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Abstract
We consider models of stochastic evolution in two-strategy games in which agents

employ imitative decision rules. We introduce committed agents: for each strategy,
we suppose that there is at least one agent who plays that strategy without fail. We
show that unlike the standard imitative model, the model with committed agents
generates unambiguous infinite horizon predictions: the asymptotics of the stationary
distribution do not depend on the order in which the mutation rate and population
size are taken to their limits.

1. Introduction

Models of stochastic evolution in games describe the behavior of agents who recur-
rently face the same strategic interaction, updating their choices over time by applying
simple myopic rules. Over very long time spans, aggregate play in these models often
concentrates on a single stochastically stable state, which then provides a unique prediction
of long run behavior.

Following Binmore et al. [5], Binmore and Samuelson [4], and Fudenberg and Imhof
[11, 12], the present paper focuses on imitative rules, under which a revising agent observes
the behavior of a randomly selected opponent, and then switches to the opponent’s
strategy with a probability that may depend on his own current payoff, his opponent’s
current payoff, or both.1
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1Imitative protocols can be interpreted as models of biological natural selection, with imitation of an

individual playing a given strategy being viewed instead as reproduction by an individual playing that
strategy; see Nowak et al. [19], Fudenberg et al. [13], and Traulsen and Hauert [26].



In a pure imitation model, a population that reaches a monomorphic state remains there
forever. Thus, to employ stochastic stability analysis in imitative models, adjustments
must be made to ensure that transitions between all pairs of states are possible. The
papers mentioned above accomplish this by introducing a small probability of random
experimentation or mutation, which ensures that the evolutionary process is irreducible,
and so admits a unique stationary distribution. The stochastically stable states are those
that retain mass in this stationary distribution as the parameters defining the evolutionary
process approach their limiting values.

There are two main options for specifying these limits. Starting with Kandori et al. [15]
and Young [28], many authors consider small noise limits, analyzing the behavior of the
stationary distribution as the mutation rate approaches zero.2 Others, including Binmore
and Samuelson [4], Young [29, Section 4.5], and Benaı̈m and Weibull [3], focus on large
population limits, studying the behavior of the stationary distribution as the population
size approaches infinity. To obtain clean comparisons between the two approaches, Bin-
more et al. [5] and Binmore and Samuelson [4] consider definitions of stochastic stability
in which the small noise and large population limits are taken sequentially. Since the
parameter in the outer limit is fixed while the inner limit is taken, it is the parameter in
this inner limit that governs equilibrium selection.3

If the order of limits employed did not matter for equilibrium selection, then careful
consideration of this modeling choice would not be necessary. However, Binmore and
Samuelson [4] show that the order of limits can matter. In Hawk-Dove games, whose
unique Nash equilibrium is interior, this Nash equilibrium is stochastically stable in the
large population double limit. This prediction agrees with the behavior of the stochastic
evolutionary process’s mean dynamic, the differential equation defined by the process’s
expected motion.4 But in the small noise double limit, the stochastically stable state must
be monomorphic, with all agents playing the same strategy. For while transitions from
the Nash equilibrium to a monomorphic state are quite unlikely when the population
size is large, a small enough mutation rate ensures that these rare transitions are far more
likely than the single mutation needed to escape a monomorphic state. Consequently,

2Fudenberg and Imhof [11, 12] and Agarwal and Lai [1] show that when it is employed in conjunction
with imitation, the small noise limit is particularly tractable.

3A modeler’s choice between these limits can reflect his assessment of whether the unlikelihood of
mistakes or the largeness of the population is the driving force behind equilibrium selection. Binmore and
Samuelson [4] argue that in economic contexts, experimentation and errant choices are not vanishingly rare,
and so suggest that the large population limit is typically more appropriate for economic modeling. On the
other hand, since genetic mutations may well be truly exceptional events, the small noise limit may be a
more appropriate choice for modeling biological natural selection.

4As we discuss below, general results of Benaı̈m [2] and Benaı̈m and Weibull [3] imply that the the
stochastically stable state must be a recurrent point of the mean dynamic.
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most periods are spent at monomorphic states in the very long run.
In economic settings for which evolutionary models are appropriate—for instance,

those that are one of many that an individual agent faces—agents only reconsider their
choices of strategies sporadically. If there are agents for whom the setting in question is
of particularly minor importance, or who are engaged in other activities that place great
demands on their attention or reasoning capacities, it seems reasonable to expect that
some of these agents may not bother to consider switching strategies at all.

To capture this possibility, we alter the standard model by introducing committed agents,
who play particular strategies without fail. Doing so ensures that every strategy is always
available for imitation. Because of this, the stochastic process describing the evolution of
aggregate behavior is irreducible even in the absence of mutations.

Our main results show that in two-strategy games, the inclusion of committed agents
in imitative models leads to unambiguous predictions about infinite-horizon behavior.
Whether one takes the small noise limit first, or the large population limit first, or whether
one leaves out mutations and takes only the large population limit, the prediction of
infinite-horizon behavior is the same: all specifications yield the same infinite-horizon
behavior as the large population limit in the model without committed agents. Indeed,
this agreement is established in a very strong sense: we obtain explicit expressions for the
rates of decay of the stationary distribution weights for each arrangement of the limits,
and prove that these asymptotics are all identical.5 These results reinforce Binmore and
Samuelson’s [4] assessment that in economic settings, a focus on large population limits
may be warranted.

