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Abstract

This paper considers nonparametric estimation of smooth conditional distribution functions (CDFs)

using kernel smoothing methods. We propose estimation using a new smoothed local linear (SLL)

estimator. Estimation bias is reduced through the use of a local linear estimator rather than local

averaging. Estimation variance is reduced through the use of smoothing. Asymptotic analysis of mean

integrated squared error (MISE) reveals the form of these efficiency gains, and their magnitudes are

demonstrated in numerical simulations. Considerable attention is devoted to the development of a plug-

in rule for bandwidths which minimize estimates of the asymptotic MISE. We illustrate the estimation

method with an application to the U.S. quarterly GDP growth rate.
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1 Introduction

This paper considers nonparametric estimation of smooth conditional distribution functions (CDFs). As

the CDF is the conditional expectation of an indicator function, it may be estimated by nonparametric

regression estimation methods. A recent paper which exploits advances in nonparametric regression for

estimation of the CDF is Hall, Wolff and Yao (1999). See also Fan and Yao (2003).

Standard nonparametric regression estimates of the CDF, however, are not smooth and therefore

are inefficient. If the dependent variable in these regressions — the indicator function — is replaced by

a smooth function, estimation variance can be reduced at the cost of an increase in bias. If the degree

of smoothing is carefully chosen, it can result in a lowered finite sample mean integrated squared error

(MISE).

The advantages of smoothed estimation of distribution functions has been discussed in the statistics

literature. For references see Hansen (2004). The extension to CDF estimation considered here is new.

Our analysis concerns a pair of random variables (Y,X) ∈ R × R that have a smooth joint dis-

tribution. Let f(y) and g(x) denote the marginal densities of Y and X, and let f (y | x) denote the
conditional density of Y given X = x. The conditional distribution function is

F (y | x) =
Z y

−∞
f (u | x) du.

Define as well the derivatives

F (s) (y | x) =
∂s

∂xs
F (y | x)

f (s) (y | x) =
∂s

∂xs
f (y | x)

f 0 (y | x) =
∂

∂y
f (y | x) .

Given a random sample {Y1, X1, ..., Yn,Xn} from this distribution, the goal is to estimate F (y | x) at a
fixed value x. To simplify the notation we will sometimes suppress dependence on x.

Let Φ(s) and φ(s) denote the standard normal distribution and density functions and let Φσ(s) =

Φ(s/σ) and φσ(s) = σ−1φ(s/σ). Let φ(m)(s) = (dm/dsm)φ(s) and φ
(m)
σ (s) = (dm/dsm)φσ(s) =

σ−(m+1)φ(m) (s/σ) denote the derivatives of φ(s) and φσ(s). In particular, φ
(1)(s) = −sφ(s) and

φ(2)(s) =
¡
s2 − 1¢φ(s).

Our estimators will make use of two univariate kernel functions w(s) and k(s).We assume that both

are symmetric and second-order, are normalized to have a unit variance (e.g.
R∞
−∞ s2w(s)ds = 1), and

have a finite sixth moment (e.g.
R∞
−∞ s6w(s)ds <∞). Let R = R∞−∞w(s)2ds denote the roughness of w.

Let

K(s) =

Z s

−∞
k(u)du
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denote the integrated kernel of k and define the constant

ψ = 2

Z ∞

−∞
sK(s)k(s)ds > 0. (1)

For our applications, we set both k(s) and w(s) to equal the normal kernel φ(s), in which case R =

1/2
√
π, ψ = 1/

√
π and K(s) = Φ(s).

Section 2 presents unsmoothed estimators. Section 3 introduces our smoothed estimators. Section

4 develops plug-in bandwidth rules for the local linear and smoothed local linear estimator. Section 5

presents a numerical simulation of performance. Section 6 is a simple application to the U.S. quarterly

real GDP growth rate. Section 7 concludes. The proof of Theorem 1 is presented in the Appendix.

Gauss code which implements the estimators and bandwidth methods is available on the author’s

webpage http://www.ssc.wisc.edu/~bhansen/

2 Unsmoothed Estimators

Note that F (y | x) = E (1 (Yi ≤ y) | Xi = x) , and thus it is a regression function. Thus the CDF may be

estimated by regression of 1 (Yi ≤ y) on Xi. A simple nonparametric estimator is the Nadaraya-Watson

(NW) estimator, and takes the form of a local average

F̂b (y | x) =
Pn

i=1wi1 (Yi ≤ y)Pn
i=1wi

(2)

where

wi =
1

b
w

µ
x−Xi

b

¶
(3)

are kernel weights and b is a bandwidth.

Reduced bias may be achieved using a local linear (LL) estimator. Local linear estimation is a special

case of local polynomial regression, and is typically recommended for estimation mean. For a general

treatment see Fan and Gijbels (1996). The estimator is the intercept from a weighted least-squares

regression of 1 (Yi ≤ y) on (x−Xi) using the weights wi, and can be written as

F̃b (y | x) =

Pn
i=1w

∗
i 1 (Yi ≤ y)Pn
i=1w

∗
i

(4)

w∗i = wi

³
1− β̂ (x−Xi)

´
(5)

β̂ =

Ã
nX
i=1

wi (x−Xi)
2

!−1Ã nX
i=1

wi (x−Xi)

!
.

