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Abstract

We investigate a variety of connections between the projection dynamic and the
replicator dynamic. At interior population states, the standard microfoundations for
the replicator dynamic can be converted into foundations for the projection dynamic
by replacing imitation of opponents with “revision driven by insecurity” and direct
choice of alternative strategies. Both dynamics satisfy a condition called inflow-
outflow symmetry, which causes them to select against strictly dominated strategies
at interior states; still, because it is discontinuous at the boundary of the state space, the
projection dynamic allows strictly dominated strategies to survive in perpetuity. The
two dynamics exhibit qualitatively similar behavior in strictly stable and null stable
games. Finally, the projection and replicator dynamics both can be viewed as gradient
systems in potential games, the latter after an appropriate transformation of the state
space. JEL classification: C72, C73.

1. Introduction

The projection dynamic is an evolutionary game dynamic introduced in the transporta-
tion science literature by Nagurney and Zhang (1996). Microfoundations for this dynamic
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are provided in Lahkar and Sandholm (2008): there the dynamic is derived from a model
of “revision driven by insecurity”, in which each agent considers switching strategies at a
rate inversely proportional to his current strategy’s popularity. Although it is discontin-
uous at the boundary of the state space, the projection dynamic admits unique forward
solution trajectories; its rest points are the Nash equilibria of the underlying game, and
it converges to equilibrium from all initial conditions in potential games and in stable
games.

In this paper, we investigate the many connections between the projection dynamic
and the replicator dynamic of Taylor and Jonker (1978). Our companion paper, Lahkar and
Sandholm (2008), established one link between the dynamics’ foundations. In general,
one provides foundations for an evolutionary dynamic by showing that it is the mean
dynamic corresponding to a particular revision protocol—that is, a particular rule used
by agents to decide when and how to choose new strategies.1 The companion paper finds
a new revision protocol that generates the replicator dynamic, and shows that a suitable
modification of this protocol generates the projection dynamic.

In economic contexts, the replicator dynamic is best understood as a model of imita-
tion. In Lahkar and Sandholm (2008), a principal step in changing the replicator protocol
into a projection protocol is to eliminate the former’s use of imitation, replacing this with
“revision driven by insecurity” and direct (nonimitative) selection of alternative strate-
gies. But if we look only at behavior at interior population states—that is, at states where
all strategies are in use—then this one step becomes sufficient for converting replicator
protocols into projection protocols. To be more precise, we show in Section 3 that for
each of the three standard foundations for the replicator dynamic (due to Schlag (1998),
Björnerstedt and Weibull (1996), and Hofbauer (1995)), replacing “imitation” with “revi-
sion driven by insecurity” yields a foundation for the projection dynamic valid at interior
population states.

Both “imitation” and “revision driven by insecurity” are captured formally by directly
including components of the population state in the outputs of revision protocols. We
show that the precise ways in which these arguments appear lead the replicator and
projection dynamics to satisfy a property called inflow-outflow symmetry at interior popu-
lation states. Inflow-outflow symmetry implies that any strictly dominated strategy must
always be “losing ground” to its dominating strategy, pushing the weight on the domi-
nated strategy toward zero. Akin (1980) uses this observation to show that the replicator
dynamic eliminates strictly dominated strategies along all interior solution trajectories.

This elimination result does not extend to the projection dynamic. Using the fact that

1For formal statements of this idea, see Benaı̈m and Weibull (2003) and Sandholm (2003).
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solutions of the projection dynamic can enter and leave the boundary of the state space, we
construct an example in which a strictly dominated strategy appears and then disappears
from the population in perpetuity. Because the projection dynamic is discontinuous, the
fact that the dominated strategy is losing ground to the dominating strategy at all interior
population states is not enough to ensure its eventual elimination.2

The final section of the paper compares the global behavior of the two dynamics
in two important classes of games: stable games and potential games. In the former
case, the properties of the two dynamics mirror one another: one can establish (interior)
global asymptotic stability for both dynamics in strictly stable games, and the existence
of constants of motion in null stable games, including zero-sum games.3