2. The Model

We consider games in which the members of a population of N agents choose strategies
from the common finite strategy set S. In setting up the model there is no advantage to
restricting the number of strategies n = #S, but we will restrict attention to the two-strategy
case once the analysis commences in Section 3.

We describe the population’s aggregate behavior by a population state x, an element
of the simplex X = {x ∈ Rn

+ :
∑n

i=1 xi = 1}, or more specifically, the grid X N = X ∩ 1
N Zn =

{x ∈ X : Nx ∈ Zn
}. We identify a finite-population game with its payoff function FN : X N

→

Rn, where FN
i (x) ∈ R is the payoff to strategy i when the population state is x ∈ X N. Only

5This analysis builds on methods developed in Binmore and Samuelson [4], Blume [8], and Sandholm
[22, 23]. The last of these papers considers stochastic evolution under a general class of noisy best response
protocols, and shows that both orders of limits lead to identical predictions of infinite horizon play.
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the values that the function FN
i takes on the set X N

i = {x ∈ X N : xi > 0} are meaningful,
since at the remaining states in X N strategy i is unplayed.

State x ∈ X N is a Nash equilibrium of FN if no agent can obtain a higher payoff by
switching strategies:

[xi > 0⇒ FN
i (x) ≥ FN

j (x + 1
N (e j − ei))] for all i, j ∈ S,

where ei is the ith standard basis vector in Rn. This definition accounts for the fact that
after an agent switches from strategy i to strategy j, the population has one less i player
and one more j player.

To consider large population limits, we must specify a notion of convergence for
sequences {FN

}
∞

N=N0
of finite-population games. If a such a sequence converges, its limit is

a continuous-population game, F : X→ Rn, which we require to be a continuous function
from X to R. A natural notion of convergence for the sequence {FN

}
∞

N=N0
is uniform

convergence, which asks that

lim
N→∞

max
x∈X N

∣∣∣FN(x) − F(x)
∣∣∣ = 0.

Uniform convergence obtains when agents are matched to play a symmetric two-player
normal form game A ∈ Rn×n, whether this occurs with self-matching (FN

i (x) =
∑

j∈S Ai jx j =

(Ax)i) or without (FN
i (x) = 1

N−1 (A(Nx − ei))i = (Ax)i + 1
N−1 ((Ax)i − Aii) ).

We suppose that the game FN is played recurrently, with agents updating their strate-
gies over time by employing a revision protocol σN : Rn

× X → Rn×n
+ . A revision protocol

takes a payoff vector π ∈ Rn and a population state x ∈ X as inputs, and returns as output
a nonnegative matrix σN(π, x) whose row sums equal 1:∑

j∈S

σN
ij (π, x) = 1 for all i ∈ S. (1)

The scalar σN
ij (π, x) is called the conditional switch probability from strategy i to strategy j.

A population game FN and a revision protocol σN define a stochastic evolutionary
process {XN

t }t≥0 on the state space X N in the following way. Each of the N agents in the
population receives revision opportunities according to independent, rate 1 Poisson alarm
clocks. If a current i player receives a revision opportunity when the population state is
x, he switches to strategy j with probability σN

ij (F
N(x), x).

This paper studies the evolution of play under imitative protocols. In the standard
setting, without committed agents, these protocols take the form
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σN
ij (π, x) =

Nx j

N−1 ri j(π) for j , i, (2)

with the value of σN
ii (π, x) being determined by the row sum condition (1). The

Nx j

N−1 term
reflects the idea that an agent who receives a revision opportunity randomly samples one
of his opponents and takes her strategy as his candidate strategy. He then opts to switch
to the candidate strategy with probability ri j(π). We assume throughout that

Each function ri j : Rn
→ [0, 1] is continuous and bounded away from zero. (B)

This assumption ensures that there is always some chance that the agent imitates the
opponent he observes. Standard examples of revision protocols satisfying this condition
can be found in the online appendix.

A basic feature of evolutionary processes generated by protocols of form (2) is extinction:
unused strategies are never subsequently chosen. To respond to this difficulty, Binmore
and Samuelson [4] introduce the possibility of mutation, replacing protocol (2) with

σN,ε
i j (π, x) = (1 − ε)

Nx j

N−1 ri j(π) + 1
n−1ε for j , i. (3)

Under protocol (3), a revising i player behaves as in protocol (2) with probability 1−ε, but
with the remaining probability of ε he chooses a new strategy at random from the n − 1
alternatives. The resulting evolutionary process is irreducible for any positive choice of ε.

Mutations are not the only way of making imitation compatible with stochastic stability
analysis. As an alternative, one can assume that in addition to the N standard agents,
there are also cN

T =
∑

i∈S cN
i committed agents. The cN

i ≥ 1 committed agents associated
with strategy i play this strategy without fail. The presence of committed agents ensures
that no strategy ever goes extinct, and so that imitative protocols satisfying condition (B)
generate irreducible evolutionary processes even without mutations.