As shown in Theorem 1(b) of Hall, Wolff and Yao (1999), if b = cn−1/5 then

E
³
F̃b (y | x)− F (y | x)

´2 ' R (F (y | x) (1− F (y | x)))
g(x)nb

+
b4

4
F (2) (y | x)2 +O

³
n−6/5

´
.
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Integrating over y we obtain the MISEZ ∞

−∞
E
³
F̃b (y | x)− F (y | x)

´2
dy =

RV

gnb
+

b4V1
4

+O
³
n−6/5

´
(6)

where

g = g(x)

V =

Z ∞

−∞
F (y | x) (1− F (y | x)) dy

V1 =

Z ∞

−∞
F (2) (y | x)2 dy.

The first term on the right side of (6) is the integrated asymptotic variance, and the second is the

integrated squared asymptotic bias. This bias term is simplified relative to the NW estimator, and this

is the source of the improved performance of F̃ over F̂ .

Hall, Wolff and Yao (1999) point out that the local linear estimator F̃ has two undesirable properties.

It may be nonmonotonic in y, and is not constrained to lie in [0, 1]. Thus the estimator F̃ is not a CDF.

The problem occurs when the weights (5) are negative, which occurs when β̂ (x−Xi) > 1. A simple

solution1 is to modify w∗i to exclude negative values. Thus we redefine the weights as follows

w∗i =

(
0 β̂ (x−Xi) > 1

wi

³
1− β̂ (x−Xi)

´
β̂ (x−Xi) ≤ 1

(7)

This modification is asymptotically negligible, but constrains F̃ to be a valid CDF. Using the modified

weights (7) our estimator is a slight modification of the local linear estimator, however we will continue

to refer to it as the local linear (LL) estimator for simplicity.

3 Smoothed Estimators

For some bandwidth h > 0 let Kh(s) = K(s/h) and consider the integrated kernel smooth Kh (y − Yi) .

For small h it can be viewed as a smooth approximation to the indicator function 1 (Yi ≤ y). Smoothed

CDF estimators replace the indicator function 1 (Yi ≤ y) in (2) and (4) with Kh (y − Yi) , yielding the

smoothed Nadaraya-Watson (SNW) estimator

F̂h,b (y | x) =
Pn

i=1wiKh (y − Yi)Pn
i=1wi

1Hall, Wolff and Yao (1999) proposed an alternative solution, introducing weights to the Nadaraya-Watson estima-
tor which are selected by an empirical likelihood criterion. Their estimator is asymptotically equivalent to ours, but
computationally more complicated.

3



and the smoothed local linear (SLL) estimator

F̃h,b (y | x) =
Pn

i=1w
∗
iKh (y − Yi)Pn
i=1w

∗
i

.

The weights wi and w∗i are defined in (3) and (7), respectively.

Theorem 1 Assume that F (y | x) and g(x) are continuously differentiable up to the fourth order in

both y and x. If b = cn−1/5 and h = O(b) as n→∞, thenZ ∞

−∞
E
³
F̃h,b (y | x)− F (y | x)

´2
dy =

R

gnb
(V − hψ) +

b4V1
4
− h2b2V2

2
+

h4V3
4

+O
³
n−6/5

´
(8)

where

g = g(x)

V =

Z ∞

−∞
F (y | x) (1− F (y | x)) dy

V1 =

Z ∞

−∞
F (2) (y | x)2 dy

V2 =

Z ∞

−∞
f (y | x) f (2) (y | x)dy

V3 =

Z ∞

−∞
f 0 (y | x)2 dy.

The MISE in (8) is a generalization of (6) to allow for h ≥ 0. The MISE is strictly decreasing at
h = 0 (since ψ > 0) demonstrating that the asymptotic MISE is minimized for strictly positive h. Thus

there are (at least asymptotic) efficiency gains from smoothing.

4 Plug-In Bandwidth Selection

We suggest selecting the bandwidths (h, b) by the plug-in method. Plug-in bandwidths are the values

which minimize an estimate of the asymptotic MISE (8). Estimation of the latter requires estimation

of the parameters g, V, V1, V2, and V2. In this section we discuss estimation of these components, and

implementation of the plug-in bandwidth rule.

Readers who are interested in the plug-in algorithm but not the motivational details can jump

directly to Section 4.5, which summarizes the implementation details.

4.1 Kernel Estimation of g

The normal kernel density estimator is

ĝ =
1

n

nX
j=1

φr (x−Xi) (9)
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where r is a bandwidth. An estimate of the asymptotic MSE-minimizing choice for r is

r̂ =

 ĝs(x)

2
√
π
³
ĝ
(2)
t (x)

´2
n


1/5

(10)

where

ĝs(x) =
1

n

nX
j=1

φs (x−Xi)

ĝ
(2)
t (x) =

1

n

nX
j=1

φ
(2)
t (x−Xi)

and s and t are preliminary bandwidths. Letting σ̂x denote the sample standard deviation for Xi, we

suggest the Gaussian reference rules s = 1.06σ̂xn−1/5 and t = .94σ̂xn
−1/9, which are MISE-optimal for

estimation of the density and its second derivative when g is Gaussian.