The connection between the projection and replicator dynamics in potential games
is particularly striking. On the interior of the state space, the projection dynamic for a
potential game is the gradient system generated by the game’s potential function: interior
solutions of the dynamic always ascend potential in the most direct fashion. The link
with the replicator dynamic arises by way of a result of Akin (1979). Building on work
of Kimura (1958) and Shahshahani (1979), Akin (1979) shows that the replicator dynamic
for a potential game is also a gradient system defined by the game’s potential function;
however, this is true only after the state space has been transformed by a nonlinear
change of variable, one that causes greater importance to be attached to changes in the
use of rare strategies. We conclude the paper with a direct proof of Akin’s (1979) result:
unlike Akin’s (1979) original proof, ours does not require the introduction of tools from
differential geometry.

In summary, this paper argues that despite a basic difference between the two dynamics—
that one is based on imitation of opponents, and the other on “revision driven by inse-
curity” and direct selection of new strategies—the replicator dynamic and the projection
dynamic exhibit surprisingly similar behavior.

2. Definitions

To keep the presentation self-contained, we briefly review some definitions and results
from Lahkar and Sandholm (2008).

2Hofbauer and Sandholm (2006), building on the work of Berger and Hofbauer (2006), construct a game
that possesses a strictly dominated strategy, but that causes a large class of evolutionary dynamics to admit
an interior attractor. The analysis in that paper concerns dynamics that are continuous in the population
state, and therefore does not apply to the projection dynamic.

3In contrast, other standard dynamics, including the best response, logit, BNN, and Smith dynamics,
converge to equilibrium in null stable games: see Hofbauer and Sandholm (2008, 2007).
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2.1 Preliminaries

To simplify our notation, we focus on games played by a single unit-mass population
of agents who choose pure strategies from the set S = {1, . . . ,n}. The set of population states
(or strategy distributions) is thus the simplex X = {x ∈ Rn

+ :
∑

i∈S xi = 1}, where the scalar
xi ∈ R+ represents the mass of players choosing strategy i ∈ S.

We take the strategy set S as given and identify a population game with its payoff
function F : X → Rn, a Lipschitz continuous map that assigns each population state x a
vector of payoffs F(x). The component function Fi : X→ R denotes the payoffs to strategy
i ∈ S. State x ∈ X is a Nash equilibrium of F, denoted x ∈ NE(F), if xi > 0 implies that
i ∈ argmax j∈S F j(x).

The tangent space of X, denoted TX = {z ∈ Rn :
∑

i∈S zi = 0}, contains those vectors
describing motions between points in X. The orthogonal projection onto the subspace
TX ⊂ Rn is represented by the matrix Φ = I − 1

n11′ ∈ Rn×n, where 1 = (1, ..., 1)′ is the vector
of ones. Since Φv = v − 1 · 1

n

∑
k∈S vk, component (Φv)i is the difference between the vi

and the unweighted average payoff of the components of v. Thus, if v is a payoff vector,
Φv discards information about the absolute level of payoffs while preserving information
about relative payoffs.

The tangent cone of X at state x ∈ X is the set of directions of motion from x that initially
remain in X:

TX(x) = {z ∈ Rn : z = α(y − x) for some y ∈ X and some α ≥ 0}

= {z ∈ TX : zi ≥ 0 whenever xi = 0}.

The closest point projection onto TX(x) is given by

ΠTX(x)(v) = argmin
z∈TX(x)

∣∣∣z − v
∣∣∣ .

It is easy to verify that if x ∈ int(X), then TX(x) = TX, so that ΠTX(x)(v) = Φv. More
generally, Lahkar and Sandholm (2008) show that

(1) (ΠTX(x)(v))i =

vi −
1

#S (v,x)

∑
j∈S (v,x) v j if i ∈ S (v, x),

0 otherwise,

where the set S (v, x) ⊆ S contains all strategies in support(x), along with any subset of
S − support(x) that maximizes the average 1

#S (v,x)

∑
j∈S (v,x) v j.
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2.2 The Replicator Dynamic and the Projection Dynamic

An evolutionary dynamic is a map that assigns each population game F a differential
equation ẋ = VF(x) on the state space X. The best-known evolutionary dynamic is the
replicator dynamic (Taylor and Jonker (1978)), defined by

(R) ẋi = xi

Fi(x) −
∑
k∈S

xkFk(x)

 .
In words, equation (R) says that the percentage growth rate of strategy i equals the difference
between the payoff to strategy i and the weighted average payoff under F at x (that is, the
average payoff obtained by members of the population).