We account for the existence of committed agents by replacing revision protocol (2)
with the protocol

σN
ij (π, x) =

Nx j+cN
j

N+cN
T −1 ri j(π) for j , i, (4)

where x ∈ X N represents the behavior of the standard (uncommitted) agents. To make
direct comparisons with protocol (3), we also consider imitative protocols that account for
committed agents and mutations:

σN,ε
i j (π, x) = (1 − ε)

Nx j+cN
j

N+cN
T −1 ri j(π) + 1

n−1ε for j , i. (5)

–5–



Until Section 4.3, we assume that cN
i = ci is independent of the population size, so that

the fraction of committed agents becomes vanishingly small as N grows large. Section 4.3
considers the alternative assumption that cN

i is proportional to N.

3. Preliminary Analysis

The analysis to follow focuses on play in two-strategy games. In this context, it is
convenient to let S = {0, 1}be the set of strategies, and to identify the population state x with
the weight x ≡ x1 that it places on strategy 1. With this shorthand, the set of population
states becomes X N = {0, 1

N ,
2
N , . . . , 1}, a uniformly spaced grid in the unit interval. We write

FN(x ) for FN(x) and make similar substitutions whenever it is convenient to do so.
Stochastic evolution in a two-strategy game is described by a birth-and-death process

{XN
t }t≥0 on the state space X N, with transitions only occurring between adjacent states. For

the process {XN
t } to step upward during the next revision opportunity, this opportunity

must be received by a strategy 0 player who then switches to strategy 1. Thus, the
probability of an upward transition is

pN
x = (1 − x ) σN

01(FN(x ), x ). (6)

For a step downward to occur, the next revision opportunity must be received by a strategy
1 player who switches to strategy 0, so the probability of a downward transition is

qN
x = x σN

10(FN(x ), x ). (7)

If there is a positive probability of mutations, or if committed agents are present, the
process {XN

t } is irreducible. It thus admits a unique stationary distribution µN, which de-
scribes the infinite-horizon behavior of the evolutionary process in two distinct ways: it is
the limiting distribution of the process, and it describes the limiting empirical distribution
of the process along almost every sample path (see, e.g., Norris [18]). In the present case,
this stationary distribution is described by the following well-known formula:

µN
x

µN
0

=

Nx∏
j=1

pN
( j−1)/N

qN
j/N

for x ∈ { 1
N ,

2
N , . . . , 1}. (8)

The value of µN
0 is determined by the requirement that the sum of the stationary distribu-

tion weights equal 1.
Some basic conclusions about the limiting behavior of the stationary distributions µN
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as the population size N grows large can be deduced from the mean dynamic associated
with the collection {{XN

t }t≥0}
∞

N=N0
, which describes the expected motion of the process {XN

t }

N is large. Suppose that the population games FN converge uniformly to a limit game F,
and that the revision protocols σN converge uniformly to a limiting protocol σ. Then in
the two-strategy case, the mean dynamic is given by

ẋ = (1 − x ) σ01(F(x ), x ) − x σ10(F(x , x )). (9)

The mean dynamic presents the expected rate of change in the use of strategy 1 as the
difference between two terms: the expected inflow into strategy 1 from strategy 0, and the
expected outflow from strategy 1 to strategy 0.

The mean dynamic (9) describes the behavior of the evolutionary process in the large
population limit in two distinct ways. First, one can establish a finite-horizon deterministic
approximation theorem: if we fix a finite time horizon T, then for N large enough, the
sample paths of the process {XN

t } are very likely to closely track the solution to the mean
dynamic (9) from the relevant initial condition. Second, one can obtain restrictions on
the limiting behavior of the stationary distribution: when N is large enough, the mass in
µN must become concentrated near the recurrent points—in the present, one-dimensional
case, the rest points—of the dynamic (9).6

If there are fixed numbers of committed agents, then in the large population limit, the
no-mutation protocols (2) and (4) both converge uniformly to the limit protocol

σi j(π, x) = x jri j(π) for j , i,

and so generate the same mean dynamic,

ẋ = x (1 − x ) (r01(F(x )) − r10(F(x ))) . (M0)

Likewise, the common mean dynamic for the protocols with mutations, (3) and (5), is

ẋ = (1 − ε) x (1 − x ) (r01(F(x )) − r10(F(x ))) + ε(1 − 2x ). (Mε)

For ease of interpretation, we henceforth suppose that conditional imitation probabilities
are monotone:

π j ≥ πi ⇔ ri j(π) ≥ r ji(π) for i, j ∈ {0, 1}. (10)

6See Kurtz [16], Benaı̈m [2], Benaı̈m and Weibull [3], and Roth and Sandholm [20].
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In words: if an agent observes an opponent playing the other strategy, he is more likely
to imitate if his current strategy has the lower payoff than if it has the higher payoff.
Under condition (10), the rest points of the dynamic (M0) are the Nash equilibria of F and
the monomorphic states x = 0 and x = 1; if the latter are not Nash equilibria, they are
unstable. The dynamic (Mε) introduces a small force pushing toward the center of the
simplex, eliminating rest points of (M0) corresponding to non-Nash monomorphic states.