4.2 Estimation of V

The parameter V is a function of the conditional distribution F (y | x). A parametric estimator of the
latter is the intercept from a p’th order polynomial regression of 1 (Yi ≤ y) on (Xi − x) . For p ≥ 0 let

Xp =


1 X1 − x · · · (X1 − x)p

...
...

...

1 Xn − x · · · (Xn − x)p

 , (11)

and let 1 (Y ≤ y) denote the stacked 1 (Yi ≤ y). Then the estimator can be written as

F̂ (y | x) = δ01
¡
X 0
pXp

¢−1
X 0
p1 (Y ≤ y) (12)

where δ1 = (1 0 · · · 0)0 is the first unit vector. Given (12), an estimate of V is

V̂ =

Z ∞

−∞
F̂ (y | x)

³
1− F̂ (y | x)

´
dy

= δ01
¡
X 0
pXp

¢−1
X 0
p

Z ∞

−∞
1 (Y > y) 1 (Y ≤ y)0 dyXp

¡
X 0
pXp

¢−1
δ1

= δ01
¡
X 0
pXp

¢−1
X 0
p

¡
Y − Y 0

¢+
Xp

¡
X 0
pXp

¢−1
δ1 (13)

where (a)+ = a1 (a ≥ 0) for scalar a, and is an element-by-element operation for matrices.
A nonparametric estimator of V can be based on a local linear regression. Given a bandwidth q0,

let w0i = φq0 (x−Xi) denote Gaussian kernel weights and set W0 = diag{w0i}. Then the estimator is

F̃ (y | x) = δ01
¡
X 0
1W0X1

¢−1
X 0
1W01 (Y ≤ y)
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and the estimate of V is

Ṽ = δ01
¡
X 0
1W0X1

¢−1
X 0
1W0

¡
Y − Y 0

¢+
W0X1

¡
X 0
1W0X1

¢−1
δ1. (14)

The bandwidth q0 which minimizes the asymptotic mean integrated squared error of F̃ (y | x) is

q0 =

µ
V

2
√
πgV1n

¶1/5
which depends on the unknowns g, V and V1. (See equation (8) with h = 0.) Using the estimates ĝ from

(9), V̂ from (13), and V̂1 from (17) below, we obtain a plug-in bandwidth

q̂0 = .78

Ã
V̂

ĝV̂1n

!1/5
. (15)

4.3 Estimation of V1

The parameter V1 is a function of the second derivative F (2) (y | x) which can be estimated by polynomial
regression. For some p ≥ 2 let Xp be defined as in (11). The estimator is

F̂ (2) (y | x) = δ03
¡
X 0
pXp

¢−1
X 0
p1 (Y ≤ y) (16)

where δ3 is the third unit vector (a one in the third place, and zeros elsewhere). To calculate V2 from

(16), observe that for any c > maxYiZ c

−∞
1 (Y ≤ y) 1 (Y ≤ y)0 dy = Dc−max ¡Y, Y 0¢

where D is an n× n matrix of ones, and observe that δ03
¡
X 0
pXp

¢−1
X 0
pD = 0. Thus

Z c

−∞
F̂ (2) (y | x)2 dy = δ03

¡
X 0
pXp

¢−1
X 0
p

Z c

−∞
1 (Y ≤ y) 1 (Y ≤ y)0 dyXp

¡
X 0
pXp

¢−1
δ3

= δ03
¡
X 0
pXp

¢−1
X 0
p

¡
Dc−max ¡Y, Y 0¢¢Xp

¡
X 0
pXp

¢−1
δ3

= −δ03
¡
X 0
pXp

¢−1
X 0
pmax

¡
Y, Y 0

¢
Xp

¡
X 0
pXp

¢−1
δ3

where the max operator is element-by-element. Note that this expression is invariant to c > maxYi,

thus we define

V̂1 = −δ03
¡
X 0
pXp

¢−1
X 0
pmax

¡
Y, Y 0

¢
Xp

¡
X 0
pXp

¢−1
δ3. (17)

This estimator was also used in (15) to construct a plug-in rule for the nonparametric estimate Ṽ .

A nonparametric estimator of V1 can be based on a local cubic regression. (While any local polyno-

mial regression of order two or above is consistent, local cubic regression is recommend for estimation

of a regression second derivative.) Given a bandwidth q1, let w1i = φq1 (x−Xi) denote Gaussian kernel
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weights and set W1 = diag{w1i}. The estimator of F (2) (y | x) is

F̃ (2) (y | x) = δ03
¡
X 0
3W1X3

¢−1
X 0
3W11 (Y ≤ y) (18)

and the estimate of V1 is

Ṽ1 = δ03
¡
X 0
3W1X3

¢−1
X 0
3W1max

¡
Y, Y 0

¢
W1X3

¡
X 0
3W1X3

¢−1
δ3. (19)

Using Fan and Gijbels (1996, Theorem 3.1 and equation (3.20)) the bandwidth which minimizes the

asymptotic mean integrated squared error of F̂ (2) (y | x) is

q1 = 1.01

µ
V

gV4n

¶1/9
where

V4 =

Z ∞

−∞
F (4) (y | x)2 dy.

