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O.1 Analysis of the War of Attrition

In this section, we prove that random matching of a single population to play a war
of attrition generates a stable game. Recalling the description in Example 2.4, we see that
the payoff matrix for the war of attrition is

[
26 —6a o T0
V—C 5—C '  —C
2
A=
v
0—=C U—=C - 5—=Cy

Reasoning as in Example 2.3, we consider the symmetric matrix
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where the matrix C can be decomposed as
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so F(x) = Ax is a stable game.

0.2 Cycling in Stable Games

Proposition O.2.1. Consider the EPT dynamic (E) generated by revision protocol (9) in standard
Rock-Paper-Scissors.
(i) When e < 1094, there are initial conditions from which solutions to (E) converge to
periodic orbits.
(if) Fix 6 > 0. When ¢ is sufficiently small, solutions to (E) from all initial conditions that are
not within 6 of the equilibrium x™ converge to periodic orbits.

For intuition, consider Figure 1, which presents a portion of a solution to the dynamic
(E) generated by (9) in standard RPS when ¢ = 1. Scissors earns a positive payoff as soon
as this trajectory crosses segment ax*, and becomes the sole strategy that does so once
segment epx” is reached. However, protocol (9) puts very little probability on Scissors
until Paper, the strategy it beats, yields a payoff close to zero. As a result, the solution
heads almost directly towards state ep until Scissors becomes the sole strategy earning a
payoff of ¢. This extends the phase during which the solution approaches the vertex ep
before turning towards es. By symmetry, the same phenomenon occurs near the other two
vertices, and as a result, the solution never strays far from the boundary of the simplex.
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Figure 1: The proof of Proposition O.2.1.

Considering a zero-sum game simplifies the proof of the existence of cycles, but is not
necessary for the result to hold: cycles occur under this dynamic even in strictly stable
games. In Figure 2, we present solutions to the dynamic generated by protocol (9) with
€ = % in both standard RPS (w = 1, ] = 1) and good RPS (w = 3, | = 2). In each case,
convergence to a periodic orbit occurs from most initial conditions.

Proof of Proposition O.2.1. Since standard RPS is zero-sum, we have that F(x) = F(x) -
1x'F(x) = F(x): excess payoffs and original payoffs are always the same. This fact simplifies

the analysis below.

Consider the trajectory that starts from some initial state 10 = (q, 1‘7"‘, 1‘7"‘) that lies on
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around the simplex. Our main task is to obtain an lower bound on the distance of this

segment egx” and satisfies a > o = (see Figure 1). This trajectory travels clockwise

solution from state x* when the solution crosses segment epx*. Doing so enables us to
bound the action of the Poincaré map of the dynamic on egx*, which in turn lets us use
the Poincaré-Bendixson Theorem to demonstrate the existence of a periodic orbit.

When the current state lies in the triangle with vertices eg, x*,and a = (0, %, %), as it

does at x°, only strategy P has a positive payoff, so the target state under dynamic V is
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7(F(x)) = ep. Therefore, the trajectory from x° leaves triangle exx*a at state x' = (
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(i) standard RPS (w =1,1=1) (if) good RPS (w = 3,1 = 2)

Figure 2: Cycling in standard and good Rock-Paper-Scissors games.

2a : — d+e 11; : : — (l+e 1-2¢ 1+e
Tian)- Since a > a = 37, x* lies on the interior of segment az, where z = (3%, 5=, ).

For future reference, we observe that z is the intersection of segments ax*and bc, where b

= (4, 5, 0)and c = (¢, 0,1 - ¢).

In triangle epx™a, only strategies P and S earn positive payoffs. By construction,
15(F(x)) = €[Fs(x)]+ as long as the payoff to P is at least ¢, which is the case in triangle
erbc. The intersection of these two triangles is the triangle azc. When the current state x is

in this region, the target state is always a point (0, 7p(F(x)), Tr(F(x))) at which
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Now the ray from point x! through point d = (0, 7, 1) intersects segment bc at x?
= (35{‘5&3} -, ;Sgi;f)“_‘sl), "‘(33;5(; f;g:i_l). Hence, the inequality above implies that the solution
trajectory from x! (and hence the one from x°) hits segment zc at a point between x? and c.

Finally, consider the behavior of solution trajectories passing through the polygon
cepx*z. In this region, the target point is always on segment esep. In fact, once the solution

hits segment epx™, strategy S becomes the sole strategy earning a positive payoff, so the
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target point must be es. Thus, the solution starting from x? must hit epx* no closer to x*
th 3 _ 2ae(2+¢) 20e(2+¢) a(3+e+2e%)—e—1
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es crosses segment epx*. Since the solution starting from x° hits segment zc to the right of

), the point where a ray from x? through

x?, it too must hit epx™ to the right of x>. We have thus established a lower bound of f(«)
_aB+e+2e?)—e—1
T (1+e)3a(1+26)-1

1_7“) intersects segment epx.

on the value of xp at the point where the solution starting from 10 = (a, 1‘7“,

The function f is an increasing hyperbola whose asymptotes lie at @ = 55— and =

3+e42¢2

3o It intersects the 45° line at
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whenever the expression under the square root is positive. This is true whenever ¢ <.1094.
In this case, (a_, ;) C (%, 1), and f is above the 45° line on the former interval. Hence, any
solution that begins at a point 10 = (a, 1‘7"‘, 1‘7"‘) with a > max{a, a_} will hit segment epx’
at some point y with yp > p(a) € (a, a,). It then follows from the symmetry of the game
and of the choice rule that that the region bounded on the inside by the solution from x°
to y, its 120° and 240° rotations about x*, and the pieces of epx*, esx™, and egx™ that connect
the three solutions, and on the outside by the boundary of X is a trapping region for the
dynamic V. By Proposition 4.1, the only rest point of the dynamic is the Nash equilibrium
x*, which lies outside of this region. Therefore, the Poincaré-Bendixson Theorem (Hirsch
and Smale (1974, Theorem 11.4)) implies that every solution with an initial condition in
the region converges to a periodic orbit. If we take ¢ to zero, a and a_ approach 1, which
implies that the radius of the ball around x* from which convergence to a periodic orbit is

not guaranteed vanishes. This completes the proof of the proposition. m
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