4. Results

One basic question in stochastic evolutionary game theory concerns the effects of
different orders of limits on predictions of infinite-horizon play. Following Sandholm [23],
we call states that retain mass in the limiting stationary distribution either stochastically
stable in the small noise double limit or stochastically stable in the large population double limit
according to whether the inner limit is in ε or N.

The results to follow describe the asymptotics of the stationary distribution, and a
fortiori the stochastically stable states, for both orders of limits, and for settings both
without and with committed agents. These results require the function J : [0, 1] → R,
defined in terms of the limit game F : [0, 1]→ R2 and the conditional imitation probabilities
r01(·) and r10(·) by

J(x ) =

∫ x

0
log

r01(F(y ))
r10(F(y ))

dy . (11)

It is easy to verify that J is is a strict Lyapunov function for the mean dynamic (M0): its
value increases along solutions of (Mγ), strictly so whenever the dynamic is not at rest.
Moreoever, in light of condition (10), J is an ordinal potential function for the game F, in that
marginally increasing the weight on the optimal strategy always increases the value of J.
From this it follows immediately that local maximizers of J are Nash equilibria of F.7

Theorems 4.1–4.3 are stated in terms of the function ∆J : X→ R−, defined by

∆J(x ) = J(x ) −max
y∈X

J(y ).

This function is obtained from J by shifting the graph of J vertically to place its maximum
value at 0.

7Compare Monderer and Shapley [17] and Sandholm [21, 23].
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4.1 No committed agents

To obtain a concise statement of the results for settings without committed agents, we
say that the collection {αε}ε∈(0,ε̄] is of exact order ε, denoted αε ∈ Θ(ε), if there is an interval
[a, b] ⊂ (0,∞) such that αε/ε ∈ [a, b] for all ε close enough to zero.

Theorem 4.1. Let {FN
} be a sequence of two-strategy population games that converges uniformly

to the continuous-population game F. Suppose that agents employ an imitative protocol with
mutations. Then the stationary distributions µN,ε satisfy

(i) lim
N→∞

lim
ε→0

1
N log

µN,ε
1

µN,ε
0

= J(1), and
µN,ε

x

µN,ε
0

and
µN,ε

x

µN,ε
1

are in Θ(ε) when x ∈ X N
− {0, 1}, and

(ii) lim
ε→0

lim
N→∞

max
x ∈X N

∣∣∣ 1
N logµN,ε

x − ∆J(x )
∣∣∣ = 0.

The proofs of this and subsequent results build on methods developed by Binmore and
Samuelson [4], Blume [8], and Sandholm [22, 23] for analyzing limiting stationary distri-
butions of birth-and-death chains. The proofs of Theorems 4.2 and 4.3 are presented in
Section 6, while the proofs of Theorems 4.1 and 4.4 appear in an online appendix.

Theorem 4.1(i), which is essentially due to Binmore and Samuelson [4], shows that
in the small noise double limit, all of the mass in the stationary distribution becomes
concentrated on boundary states regardless of the game at hand. The sign of J(1) (=
J(1) − J(0)) determines which state is selected: state 1 if J(1) > 0 and state 0 if J(1) < 0.
The magnitude of J(1) determines the rate at which the mass on the other boundary state
vanishes as the population size grows large. Theorem 4.1(ii) shows that in the large
population double limit, the only states that can retain mass in the limiting stationary
distribution are those that maximize the ordinal potential function J, which thus are Nash
equilibria of the limit game. In addition, Theorem 4.1(ii) reveals that the rate at which the
mass near state x decays as the population size N grows large is determined by the value
of ∆J at that state.8

Theorem 4.1 implies that in games without monomorphic Nash equilibria, the small
noise and large population double limits must specify different stochastically stable states.
The reason for this discrepancy can be explained as follows. The only way that the process
{XN,ε

t } can escape from a boundary state is by way of a mutation. If we fix the population
size N and make ε extremely small, then a journey from an interior state to a boundary
state—here a journey against the flow of the mean dynamic—is more likely than an
escape from a boundary state by way of a single mutation. It follows that in the small
noise double limit, the stationary distribution must become concentrated on the boundary
states—typically, on just one of the boundary states—regardless of the expected motion

8This is so because 1
N logµN,ε

x = −r(x ) if and only if µN,ε
x = exp(−Nr(x )) .
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of the system. On the other hand, if we fix a small value of ε and make N large, then as
explained in Section 3, the stationary distribution µN,ε must become concentrated near the
rest points of the perturbed mean dynamic (Mε). These are only near Nash equilibria, not
non-Nash boundary states. Thus, in the large population double limit, the mass in µN,ε

becomes concentrated on Nash equilibria.9

4.2 Fixed numbers of committed agents

When committed agents are present, the stochastic evolutionary process is irreducible
even without mutations. Theorem 4.2 shows that the large population limit with fixed
numbers of committed agents agrees with the large population double limit from Theorem
4.1: in both cases, rates of decay of stationary distribution weights, and hence the identity
of the stochastically stable state, are determined by the ordinal potential J.

Theorem 4.2. Let {FN
} be a sequence of two-strategy population games that converges uniformly

to the continuous-population game F. Suppose that the N standard agents employ an imitative
protocol without mutations, and that there are ci > 0 committed agents playing strategy i ∈ {0, 1}.
Then the sequence of stationary distributions {µN

} satisfies

lim
N→∞

max
x ∈X N

∣∣∣ 1
N logµN

x − ∆J(x )
∣∣∣ = 0.