The constant V4 may be estimated by

V̂4 = −δ05
¡
X 0
pXp

¢−1
X 0
pmax

¡
Y, Y 0

¢
Xp

¡
X 0
pXp

¢−1
δ5 (20)

where p ≥ 4 and δ5 is the fifth unit vector, suggesting the plug-in bandwidth

q̂1 = 1.01

Ã
V̂

ĝV̂4n

!1/9
. (21)

4.4 Estimation of V2 and V3

If f 0 (y | x) does not depend on x then we have the simplification V3 =
R∞
−∞ f 0 (y)2 dy which is a well-

studied estimation problem. For a bandwidth a∗ let X0 be the n× 1 vector of ones and

f̂ 0a∗(y) =
1

n

nX
j=1

φ
(1)
a∗ (y − Yi) = φ

(1)
a∗
¡
y − Y 0

¢
X0
¡
X 0
0X0

¢−1
be a Gaussian kernel estimate of f 0(y). An estimate of V3 in this case isZ ∞

−∞
f̂ 0a∗ (y)

2 dy =
¡
X 0
0X0

¢−1
X 0
0

Z ∞

−∞
φ
(1)
a∗ (y − Y )φ

(1)
a∗
¡
y − Y 0

¢
dyX0

¡
X 0
0X0

¢−1
= − ¡X 0

0X0

¢−1
X 0
0φ
(2)
a

¡
Y − Y 0

¢
X0

¡
X 0
0X0

¢−1 (22)

where a =
√
2a∗. The second equality is equation (7.1) of Marron and Wand (1992):Z ∞

−∞
φ(r)a (y − Yi)φ

(s)
a (y − Yj) dy = (−1)r φ(r+s)√

2a
(Yi − Yj) . (23)
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The estimator (22) is the Jones and Sheather (1991) estimator. Hansen (2004) describes a multiple

plug-in method for selection of a. We recommend this choice and hold it fixed for the remainder of this

sub-section and the next.

Now consider estimation of V3 allowing for dependence on x. Note that the estimate of f 0 (y) in (24)
is a regression of φ(1)a∗ (y − Yi) on a constant. Similarly, we can estimate f 0 (y | x) as the intercept in a
polynomial regression on xi − x. For Xp defined in (11) let

f̂ 0a (y | x) = δ01
¡
X 0
pXp

¢−1
X 0
pφ
(1)
a∗ (y − Y ) . (24)

The associated estimate of V3 is

V̂3 =

Z ∞

−∞
f̂ 0a∗ (y | x)2 dy

= δ01
¡
X 0
pXp

¢−1
X 0
p

Z ∞

−∞
φ
(1)
a∗ (y − Y )φ

(1)
a∗
¡
y − Y 0

¢
dyXp

¡
X 0
pXp

¢−1
δ1

= −δ01
¡
X 0
pXp

¢−1
X 0
pφ
(2)
a

¡
Y − Y 0

¢
Xp

¡
X 0
pXp

¢−1
δ1. (25)

Alternatively, we could use a fully nonparametric estimator such as a local linear estimator. However,

the optimal bandwidths depend on derivatives of the conditional density that are difficult to estimate.

We thus do not consider further complications.

In addition, using an analog of (16) and (24), a simple estimator of V2 is

V̂2 =

Z ∞

−∞
f̂
(2)
a∗ (y | x) f̂a∗ (y)dy

= δ03
¡
X 0
pXp

¢−1
X 0
p

Z ∞

−∞
φa∗ (y − Y )φa∗

¡
y − Y 0

¢
dyXp

¡
X 0
pXp

¢−1
δ1

= δ03
¡
X 0
pXp

¢−1
X 0
pφa

¡
Y − Y 0

¢
Xp

¡
X 0
pXp

¢−1
δ1. (26)

where the third equality uses (23).

4.5 Plug-In Bandwidth

Our plug-in estimate of (8) is

M̃ (h, b) =
R

ĝnb

³
Ṽ − hψ

´
+

b4Ṽ1
4
− 2h

2b2V̂2
2

+
h4V̂3
4

. (27)

The plug-in bandwidth pair (h̃, b̃) jointly minimize M̃ (h, b). A closed-form solution is not available,

so the function needs to be numerically minimized. One caveat is that we must constrain h < ψ/Ṽ

to ensure a sensible solution. (When h > ψ/Ṽ then M̃ is strictly increasing in b so unconstrained

minimization sets b̃ = 0 which is not sensible.) As a practical matter it makes sense to bound h more

substantially, we suggest the constraint h ≤ ψ/2Ṽ , and this is done in our numerical applications.

