

q

wi wk

4

p2

� �
0

`� 2

ht
�2s

js�2l ~ht !js�2m~ht !e�sik
2 t 202 cos~tm ik ! dt+ (A.8)

By equation ~2+20! of Tranter ~1968!

4

p
js�2l ~t !js�2m~t !

�
2

t
Js�2l�102~t !Js�2m�102~t !

� (
a�0

` ~�1!a~2a � 2s � 2l � 2m � 1!!~t02!2l�2m�2s�2a

a!G�a � s � 2l �
3

2
�G�a � s � 2m �

3

2
�~a � 2s � 2l � 2m � 1!!

+
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Combining this with ~A+7! we obtain

4

p2 �
0

`� 2

ht
�2s

js�2l ~ht !js�2m~ht !e�s2t 202 cos~tm! dt

� (
a�0

` ~�1!a~2a � 2s � 2l � 2m � 1!!

a!G�a � s � 2l �
3

2
�G�a � s � 2m �

3

2
�~a � 2s � 2l � 2m � 1!!

� �h

2
�2l�2m�2a

�
1

p
�

0

`

t 2l�2m�2ae�s2t 202 cos~tm! dt

� (
a�0

` ~�1!a~2a � 2s � 2l � 2m � 1!!

a!G�a � s � 2l �
3

2
�G�a � s � 2m �

3

2
�~a � 2s � 2l � 2m � 1!!

� �h

2
�2l�2m�2a

fs
~2l�2m�2a!~m!+

Combining this with ~A+8! we obtain ~24! as required+ �

Proof of Theorem 8. By a series expansion and ~1!

cos~x! � (
a�0

` ~�x 2 !a

~2a!!
� (

a�0

` ~�x 2 !a

a!�1

2
�

a

22a

+

Thus for any h � 1
2
_

2�
0

u

t 2h�1 cos~tm!exp��
s 2t 2

2
� dt � 2 (

a�0

` ~�m2 !a

a!�1

2
�

a

22a

�
0

u

t 2h�2a�1 exp��
s 2t 2

2
� dt

�
2h

s 2h (
a�0

` 1

a!�1

2
�

a

��
m2

2s 2�a

g�a � h,
u2s 2

2
�+

Summing, we find

1

p
�

0

u

t 2h�1 Df ~t !2 dt �
1

2p (i�1

q

(
k�1

q

wi wk2�
0

u

t 2h�1 cos~tm ik !exp��
sik

2 t 2

2
� dt

�
1

2p (i�1

q

(
k�1

q

wi wk

2h

sik
2h (

a�0

` 1

a!�1

2
�

a

��
m ik

2

2sik
2�a

g�a � h,
u2sik

2

2 �
� Ch~u!+

1056 BRUCE E. HANSEN



Hence

I1~h,D! � I2~h,D!�
1

p
�

0

`

ED~ht ! Df ~t !2 dt �
1

p
�

0

10h

Df ~t !2 dt � C1~10h!,

I1~h,l2 ! �
1

p
�

0

`

Dl2~ht ! Df ~t !2 dt

�
1

p
�

0

20h

~2 � ht ! Df ~t !2 dt �
1

p
�

0

10h

~1 � ht ! Df ~t !2 dt

� 2C102~20h!� hC1~20h!� C102~10h!� hC1~10h!,

and

I2~h,l2 ! �
1

p
�

0

`

Dl2~ht !2 Df ~t !2 dt

�
1

p
�

0

`

@~4 � 4t � t 2 !1~t � 2!� ~3 � 4t � t 2 !1~t � 1!# Df ~t !2 dt

� 4C102~20h!� 4hC1~20h!� h 2C302~20h!� 3C102~10h!� 4hC1~10h!

� h 2C302~10h!+ �
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