Since there are no mutations and a vanishing fraction of committed agents, the stochastic
approximation results described in Section 3 imply that as N grows large, the mass in the
stationary distribution µN becomes concentrated on the rest points of the unperturbed
mean dynamic (M0). These rest points include any non-Nash boundary states. Never-
theless, a careful analysis of the explicit formula (8) for the stationary distribution reveals
that such states cannot be selected, and moreover, that the asymptotics of the stationary
distribution take the same form as in the large population double limit from Theorem
4.1(ii).

Introducing mutations brings back the question of order of limits, which is addressed
by our next result.

Theorem 4.3. Let {FN
} be a sequence of two-strategy population games that converges uniformly

to F. Suppose that the N standard agents employ an imitative protocol with mutations, and that
there are ci > 0 committed agents playing strategy i ∈ {0, 1}. Then the stationary distributions
µN,ε satisfy

9In related work, Fudenberg and Hojman [10] consider taking the population size and the noise level
to their limits simultaneously, and show how the identity of the stochastically stable state depends on the
relative rates at which these limits are taken.
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(i) lim
N→∞

lim
ε→0

max
x ∈X N

∣∣∣ 1
N logµN,ε

x − ∆J(x )
∣∣∣ = 0 and

(ii) lim
ε→0

lim
N→∞

max
x ∈X N

∣∣∣ 1
N logµN,ε

x − ∆J(x )
∣∣∣ = 0.

Theorem 4.3 shows that when committed agents are present, the asymptotics of the
stationary distribution in the small noise and large population double limits are identical.
In both cases, the stochastically stable states are maximizers of the function J, and hence
are Nash equilibria of the limit game F.

To establish part (i) of the theorem, we observe that for each fixed population size, as the
mutation rate ε approaches zero, the transition probabilities of the process with mutations
converge uniformly to those of the process without mutations. This in turn implies that
the small noise double limit agrees with the limit from Theorem 4.2. For part (ii), we
note that when the mutation rate ε is positive, ensuring that the evolutionary process
is irreducible, the presence of a vanishing fraction of committed agents has a negligible
effect on the stationary distribution. For this reason, the large population double limit
here agrees with the one from Theorem 4.1(ii).

4.3 Fixed proportions of committed agents

The analysis in Section 4.2 considered cases in which the numbers of committed agents
were fixed independently of the population size, so that the proportions of committed
agents vanish as the population size grows large. But in some settings, it is natural to
suppose that committed agents make up a nonnegligible proportion of the population. To
address this possibility, we now suppose that when the population size is N, the number
of agents committed to strategy j is cN

j = Nγ j > 0, so that the proportion of committed
agents in the population stays fixed as N grows.10 If mutations are not introduced, this
specification leads to the mean dynamic

ẋ = 1
γ0+γ1

(x (1 − x ) (r01(F(x )) − r10(F(x ))) + (1 − x )γ1r01(F(x )) − x γ0r10(F(x ))
)
. (Mγ)

Comparing this dynamic with (M0), we see that adding fixed proportions of committed
agents introduces forces pushing away from each endpoint of the unit interval.

We now describe how the presence of fixed fractions of committed agents affects the
asymptotics of the stationary distribution. To do so, we define the continuous function
` : R+ → R by `(x) = x log x for x > 0 and `(0) = 0, and we define Lγ : [0, 1]→ R by

Lγ(x ) = `(x + γ1) − `(x ) − `(γ1) + `(1 − x + γ0) − `(1 − x ) − `(1 + γ0),

10To do this, we must only consider values of N for which each Nγ j is an integer.
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Lγ is a concave function that is maximized at γ0

γ0+γ1
, and it is symmetric about 1

2 when
γ0 = γ1. Finally, we define J γ : [0, 1]→ R and ∆J γ : [0, 1]→ R by

J γ(x ) = J(x ) + Lγ(x ) and ∆J γ(x ) = J γ(x ) −max
y∈X

J γ(y )

It is easy to verify that under monotonicity condition (10), J γ (and also ∆J γ) is a strict
Lyapunov function for the mean dynamic (Mγ).

Theorem 4.4 describes the behavior of the stationary distribution in the large popula-
tion limit, providing the analogue of Theorem 4.2 for settings with fixed proportions of
committed agents.

Theorem 4.4. Let {FN
} be a sequence of two-strategy population games that converges uniformly

to the continuous-population game F. Suppose that the N standard agents employ an imitative
protocol without mutations, and that there are Nγi > 0 committed agents playing strategy i ∈ {0, 1}.
Then the sequence of stationary distributions {µN

} satisfies

lim
N→∞

max
x ∈X N

∣∣∣ 1
N logµN

x − ∆J γ(x )
∣∣∣ = 0.

Theorem 4.4 shows that when fixed proportions of committed agents are present, the
rates of decay of stationary distribution weights are described not by J, but rather by
Jγ = J + Lγ. Since Lγ is concave and maximized at γ0

γ0+γ1
, both the mass in the stationary

distribution and the stochastically stable state move toward the state that corresponds to
the aggregate behavior of the committed agents.