The plug-in bandwidth for the unsmoothed estimator F̃b is found by setting h = 0 and minimizing

8



to find b̂ =
³
RṼ /ĝṼ1n

´1/6
.

To summarize, the computation algorithm is as follows. First, ĝ is calculated from (9) using (10).

Second, for some p ≥ 4, V̂ , V̂1 and V̂4 are calculated using (13), (17) and (20). Third, using the

bandwidth (15), Ṽ is calculated using (14). Fourth, using the bandwidth (21), Ṽ1 is calculated using

(19). Fifth, the bandwidth a is calculated using the method of Hansen (2004), allowing V̂2 and V̂3 to be

calculated using (26) and (25). Finally, ĝ, Ṽ , Ṽ1, V̂2, V̂3 are set into (27) which is numerically minimized

over (h, b) to obtain (h̃, b̃).

5 Simulation

The performance of the CDF estimators is investigated in a simple simulation experiment using bivariate

data. The variables Xi are generated as iid N(0, 1). The variable Yi is generated as Yi = Xi + ei where

ei is iid, independent of Xi. The error ei is distributed as G, one of the first nine mixture-normal

distributions from Marron and Wand (1992). Consequently, the true CDF for Yi is G(y − x). For each

choice of G we generated 10,000 independent samples of size n = 50, 100 and 300.

For each sample we estimated the CDF at x = 1 and y = {−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0},
using the NW, SNW, LL and SLL estimators. Our measure of precision is the exact mean-squared error,

averaged over these values of y (as an approximation to the MISE). The standard normal kernel was

used for all estimates.

We first abstracted from the issue of bandwidth selection and evaluated the precision of the four

estimates using the infeasible finite-sample-optimal bandwidth, calculated by quasi-Newton minimiza-

tion. The results are presented in the first three columns of Table 1. We have taken the unsmoothed

NW estimator as a baseline, and have divided the MISE of the other estimators by that of the NW

estimator. Thus the numbers in Table 1 represent the relative improvement attained relative to the

NW estimator.

The results show that across models and sample sizes, the SLL estimator achieves the lowest MISE.

In each case, using local linear estimation rather than local averaging reduces the MISE, and using

smoothing lowers the MISE.

We next investigated the performance of our plug-in bandwidths b̂ for the LL estimator and (h̃, b̃)

for the SLL estimator. On each sample described above we calculated these plug-in bandwidths and

CDF estimators, and evaluated the MISE across the 10,000 samples. The results are presented in the

final two columns of Table 1. As before, the MISE is normalized by the MISE of the infeasible NW

estimator. Thus the numbers represented the relative improvement attained by the feasible plug-in

estimators relative to this infeasible estimator.

In each case, the plug-in SLL estimator has lower MISE than the plug-in LL estimator. In some

cases the difference is minor, in other case it is quite substantial (the largest gains are for Model #5,

where the MISE is reduced by about 25%). In each case the MISE is higher than if the infeasible optimal

bandwidth had been used, in some cases substantially higher, suggesting that further improvements in

bandwidth choice may be possible.
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Overall, the simulation evidence confirms the implications of the asymptotic analysis. We can

recommend use of the SLL estimator (with our proposed plug-in bandwidth) for empirical practice.

6 GDP Growth Forecasting

We illustrate the method with a simple application to the U.S. real GDP growth rate. Let GDPi denote

the level of quarterly real GDP and let yi = 400 (ln (GDPi)− ln (GDPi−1)) denote the annualized
quarterly growth rate. Set xi = yi−1.

We restrict the sample to run from first third quarter of 1984 to the first quarter of 2004 (79

observations). This choice is consistent with the decline in output volatility documented by McConnell

and Perez-Quiros (2000). We estimated the CDF using the local linear (LL) and smoothed local linear

(SLL) estimators for yi given xi = x, fixing x to equal 2% and 4.5%, which are approximately the 25’th

and 75’th quantiles of the unconditional distribution. The CDF was evaluated at 501 evenly spaced

increments between -2 and 7, and the bandwidths were calculated by the plug-in method described in

Section 4.5. To provide a contrast, we also estimated the CDF using a homoskedastic Gaussian AR(1).

Figure 1 displays the three CDFs for the case of x = 2.0 and Figure 2 for the case x = 4.5. In both

cases, the three estimates are meaningfully different from one another. The parametric estimate has a

fairly different location and variance. The two nonparametric estimates have the same basic shape, but

the unsmoothed local linear estimate is visually quite erratic, and the smoothed local linear estimator

appears to apply an intuitively correct degree of smoothing.

It is also interesting to note that the LL estimator uses a plug-in bandwidth of b̂ = 1.59 in Figure

1 and b̂ = 2.13 in Figure 2, while the SLL estimator uses b̃ = 1.44, h̃ = 0.53 and b̃ = 2.0 and h̃ = 0.23

respectively. In both cases, the plug-in rule selects similar values for b for the two estimators (with that

for SLL slightly smaller), and selects a considerably smaller value for h than b.