The projection dynamic (Nagurney and Zhang (1997)) assigns each population game F
the differential equation

(P) ẋ = ΠTX(x)(F(x)).

Under the projection dynamic, the direction of motion is always given by the closest
approximation of the payoff vector F(x) by a feasible direction of motion. When x ∈ int(X),
the tangent cone TX(x) is just the subspace TX, so the explicit formula for (P) is simply
ẋ = ΦF(x); otherwise, the formula is obtained from equation (1).

To begin to draw connections between the two dynamics, note that at interior popula-
tion states, the projection dynamic can be written as4

(2) ẋi = (ΦF(x))i = Fi(x) −
1
n

∑
i∈S

Fk(S).

In words, the projection dynamic requires the absolute growth rate of strategy i to be the
difference between strategy i’s payoff and the unweighted average payoff of all strategies.5

Comparing equations (R) and (2), we see that at interior population states, the replicator
and projection dynamics convert payoff vector fields in differential equations in similar
fashions, the key difference being that the replicator dynamic uses relative definitions,
while the projection dynamic employs the corresponding absolute definitions. The re-
mainder of this paper explores game-theoretic ramifications of this link.

When F is generated by random matching to play the normal form game A (i.e., when

4At interior population states (but not boundary states), the projection dynamic is identical to the linear
dynamic of Friedman (1991); see Lahkar and Sandholm (2008) for further discussion.

5At boundary states, some poorly performing unused strategies (namely, those not in S (F(x), x)) are
ignored, while the absolute growth rates of the remaining strategies are defined as before.
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F takes the linear form F(x) = Ax), the dynamic (P) is especially simple. On int(X), the
dynamic is described by the linear equation ẋ = ΦAx; more generally, it is given by

(3) ẋi = (ΠTX(x)(Ax))i =

(Ax)i −
1

#S (Ax,x)

∑
j∈S (Ax,x)(Ax) j if i ∈ S (Ax, x),

0 otherwise.

Notice that once the set of strategies S (Ax, x) is fixed, the right hand side of (3) is a linear
function of x. Thus, under single population random matching, the projection dynamic is
piecewise linear. In Section 4, this observation plays a key role in our proof that strictly
dominated strategies can survive under (P).

3. Microfoundations

We derive evolutionary dynamics from a description of individual behavior by intro-
ducing the notion of a revision protocol ρ : Rn

× X → Rn×n
+ . Suppose that as time passes,

agents are randomly offered opportunities to switch strategies. The conditional switch rate
ρi j(F(x), x) ∈ R+ is proportional to the probability with which an i player who receives an
opportunity switches to strategy j.

Given this specification of individual decision making, aggregate behavior in the game
F is described by the mean dynamic

(M) ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x).

Here the first term describes the inflow into strategy i from other strategies, while the
second term describes the outflow from i to other strategies.

Consider these three examples of revision protocols:

ρi j = x j[F j(x) − Fi(x)]
+
,(4a)

ρi j = x j(K − Fi(x)),(4b)

ρi j = x j(F j(x) + K).(4c)

The x j term in these three protocols reveals that they are models of imitation. For instance,
to implement protocol (4a), an agent who receives a revision opportunity picks an op-
ponent from at random; he then imitates this opponent only if the opponents’ payoff is
higher than his own, doing so with probability proportional to the payoff difference.6

6Protocol (4a) is the pairwise proportional imitation protocol of Schlag (1998); protocol (4b), called pure
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It is well known that the replicator dynamic can be viewed as the aggregate result of
evolution by imitation. In fact, all three protocols above generate the replicator dynamic
as their mean dynamics. For protocol (4a), one computes that

ẋi =
∑
j∈S

x jρ ji − xi

∑
j∈S
ρi j

=
∑
j∈S

x jxi[Fi(x) − F j(x)]
+
− xi

∑
j∈S

x j[F j(x) − Fi(x)]
+

= xi

∑
j∈S

x j(Fi(x) − F j(x))

= xi

Fi(x) −
∑
j∈S

x jF j(x)

 .
The derivations for the other two protocols are similar.