Ifγ0 andγ1 are large, then Lγ(x ) ≈ −(`(x )+`(1−x ))+x log γ1

γ0
. In this case, if the fractions

of agents committed to each strategy are nearly equal, then Lγ(x ) is approximately the
entropy function h(x) = −(`(x ) + `(1 − x )), and so Jγ ≈ J + h.11 On the other hand, if γ1

γ0
is

quite far from 1, then Lγ is approximately a linear function whose slope is large in absolute
value, and so Jγ(x ) ≈ x log γ1

γ0
is approximately such a function as well. In this case the

stochastically stable state has nearly all active players choosing the strategy played by the
vast majority of committed agents.

With Theorem 4.4 in hand, a modification of the proof of Theorem 4.3 can be used
to establish the obvious extension of that order-of-limits result to settings with fixed
proportions of committed agents and rare mutations.

11The entropy function plays a similar role in the analysis of large population stationary distribution
asymptotics for noisy best response dynamics; see Sandholm [22].
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5. Discussion

5.1 Imitative protocols, mean dynamics, and equilibrium selection

The results in Section 4.2 show that with small numbers of committed agents, the
asymptotics of the stationary distribution of the stochastic evolutionary process are un-
ambiguously described by the function J, which also serves as a Lyapunov function for
the processes’ mean dynamic. It does not follow, however, that stochastic evolutionary
processes with the same mean dynamic generate the same equilibrium selections. In the
online appendix, we consider stochastic evolutionary processes generated by two com-
monly studied imitative protocols: imitation driven by dissatisfaction, which conditions only
on the payoff of the agent’s current strategy, and imitation of success, which conditions only
on the payoff of the candidate strategy.12 Both protocols we consider generate the replica-
tor dynamic (Taylor and Jonker [25]) as their mean dynamics, and so lead to behavior that
is indistinguishable over finite time spans. Nevertheless, we show that in certain simple
coordination games, the two protocols lead to different infinite-horizon equilibrium pre-
dictions: imitation of success leads to the selection of the safe equilibrium, while imitation
driven by satisfaction leads to selection of the payoff dominant equilibrium.

5.2 Games with three or more strategies

Our analysis of stochastic imitative dynamics with committed agents has focused on
evolution in two-strategy games. This restriction ensures that the stochastic evolutionary
process is a birth-and-death process, and so that its stationary distribution is described by
a simple explicit formula. Once we move beyond the two-strategy case, such formulas
are generally unavailable.13

We conjecture that Theorem 4.3, which establishes the invariance of infinite horizon
predictions to the order of limits in N and ε, should continue to hold in games with
three or more strategies. To explain the issues involved, let us focus this discussion on
games whose unique Nash equilibrium x∗ is interior and almost globally asymptotically
stable under the relevant mean dynamic (M0) (or to be more precise, under its n-strategy
analogue).14 In this setting, the conjecture implies that if small numbers of committed

12Early analyses of these protocols include Björnerstedt and Weibull [6], Weibull [27], and Hofbauer [14].
13We know of only one setting in which this is possible. Building on the work of Blume [7], one can obtain

an explicit formula for the stationary distribution when the game being played is an n strategy potential
game, when there is exactly one committed agent for each strategy, and when the standard agents employ
an imitative analogue of the logit rule. See Sandholm [24, Sec. 11.5.3] for details.

14This is true, for instance, if the mean dynamic is the replicator dynamic, and the limit game F is strictly
stable; see Sandholm [24, Theorem 7.2.4].

–13–



agents are present, then under either orders of limits in N and ε, the limiting stationary
distribution should become concentrated near x∗.

This last claim is easy to prove for the large population double limit whether the
fraction of committed agents is fixed or vanishing. Here we only consider the latter case.
For any ε > 0, results from stochastic approximation theory15 can be used to show that the
limiting distribution limN→∞ µN,ε is concentrated on the recurrent set of the mean dynamic
with mutations, (Mε). This dynamic is a perturbed version of the no-mutation dynamic
(M0). But while the boundary of the state space is invariant under (M0), it is repelling
under (Mε). Hence, results on continuation of attractors16 can be used to show that as ε
approaches 0, the global attractor of (Mε) approaches the Nash equilibrium x∗. This allows
us to conclude that the limiting distribution limε→0 limN→∞ µN,ε is a point mass at x∗.

For the small noise double limit, one can establish a version of the claim when the
fractions of committed agents are small but fixed. The argument runs along the following
lines: Since ε is taken to 0 first, the relevant mean dynamic for the subsequent evaluation
of the large N limit is the no-mutation dynamic (Mγ). The fixed fractions of committed
agents ensure that like (Mε), (Mγ) is a perturbed version of (M0) with a repelling boundary.
Thus, if the fractions of committed agents are small, the global attractor of (Mγ) lies near
x∗, and the limiting distribution limN→∞ limε→0 µN,ε concentrates its mass on this attractor.