7 Conclusion

We have shown how to combine local linear methods and smoothing to produce good nonparametric

estimates of the conditional distribution function for bivariate data. We have shown that meaningful

improvements in estimation efficiency can be achieved by using these techniques. Furthermore, we have

derived data-based plug-in rules for bandwidth selection which appear to work in practice. These tools

should prove useful for empirical application.

This analysis has been confined to bivariate data. An important extension would to the case of

multivariate data. In particular, this extension would require the study and development of feasible

bandwidth selection rules.
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8 Appendix: Proof of Theorem 1

The proof of Theorem 1 is based on the following set of expansions.

Lemma 1 Let g(s) = ds

dxs g(x) and K
∗
h(Yi) = Kh (y − Yi)− F (y | x) .

Ewi = g(x) +
b2

2
g(2)(x) +O(b4) (28)

E (wi (x−Xi)) = −b2g(1)(x) +O(b4) (29)

E
³
wi (x−Xi)

2
´
= b2g(x) +O(b4) (30)

E (wiK
∗
h(Yi)) =

b2

2
F (2) (y | x) g(x) + b2F (1) (y | x) g(1)(x) (31)

+
h2

2
f 0 (y | x) g(x) +O

¡
b4
¢

E (wi (x−Xi)K
∗
h(Yi)) = −b2F (1) (y | x) g(x) +O

¡
b4
¢

(32)

E
¡
w2iK

∗
h(Yi)

2
¢
=

Rg(x) (F (y | x) (1− F (y | x))− hψf (y | x))
b

(33)

+O (b)

E
³
w2i (x−Xi)

2K∗
h(Yi)

2
´
= O(b) (34)

Proof. Throughout, we make use of the assumption that h = O(b) to simplify the bounds. The

derivations make use of the following Taylor series expansions which are valid under the assumption

that the functions are fourth order differentiable:

g(x− bv) = g(x)− vbg(1)(x) +
v2b2

2
g(2)(x)− v3b3

6
g(3)(x) +O(b4) (35)

F (y − hu | v) = F (y | v)− huf (y | v) + h2u2

2
f 0 (y | v)− h3u3

6
f 00 (y | v) +O(h4) (36)

F (y | x− bv) = F (y | x)− bvF (1) (y | x) + b2v2

2
F (2) (y | x)− b3v3

6
F (3) (y | x) +O(b4) (37)

f 0 (y | x− bv) = f 0 (y | x)− bv
∂

∂y
f (1) (y | x) +O(b2). (38)

To show (28), by a change of variables and (35)

Ewi =

Z ∞

−∞
1

b
w

µ
x− v

b

¶
g(v)dv

=

Z ∞

−∞
w (v) g(x− bv)dv

=

Z ∞

−∞
w (v)

µ
g(x)− vbg(1)(x) +

v2b2

2
g(2)(x)− v3b3

6
g(3)(x)

¶
dv +O(b4)

= g(x) +
b2

2
g(2)(x) +O(b4).

11



Note that this makes use of the facts that
R∞
−∞w (v) dy = 1,

R∞
−∞w (v) v = 0,

R∞
−∞w (v) v2 = 1 andR∞

−∞w (v) v3 = 0.

Similarly

E (wi (x−Xi)) =

Z ∞

−∞
(x− v)

1

b
w

µ
x− v

b

¶
g(v)dv

= b

Z ∞

−∞
vw (v) g(x− bv)dv

= b

Z ∞

−∞
vw (v)

µ
g(x)− vbg(1)(x) +

v2b2

2
g(2)(x)

¶
dv +O(b4)

= −b2g(1)(x) +O(b4)

yielding (29) and

E
³
wi (x−Xi)

2
´
=

Z ∞

−∞
(x− v)2

1

b
w

µ
x− v

b

¶
g(v)dv

= b2
Z ∞

−∞
v2w (v) g (x− bv) dv

= b2g(x) +O(b4)

yielding (30).

To show (31) and (32), first observe that by integration by parts, a change of variables and (36)Z ∞

−∞
Kh (y − u) f (u | v) du =

Z ∞

−∞
kh (y − u)F (u | v)du

=

Z ∞

−∞
k (u)F (y − hu | v) du

=

Z ∞

−∞
k (u)

µ
F (y | v)− huf (y | v) + h2u2

2
f 0 (y | v)− h3u3

6
f 00 (y | v)

¶
du

+O(h4)

= F (y | v) + h2

2
f 0 (y | v) +O(h4). (39)
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By a change of variables, and using (35) and (37),Z ∞

−∞
F (y | v) 1

b
w

µ
x− v

b

¶
g(v)dv

=

Z ∞

−∞
F (y | x− bv) g(x− bv)w (v) dv

=

Z ∞

−∞

µ
F (y | x)− bvF (1) (y | x) + b2v2

2
F (2) (y | x)− b3v3

6
F (3) (y | x)

¶
.

