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O.1 Analysis of the War of Attrition

In this section, we prove that random matching of a single population to play a war
of attrition generates a stable game. Recalling the description in Example 2.4, we see that
the payoff matrix for the war of attrition is

A =


v
2 − c1 −c1 · · · −c1

v − c1
v
2 − c2 · · · −c2

...
...

. . .
...

v − c1 v − c2 · · ·
v
2 − cn

 .
Reasoning as in Example 2.3, we consider the symmetric matrix

Â = A + A′ = v11′ − 2


c1 c1 · · · c1

c1 c2 · · · c2
...

...
. . .

...

c1 c2 · · · cn

 = v11′ − 2C,
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where the matrix C can be decomposed as

C =


c1 c1 · · · c1

c1 c1 · · · c1
...

...
. . .

...

c1 c1 · · · c1

+


0 0 · · · 0
0 c2 − c1 · · · c2 − c1
...

...
. . .

...

0 c2 − c1 · · · c2 − c1

+· · ·+


0 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · cn − cn−1

 .
Thus, if z ∈ TX, then

z′Âz = vz′11′z − 2z′Cz

= (v − 2c1)z′11′z − 2
n∑

k=2

n∑
i=k

n∑
j=k

(ck − ck−1)ziz j

= −2
n∑

k=2

(ck − ck−1)

 n∑
i=k

zi


2

≤ 0,

so F(x) = Ax is a stable game.

O.2 Cycling in Stable Games

Proposition O.2.1. Consider the EPT dynamic (E) generated by revision protocol (9) in standard
Rock-Paper-Scissors.

(i) When ε < .1094, there are initial conditions from which solutions to (E) converge to
periodic orbits.

(ii) Fix δ > 0. When ε is sufficiently small, solutions to (E) from all initial conditions that are
not within δ of the equilibrium x∗ converge to periodic orbits.

For intuition, consider Figure 1, which presents a portion of a solution to the dynamic
(E) generated by (9) in standard RPS when ε = 1

10 . Scissors earns a positive payoff as soon
as this trajectory crosses segment ax∗, and becomes the sole strategy that does so once
segment ePx∗ is reached. However, protocol (9) puts very little probability on Scissors
until Paper, the strategy it beats, yields a payoff close to zero. As a result, the solution
heads almost directly towards state eP until Scissors becomes the sole strategy earning a
payoff of ε. This extends the phase during which the solution approaches the vertex eP

before turning towards eS. By symmetry, the same phenomenon occurs near the other two
vertices, and as a result, the solution never strays far from the boundary of the simplex.
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Figure 1: The proof of Proposition O.2.1.

Considering a zero-sum game simplifies the proof of the existence of cycles, but is not
necessary for the result to hold: cycles occur under this dynamic even in strictly stable
games. In Figure 2, we present solutions to the dynamic generated by protocol (9) with
ε = 1

10 in both standard RPS (w = 1, l = 1) and good RPS (w = 3, l = 2). In each case,
convergence to a periodic orbit occurs from most initial conditions.

Proof of Proposition O.2.1. Since standard RPS is zero-sum, we have that F̂(x) = F(x) −
1x′F(x) = F(x): excess payoffs and original payoffs are always the same. This fact simplifies
the analysis below.

Consider the trajectory that starts from some initial state x0 = (α, 1−α
2 , 1−α

2 ) that lies on
segment eRx∗ and satisfies α > α = 1+ε

3−3ε (see Figure 1). This trajectory travels clockwise
around the simplex. Our main task is to obtain an lower bound on the distance of this
solution from state x∗ when the solution crosses segment ePx∗. Doing so enables us to
bound the action of the Poincaré map of the dynamic on eRx∗, which in turn lets us use
the Poincaré-Bendixson Theorem to demonstrate the existence of a periodic orbit.

When the current state lies in the triangle with vertices eR, x∗, and a = (0, 1
2 , 1

2 ), as it
does at x0, only strategy P has a positive payoff, so the target state under dynamic V is
τ(F(x)) = eP. Therefore, the trajectory from x0 leaves triangle eRx∗a at state x1 = ( 2α

1+3α , 1−α
1+3α ,
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Figure 2: Cycling in standard and good Rock-Paper-Scissors games.