But with vanishing fractions of committed agents, the analysis of the small noise double
limit is considerably more difficult. Again, since ε is taken to 0 first, the relevant mean
dynamic for the subsequent evaluation of the large N limit is the no-mutation dynamic, in
this case the dynamic (M0). But now, general results from stochastic approximation theory
tell us only that the limiting stationary distribution becomes concentrated on the set of
recurrent points of (M0). This set includes all monomorphic states, which are (unstable)
rest points of (M0). While one expects that such points cannot retain mass in the limiting
stationary distribution, this cannot be proved using existing methods.17 Thus, the analysis
of the small noise double limit with vanishing fractions of committed agents remains a
challenging open question.

15See Benaı̈m [2], Benaı̈m and Weibull [3], and Roth and Sandholm [20].
16See Sandholm [24, Theorem 9.B.5].
17These methods are introduced by by Benaı̈m [2]. A basic step in these methods is to obtain bounds on

the probability of a transition from an unstable rest point to the stable one; ultimately, such bounds are used
as inputs to Freidlin and Wentzell’s [9] graph-theoretic approach to determining the limiting stationary
distribution. In the present application, an unstable rest point of (M0) at a monomorphic state is a degenerate
state of the stochastic processes: it is not only a state where the expected motion of the process approaches
zero, but one where the probabilities of all non-null transitions approach zero. In such degenerate cases, the
methods from the theory of sample path large deviations used to obtain bounds on transition probabilities
(see Benaı̈m [2, Sec. 6]) do not apply.

–14–



6. Proofs

The Proof of Theorem 4.2
By substituting the committed agents protocol (4) into equations (6) and (7), we obtain

the one-step transition probabilities

pN
x = (1 − x ) · Nx +c1

N+cT−1r01(FN(x )) and

qN
x = x · N(1−x )+c0

N+cT−1 r10(FN(x )).

Inserting these expressions into equation (8) and canceling like terms, we find that the
stationary distribution of the process {XN

t } is given by

µN
x

µN
0

=

Nx∏
j=1

pN
( j−1)/N

qN
j/N

=

Nx∏
j=1

N− j+1
N ·

j+c1−1
N+cT−1 r01(FN( j−1

N ))
j

N ·
N− j+c0

N+cT−1 r10(FN( j
N ))

=

Nx∏
j=1

N − j + 1
N − j + c0

·
j + c1 − 1

j
·

r01(FN( j−1
N ))

r10(FN( j
N ))

. (12)

Now recall that the finite-population games FN : X N
→ R2 converge uniformly to the

continuous limit game F : [0, 1] → R2, and that r01 and r10 are continuous and bounded
away from zero by condition (B). Therefore, if we define the functions vN : [0, 1]→ R by

vN(x ) =


log

r01

(
FN

(
dNx e−1

N

))
r10

(
FN

(
dNx e

N

)) if x ∈ (0, 1],

log
r01 (F(0))
r10 (F(0))

if x = 0,

then the vN are uniformly bounded and converge almost surely to

v(x) ≡ log
r01 (F(x ))
r10 (F(x ))

.

If we define JN : X N
→ R by

JN(x ) =

∫ x

0
vN(y ) dy =

1
N

Nx∑
j=1

log
r01(FN( j−1

N ))

r10(FN( j
N ))

,
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then equation (12) implies that

1
N

log
µN

x

µN
0

= JN(x ) +
1
N

Nx∑
j=1

log
N − j + 1
N − j + c0

+
1
N

Nx∑
j=1

log
j + c1 − 1

j
. (13)

If we could show that the second and third summands in (13) converge uniformly to
0 as N approaches infinity, it would follow that

lim
N→∞

max
x ∈X N

∣∣∣∣∣∣ 1
N

log
µN

x

µN
0

− JN(x )

∣∣∣∣∣∣ = 0. (14)

(We note as an aside that if there is just one committed agent for each strategy, so that
c0 = c1 = 1, these summands are both 0 by definition, and (14) follows trivially.) So fix N,
and consider the third summand in (13). If x > c1

N , then canceling like terms yields

1
N

Nx∑
j=1

log
j + c1 − 1

j
=

1
N

c1−1∑
j=1

log
Nx + j

j
≤

c1
N log(N + 1).

On the other hand, if x ≤ c1
N , then

1
N

Nx∑
j=1

log
j + c1 − 1

j
≤

1
N

c1∑
j=1

log
j + c1 − 1

j
≤

c1
N log c1.

The right-hand sides of these expressions vanish as N approaches infinity, establishing
the desired uniform convergence. For the second summand of (13), a similar argument
shows that∣∣∣∣∣∣∣ 1

N

Nx∑
j=1

log
N − j + 1
N − j + c0

∣∣∣∣∣∣∣ ≤ max
{

c0
N log(N + 1), c0

N log
(
1 + c0

N

)}
,

again establishing uniform convergence to 0, and thus equation (14).
Since J(x ) =

∫ x
0

v(y ) dy for all x ∈ [0, 1], equation (14) and the bounded convergence
theorem imply that

lim
N→∞

max
x ∈X N

∣∣∣∣∣∣ 1
N

log
µN

x

µN
0

− J(x )

∣∣∣∣∣∣ = lim
N→∞

max
x ∈X N

∣∣∣JN(x ) − J(x )
∣∣∣ = 0. (15)

We obtain uniform convergence in (15) because increasing the length of the interval of
integration [0, x ] that defines JN(x ) only worsens the the bound on the rate at which JN(x )
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converges to J(x ).
Now let x N