To draw connections with the projection dynamic, we replace the x j term with 1
nxi

in
each of the protocols above:

ρi j =
1

nxi
[F j(x) − Fi(x)]+,(5a)

ρi j =
1

nxi
(K − Fi(x)),(5b)

ρi j =
1

nxi
(F j(x) + K).(5c)

While protocols (4a)–(4c) captured imitation, protocols (5a)–(5c) instead capture revision
driven by insecurity: agents are quick to abandon strategies that are used by few of their
fellows. For instance, under protocol (5a), an agent who receives a revision opportunity
first considers whether to actively reconsider his choice of strategy, opting to do so with
probability inversely proportional to the mass of agents currently choosing his strategy.
If he does consider revising, he chooses a strategy at random, and then switches to this
strategy with probability proportional to the the difference between its payoff and his
current payoff.

Protocols (5a)–(5c) are only well-defined on int(X). But on that set, each of the protocols
generates the projection dynamic. For protocol (5a), this is verified as follows:

ẋi =
∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j

imitation driven by dissatisfaction, is due to Björnerstedt and Weibull (1996), protocol (4c), which we call
imitation of success, can be found in Hofbauer (1995).
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=
∑
j∈S

x j
[Fi(x) − F j(x)]

+

nx j
− xi

∑
j∈S

[F j(x) − Fi(x)]
+

nxi

=
1
n

∑
j∈S

(Fi(x) − F j(x))

= Fi(x) −
1
n

∑
j∈S

F j(x).

Again, the derivations for the other protocols are similar.
On the boundary of the simplex X, protocols (5a)–(5c) no longer make sense. Still, it is

possible to construct a matched pair of revision protocols that generate dynamics (R) and
(P) throughout the simplex—see Lahkar and Sandholm (2008) for details.

4. Inflow-Outflow Symmetry and Dominated Strategies

It is natural to expect evolutionary dynamics to eliminate dominated strategies. The
first positive result on this question was proved by Akin (1980), who showed that the
replicator dynamic eliminates strictly dominated strategies so long as the initial state is
interior. Akin’s (1980) result was subsequently extended to broader classes of imitative
dynamics by Samuelson and Zhang (1992) and Hofbauer and Weibull (1996). But while
these results seem encouraging, they are actually quite special: Hofbauer and Sandholm
(2006) show that continuous evolutionary dynamics that are not based exclusively on
imitation do not eliminate strictly dominated strategies in all games.

In this section, we show that the projection dynamic shares with the replicator dynamic
a property called inflow-outflow symmetry, and we explain why this property leads to
selection against dominated strategies on the interior of X under both of these dynamics.
Despite this shared property of the two dynamics, the long run prospects for dominated
strategies under these dynamics are quite different. Using the fact that solutions to the
projection dynamic can enter and exit the boundary of X, we prove that inflow-ouflow
symmetry is not enough to ensure that dominated strategies are eliminated.

In the general expression for the mean dynamic (M),

(M) ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x),

the term xi, representing the mass of players choosing strategy i, appears in an asymmetric
fashion. Since in order for an agent to switch away from strategy i, he must first be selected
at random for a revision opportunity, xi appears in the (negative) outflow term. But since
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agents switching to strategy i were previously playing other strategies, xi does not appear
in the inflow term.

We say that an evolutionary dynamic satisfies inflow-outflow symmetry if this asym-
metry in equation (M) is eliminated by the dependence of the revision protocol ρ on the
population state x. Under the replicator dynamic and other imitative dynamics, ρ ji is
proportional to xi, making both the inflow and outflow terms in (M) proportional to xi;
thus, these dynamics exhibit inflow-outflow symmetry. Similarly, under the projection
dynamic, which is based on abandonment, ρi j is inversely proportional to xi whenever xi

is positive. As a result, neither the inflow nor the outflow term in equation (M) depends
directly on xi, yielding inflow-ouflow symmetry on int(X).