µ
g(x)− bvg(1)(x) +

b2v2

2
g(2)(x)− v3b3

6
g(3)(x)

¶
w(v) +O(b4)

= F (y | x) g(x) + b2

2
F (y | x) g(2)(x) + b2

2
F (2) (y | x) g(x) + b2F (1) (y | x) g(1)(x) +O(b4). (40)

Similarly, by a change of variables and (35) and (38),Z ∞

−∞
f 0 (y | v) 1

b
w

µ
x− v

b

¶
g(v)dv =

Z ∞

−∞
f 0 (y | x− bv) g(x− bv)w(v)dv

= f 0 (y | x) g(x) +O(b2). (41)

Together, (28), (39), (40) and (41) show that

E (wiK
∗
h(Yi)) = E (wiKh(Yi))−E (wi)F (y | x)

=

Z ∞

−∞

Z ∞

−∞
1

b
w

µ
x− v

b

¶
Kh (y − u) f (u | v) g(v)dudv

−
µ
g(x) +

b2

2
g(2)(x)

¶
F (y | x) +O(b4)

=

Z ∞

−∞
F (y | v) 1

b
w

µ
x− v

b

¶
g(v)dv −

µ
g(x) +

b2

2
g(2)(x)

¶
F (y | x)

+
h2

2

Z ∞

−∞
f 0 (y | v) 1

b
w

µ
x− v

b

¶
g(v)dv +O(b4)

=
h2

2
f 0 (y | x) g(x) + b2

2
F (2) (y | x) g(x) + b2F (1) (y | x) g(1)(x)

+O
¡
b4
¢

which is (31).
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Similarly, using (29), (39) and similar derivations,

E (wi (x−Xi)K
∗
h(Yi)) = E (wi (x−Xi)Kh(Yi))−E (wi (x−Xi))F (y | x)

=

Z ∞

−∞

Z ∞

−∞
(x− v)

1

b
w

µ
x− v

b

¶
Kh (y − u) f (u | v) g(v)dvdu

+b2g(1)(x)F (y | x) +O(b4)

= b

Z ∞

−∞
vF (y | x− bv) g(x− bv)w (v)dv

+b
h2

2

Z ∞

−∞
vf 0 (y | x− bv) g(x− bv)w (v)dv

+b2g(1)(x)F (y | x) +O(b4)

= −b2F (1) (y | x) g(x) +O
¡
b4
¢

which is (32).

To show (33) first observe that by a change of variables and (35),

E
¡
w2i
¢
=

Z ∞

−∞
1

b2
w

µ
x− v

b

¶2
g (v)dv

=
1

b

Z ∞

−∞
w (v)2 g (x− bv)dv

=
1

b

Z ∞

−∞
w (v)2

³
g(x)− vbg(1)(x)

´
dv +O(b)

=
Rg(x)

b
+O(b). (42)

Second, using (39), a change of variables, (35) and (37),

E
¡
w2iKh(Yi)

¢
=

Z ∞

−∞

Z ∞

−∞
1

b
w

µ
x− v

b

¶2
Kh (y − u) f (u | v) g(v)dvdu

=

Z ∞

−∞
1

b2
w

µ
x− v

b

¶2
g(v)F (y | v) dv +O

µ
h2

b

¶
=
1

b

Z ∞

−∞
w (v)2 g(x− vb)F (y | x− vb) dv +O (b)

=
1

b

Z ∞

−∞
w (v)2

³
g(x)− vbg(1)(x)

´³
F (y | x)− vbF (1) (y | x)

´
dv +O(b2)

=
Rg(x)F (y | x)

b
+O(b). (43)
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Third, by integration by parts, a change of variables, and (36)Z ∞

−∞
Kh (y − u)2 f (u | v) du = 2

Z ∞

−∞
Kh (y − u) kh (y − u)F (u | v)du

= 2

Z ∞

−∞
K (u) k (u)F (y − hu | v) du

= 2

Z ∞

−∞
K (u) k (u) (F (y | v)− huf (y | v))du+O(h2)

= F (y | v)− hψf (y | v) +O(h2). (44)

The final equality uses the definition (1) and the fact that the symmetry of k(u) about zero impliesZ ∞

−∞
2K (u)k (u) du = 0.

Fourth, using (44), (35), (37) and (38),

E
¡
w2iKh(Yi)

2
¢
=

Z ∞

−∞

Z ∞

−∞
1

b2
w

µ
x− v

b

¶2
Kh (y − u)2 f (u | v) g(v)dvdu

=

Z ∞

−∞
1

b2
w

µ
x− v

b

¶2
(F (y | v)− hψf (y | v)) g(v)dv +O

µ
h2

b

¶
=
1

b

Z ∞

−∞
w (v)2 (F (y | x− vb)− hψf (y | x− vb)) g(x− vb)dv +O (b)

=
Rg(x) (F (y | x)− hψf (y | x))

b
+O(b) (45)

Together, (42), (43) and (45) show

E
¡
w2iK

∗
h(Yi)

2
¢
= E

¡
w2iKh(Yi)

2
¢− 2E ¡w2iKh(Yi)

¢
F (y | x) +E

¡
w2i
¢
F (y | x)2

=
Rg(x) (F (y | x)− hψf (y | x))− 2Rg(x)F (y | x)2 +Rg(x)F (y | x)2

b
+O (b)

=
Rg(x) (F (y | x) (1− F (y | x))− hψf (y | x))

b
+O (b)

which is (33). (34) is shown similarly.