∗ = argmaxx ∈X N J(x ) and x ∗ = argmaxx ∈[0,1] J(x ). Since J is continuous, we
have that limN→∞ J(x N

∗ ) = J(x ∗). If we can establish that

lim
N→∞

1
N logµN

x N
∗

= 0, (16)

then these facts and equation (15) would allow us to conclude that

lim
N→∞

max
x ∈X N

∣∣∣∣ 1
N logµN

x −
(
J(x ) − J(x ∗)

)∣∣∣∣ (17)

= lim
N→∞

max
x ∈X N

∣∣∣∣∣∣∣
 1

N log
µN

x

µN
0

− J(x )

 −
 1

N log
µN

x N
∗

µN
0

− J(x N
∗ )

 − (
J(x N
∗ ) − J(x ∗)

)
+ 1

N logµN
x N
∗

∣∣∣∣∣∣∣
= 0,

proving the theorem.
To establish (16), first suppose to the contrary that there is a sequence {Nk} approaching

infinity along which the limit in (16) is −α < 0. In this case, the reasoning in equation (17)
implies that

lim
Nk→∞

max
x ∈X N

∣∣∣∣ 1
Nk

logµNk
x −

(
J(x ) − J(x ∗) − α

)∣∣∣∣ = 0.

Since J(x ) ≤ J(x N
∗ ) for all x ∈ X N, it follows that for Nk far enough along the sequence, we

have that 1
Nk

logµNk
x ≤ −

α
2 for all x ∈ X N, and hence that

∑
x ∈X N

k

µNk
x =

∑
x ∈X N

k

exp
(
Nk ·

1
Nk

logµNk
x

)
≤ (Nk + 1) exp

(
−
αNk

2

)
.

The last expression vanishes as k grows large, contradicting the fact thatµNk is a probability
measure. Second, suppose contrary to (16) that there is a sequence {Nk} approaching
infinity along which the limit in (16) is α > 0. Then by definition, there is a sequence {δk}

converging to zero such that

µNk

x Nk
∗

= exp (Nk(α + δk)) .

The right hand expression grows without bound as k grows large, contradicting the fact
that µNk is a probability measure. �
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The Proof of Theorem 4.3
When there are committed agents and a mutation rate of ε as described in protocol (5),

the stationary distribution of the stochastic evolutionary process takes the form

µN,ε
x

µN,ε
0

=

Nx∏
j=1

pN,ε
( j−1)/N

qN,ε
j/N

=

Nx∏
j=1

N− j+1
N

(
(1 − ε) j+c1−1

N+cT−1 r01(FN( j−1
N )) + ε

)
j

N

(
(1 − ε) N− j+c0

N+cT−1 r10(FN( j
N )) + ε

) . (18)

for x ∈ X N
− {0}. To prove part (i) of the theorem, observe that for each x ∈ X N

− {0},

lim
ε→0

µN,ε
x

µN,ε
0

=

Nx∏
j=1

N− j+1
N ·

j+c1−1
N+cT−1 r01(FN( j−1

N ))
j

N ·
N− j+c0

N+cT−1 r10(FN( j
N ))

=
µN

x

µN
0

(cf equation (12)). Since X N is finite for fixed N, this limit is uniform in x , so the remainder
of the proof is very similar to that of Theorem 4.2.

To prove part (ii) of the theorem, use equation (18) to show that

1
N

log
µN,ε

x

µN,ε
0

=
1
N

Nx∑
j=1

log
N − j + 1

N
− log

j
N

+ log
(1 − ε) j+c1−1

N+cT−1 r01(FN( j−1
N )) + ε

(1 − ε) N− j+c0

N+cT−1 r10(FN( j
N )) + ε

 . (19)

Since 0 ≥ log
(
dNx e

N

)
≥ log(x ) and 0 ≥ log

(
N−dNx e+1

N

)
≥ log(1 − x ) for x ∈ (0, 1), the

dominated convergence theorem implies that the Riemann sum in (19) converges to an
integral. In particular, we have that

lim
N→∞

1
N

log
µN,ε

x

µN,ε
0

=

∫ x

0

(
log

1 − y
y + log

(1 − ε) y r01(F(y )) + ε

(1 − ε) (1 − y ) r10(F(y )) + ε

)
dy ,

where the limit, which is taken over those N for which x ∈ X N, is uniform in x . Bound
(B) and a second application of the dominated convergence theorem then yield

lim
ε→0

lim
N→∞

1
N

log
µN,ε

x

µN,ε
0

=

∫ x

0

(
log

1 − y
y + log

y r01(F(y ))
(1 − y )r10(F(y ))

)
dy

=

∫ x

0
log

r01(F(y ))
r10(F(y ))

dy

= J(x ).

This limit too is uniform in x , since the natural bound on the distance to the limit is
increasing in the range of integration [0, x ]. Since all limits are uniform in x , a variation
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on the proof of Theorem 4.2 establishes that

lim
ε→0

lim
N→∞

max
x ∈X N

∣∣∣ 1
N logµN,ε

x − ∆J(x )
∣∣∣ = 0.

This completes the proof of Theorem 4.3. �
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