Importantly, inflow-outflow symmetry implies that a strictly dominated strategy i
will always lose ground to the strategy j that dominates it. In the case of the replicator
dynamic, the ratio xi/x j falls over time throughout int(X):

d
dt

(
xi

x j

)
=

ẋix j − ẋ jxi

x2
j

(6)

=
xi

(
Fi(x) −

∑
k∈S xkFk(x)

)
· x j − x j

(
F j(x) −

∑
k∈S xkFk(x)

)
· xi

x2
j

=
xi

x j
(Fi(x) − F j(x))

< 0.

Under the the projection dynamic, it is the difference xi − x j that falls on int(X):

d
dt

(
xi − x j

)
=

Fi(x) − 1
n

∑
k∈S

Fk(x)

 −
F j(x) − 1

n

∑
k∈S

Fk(x)

(7)

= Fi(x) − F j(x)

< 0.

By combining equation (6) with the fact that int(X) is invariant under (R), it is easy to
prove that the replicator dynamic eliminates strictly dominated strategies along solutions
in int(X); this is Akin’s (1980) result. But because solutions of the projection dynamic
can enter and leave int(X), the analogous argument based on equation (7) does not go
through: while i will lose ground to j in the interior of X, it might gain ground back on
the boundary of X, leaving open the possibility of survival.

To pursue this idea, we consider the following game, introduced by Berger and Hof-
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bauer (2006) in their analysis of survival of dominated strategies under the BNN dynamic:

(8) F(x) = Ax =


0 −3 2 2
2 0 −3 −3
−3 2 0 0
−3 − c 2 − c −c −c



xR

xP

xS

xT

 .
The game defined by the first three strategies is bad Rock-Paper-Scissors with winning
benefit w = 2 and losing cost l = 3. In this three-strategy game, solutions of (P) other than
the one at the Nash equilibrium (1

3 ,
1
3 ,

1
3 ) enter a closed orbit that enters and exits the three

edges of the simplex (see Figure 7(iii) of Lahkar and Sandholm (2008)).
The fourth strategy of game (8), Twin, is a duplicate of Scissors, except that its payoff is

always c ≥ 0 lower than that of Scissors. When c = 0, the set of Nash equilibria of game (8)
is the line segment L between x∗ = ( 1

3 ,
1
3 ,

1
3 , 0) and ( 1

3 ,
1
3 , 0,

1
3 ). If c > 0, then Twin is strictly

dominated, and the game’s unique Nash equilibrium is x∗.
Figure 1 presents the solution to (P) from initial condition ( 97

300 ,
103
300 ,

1
100 ,

97
300 ) for payoff

parameter c = 1
10 . At first, the trajectory spirals down line segment L, as agents switch

from Rock to Paper to Scissors/Twin to Rock, with Scissors replacing Twin as time passes
(since ẋT− ẋS = −

1
10 on int(X)). When Twin is eliminated, both it and Scissors earn less than

the average of the payoffs to Rock, Paper, and Scissors; therefore, xS falls while xT stays
fixed at 0, and so xT − xS rises. Soon the solution enters int(X), and so ẋT − ẋS = −

1
10 once

again. When the solution reenters face RPS, it does so at a state further away from the
Nash equilibrium x∗ than the initial point of contact. Eventually, the trajectory appears to
enter a closed orbit on which the mass on Twin varies between 0 and roughly .36.

The existence and stability of this closed orbit is established rigorously in Theorem 4.1,
whose proof can be found in the appendix.

Theorem 4.1. In game (8) with c = 1
10 , the projection dynamic (P) has an asymptotically stable

closed orbit γ that absorbs all solutions from nearby states in finite time. This orbit, pictured
in Figure 2, combines eight segments of solutions to linear differential equations as described in
equation (3); the approximate endpoints and exit times of these segments are presented in Table 1.
Along the orbit, the value of xT varies between 0 and approximately .359116.

Recall that in random matching games, the projection dynamic is piecewise linear:
on the interior of X, the dynamic is described by ẋ = ΦAx; on the boundary of X, it
is described by equation (3). When the only unused strategy is strategy i, equation (3)
provides only two possibilities for ẋ: if Fi(x) does not exceed the average payoff of the
other three strategies, then ẋi = 0, so the solution travels along the face of X where strategy
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R

P

S T

Figure 1: A solution to (P) in Bad Rock-Paper-Scissors-Twin.

i is absent; if instead Fi(x) is greater than this average payoff, then the solution from x
immediately enters int(X). We illustrate these regions in Figure 2, where we shade the
portions of the faces of X to which solutions “stick”.