2α
1+3α ). Since α > α = 1+ε

3−3ε , x1 lies on the interior of segment az, where z = ( 1+ε
3 , 1−2ε

3 , 1+ε
3 ).

For future reference, we observe that z is the intersection of segments ax∗and bc, where b
= (1+ε

2 , 1−ε
2 , 0) and c = (ε, 0, 1 – ε).

In triangle ePx∗a, only strategies P and S earn positive payoffs. By construction,
τS(F(x)) = ε2[FS(x)]+ as long as the payoff to P is at least ε, which is the case in triangle
eRbc. The intersection of these two triangles is the triangle azc. When the current state x is
in this region, the target state is always a point (0, τP(F(x)), τR(F(x))) at which

τS(F(x)) =
τS(F(x))

τS(F(x)) + τP(F(x))

=
[FS(x)]+gε(FP(x))

[FS(x)]+gε(FP(x)) + [FP(x)]+gε(FR(x))

≤
1 × ε2

(1 × ε2) + (ε × 1)

=
ε

ε + 1
.

Now the ray from point x1 through point d = (0, ε
1+ε , 1

1+ε ) intersects segment bc at x2

= ( 2αε(2+ε)
3α(1+2ε)−1 , ε(1+α−4αε)

3α(1+2ε)−1 , α(3+ε+2ε2)−ε−1
3α(1+2ε)−1 ). Hence, the inequality above implies that the solution

trajectory from x1 (and hence the one from x0) hits segment zc at a point between x2 and c.
Finally, consider the behavior of solution trajectories passing through the polygon

cePx∗z. In this region, the target point is always on segment eSeP. In fact, once the solution
hits segment ePx∗, strategy S becomes the sole strategy earning a positive payoff, so the
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target point must be eS. Thus, the solution starting from x2 must hit ePx∗ no closer to x∗

than x3 = ( 2αε(2+ε)
(1+ε)3α(1+2ε)−1 , 2αε(2+ε)

(1+ε)3α(1+2ε)−1 , α(3+ε+2ε2)−ε−1
(1+ε)3α(1+2ε)−1 ), the point where a ray from x2 through

eS crosses segment ePx∗. Since the solution starting from x0 hits segment zc to the right of
x2, it too must hit ePx∗ to the right of x3. We have thus established a lower bound of β(α)
= α(3+ε+2ε2)−ε−1

(1+ε)3α(1+2ε)−1 on the value of xP at the point where the solution starting from x0 = (α, 1−α
2 ,

1−α
2 ) intersects segment ePx.

The function β is an increasing hyperbola whose asymptotes lie at α = 1
3+9ε+6ε2 and β =

3+ε+2ε2

3+9ε+6ε2 . It intersects the 45˚ line at

α± =
2 + ε + ε2

±
√

1 − 8ε − 10ε2 − 4ε3 + ε4

3 + 9ε + 6ε2 .

whenever the expression under the square root is positive. This is true whenever ε < .1094.
In this case, (α−, α+) ⊂ (1

3 , 1), and β is above the 45˚ line on the former interval. Hence, any
solution that begins at a point x0 = (α, 1−α

2 , 1−α
2 ) with α > max{α, α−} will hit segment ePx∗

at some point y with yP > β(α) ∈ (α, α+). It then follows from the symmetry of the game
and of the choice rule that that the region bounded on the inside by the solution from x0

to y, its 120˚ and 240˚ rotations about x∗, and the pieces of ePx∗, eSx∗, and eRx∗ that connect
the three solutions, and on the outside by the boundary of X is a trapping region for the
dynamic V. By Proposition 4.1, the only rest point of the dynamic is the Nash equilibrium
x∗, which lies outside of this region. Therefore, the Poincaré-Bendixson Theorem (Hirsch
and Smale (1974, Theorem 11.4)) implies that every solution with an initial condition in
the region converges to a periodic orbit. If we take ε to zero, α and α− approach 1

3 , which
implies that the radius of the ball around x∗ from which convergence to a periodic orbit is
not guaranteed vanishes. This completes the proof of the proposition. �
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