Proof of Theorem 1: From equations (29)-(30),

Eβ̂x =
³
E
³
wi (x−Xi)

2
´´−1

(E (wi (x−Xi))) +O
¡
b2
¢

= −g(x)−1g(1)(x) +O
¡
b2
¢
.
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Combined with (28), this yields

Ew∗i = Ewi −Eβ̂E (wi (x−Xi)) +O(b2) (46)

= f(x) +O(b2).

Next, using equations (31) and (32),

E (w∗iK
∗
h(Yi)) = E (wiK

∗
h(Yi))−Eβ̂E (wi (x−Xi)K

∗
h(Yi)) +O

¡
b4
¢

=
b2

2
F (2) (y | x) g(x) + h2

2
f 0 (y | x) g(x) +O

¡
b4
¢
.

Together with (46) we find

E
³
F̃h,b (y | x)− F (y | x)

´
=

Ew∗iK∗
h (y − Yi)

Ew∗i
+O

¡
b4
¢

=
1

2

³
b2F (2) (y | x) + h2f 0 (y | x)

´
+O

¡
b4
¢
.

Similarly, using (33) and (34)

V ar
³
F̃h,b (y | x)

´
=

1

n

V ar (w∗iK
∗
h (y − Yi))

(Ew∗i )
2

=
1

n

E (wiK
∗
h (y − Yi))

2

g(x)2
+O

µ
b

n

¶
=

R (F (y | x) (1− F (y | x))− hψf (y | x))
g(x)nb

+O

µ
b

n

¶
O
³
n−6/5

´
.

Together, these expressions and the assumption that b = cn−1/5 establish that

E
³
F̃h,b (y | x)− F (y | x)

´2
=

R (F (y | x) (1− F (y | x))− ψhf (y | x) f(x))
g(x)nb

+
h4f 0 (y | x)2

4

+
h2b2f 0 (y | x)F (2) (y | x)

2
+

b4f 0 (y | x)F (2) (y | x)2
4

+O
³
n−6/5

´
.

Integrating over y we obtain

Z ∞

−∞
E
³
F̃h,b (y | x)− F (y | x)

´2
dy =

R
³R∞
−∞ F (y | x) (1− F (y | x))dy − ψh

R∞
−∞ f (y | x)dyf(x)

´
g(x)nb

+
h4

4

Z ∞

−∞
f 0 (y | x)2 dy + h2b2

2

Z ∞

−∞
f 0 (y | x)F (2) (y | x)dy

+
b4

4

Z ∞

−∞
F (2) (y | x)2 dy +O

³
n−6/5

´
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which equals the expression in (8) using the equivalenceZ ∞

−∞
f 0 (y | x)F (2) (y | x)dy = −

Z ∞

−∞
f (y | x) f (2) (y | x) dy

which holds by integration by parts. This completes the proof.
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Table 1:

Normalized MISE

Conditional Distribution Function Estimators

n = 50 Optimal Bandwidth Plug-In Bandwidths

Error Density SNW LL SLL LL SLL

Gaussian .76 .70 .56 .79 .67

Skewed Unimodal .80 .64 .53 .69 .60

Strongly Skewed .89 .85 .78 .88 .82

Kurtotic Unimodal .82 .77 .66 .81 .72

Outlier .65 .69 .49 .99 .76

Bimodal .76 .71 .55 .84 .72

Separated Bimodal .93 .82 .77 .95 .92

Asymmetric Bimodal .76 .68 .52 .80 .68

Trimodal .78 .72 .56 .86 .74

n = 100 Optimal Bandwidth Plug-In Bandwidths

Error Density SNW LL SLL LL SLL

Gaussian .80 .67 .58 .71 .63

Skewed Unimodal .83 .63 .54 .66 .58

Strongly Skewed .84 .89 .84 .92 .88

Kurtotic Unimodal .85 .76 .68 .81 .73

Outlier .61 .61 .44 1.06 .80

Bimodal .90 .66 .55 .72 .64

Separated Bimodal .96 .80 .77 .84 .81

Asymmetric Bimodal .81 .64 .52 .69 .62

Trimodal .83 .68 .57 .74 .66

n = 300 Optimal Bandwidth Plug-In Bandwidths

Error Density SNW LL SLL LL SLL

Gaussian .86 .64 .59 .66 .61

Skewed Unimodal .88 .60 .55 .62 .58

Strongly Skewed .97 .93 .91 1.20 1.16

Kurtotic Unimodal .87 .73 .68 .85 .79

Outlier .58 .51 .39 .97 .75

Bimodal .88 .61 .56 .63 .59

Separated Bimodal .97 .78 .76 .81 .80

Asymmetric Bimodal .89 .59 .52 .61 .57

Trimodal .95 .62 .65 .65 .61
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