Similar considerations determine the behavior of (P) on the edges of the simplex.
For instance, solutions starting at vertex R travel along edge RP until reaching state
ξ = ( 7

15 ,
8

15 , 0, 0), at which point they enter face RPS.7

The proof of Theorem 4.1 takes advantage of the piecewise linearity of the dynamic, the
Lipschitz continuity of its solutions in their initial conditions, and the fact that solutions to
the dynamic can merge in finite time. Because of piecewise linearity, we can obtain analytic
solutions to (P) within each region where (P) is linear. The point where a solution leaves
one of these regions generally cannot be expressed analytically, but it can be approximated
numerically to an arbitrary degree of precision. This approximation introduces a small
error; however, the Lipschitz continuity of solutions places a tight bound on how quickly
this error can propagate. Ultimately, our approximate solution starting from state ξ
returns to edge RP. Since solutions cycle outward, edge RP is reached between ξ and
vertex R. While the point of contact we compute is only approximate, solutions from
all states between vertex R and state ξ pass through state ξ. Therefore, since our total

7State ξ lies between the vertices on edge RP of the “sticky” regions in faces RPT and RPS. These vertices
lie at states ( 71

150 ,
79
150 , 0, 0) and ( 67

150 ,
83

150 , 0, 0), respectively.
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R

P

S

T

Figure 2: The closed orbit of (P) in Bad Rock-Paper-Scissors-Twin.

Segment Support = S (Ax, x) Exit point Exit time
(initial state) RP (.466667, .533333, 0, 0) 0

1 RPS (.446354, .552864, .000782, 0) .015678
2 RPST (0, .564668, .227024, .208308) .324883
3 PST (0, .413636, .307144, .279219) .416973
4 RPST (.256155 ,0, .395751, .348094) .656509
5 RST (.473913, 0, .288747, .237340) .793914
6 RPST (.709788, .244655, .045576, 0) 1.028310
7 RPS (.693072, .306928, 0, 0) 1.065574
8 RP (.466667, .533333, 0, 0) 1.252812

Table 1: Approximate transition points and transition times of the closed orbit γ.
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approximation error is very small, our calculations prove that the true solution must
return to state ξ.

Hofbauer and Sandholm (2006) offer general conditions on evolutionary dynamics that
are sufficient to ensure the survival of strictly dominated strategies in some games. Their
conditions, though mild, include the requirement that the dynamic be continuous in the
population state; this requirement this condition is used in the essential way in the proof
of their result. By contrast, the projection dynamic is discontinuous at the boundaries of
the simplex, and as we have seen, this discontinuity is used in an essential way in our
proof of Theorem 4.1.

5. Global Behavior

In this final section of the paper, we illustrate connections between the global behaviors
of the projection and replicator dynamics in stable games and in potential games.

5.1 Convergence and Cycling in Stable Games

Population game F is a stable game (Hofbauer and Sandholm (2008)) if

(9) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

If inequality (9) is strict whenever y , x, then F is a strictly stable game; if (9) is always
satisfied with equality, then F is a null stable game.

Let x∗ be a Nash equilibrium of F, and let

Ex∗(x) =
∣∣∣x − x∗

∣∣∣2 ,
denote the squared Euclidean distance from x∗. Nagurney and Zhang (1997) and Lahkar
and Sandholm (2008) show that the value of Ex∗ is nonincreasing along solutions of the
projection dynamic if F is a stable game. This value is decreasing if F is strictly stable,
and it is constant along interior portions of solution trajectories if x∗ ∈ int(X) and F is null
stable.

One can establish precisely analogous statements for the replicator dynamic by replac-
ing the distance function E x∗ with the “distance-like function”

E x∗(x) =
∑

i: x∗i >0

x∗i log
x∗i
xi

;
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see Hofbauer et al. (1979), Zeeman (1980), and Akin (1990).8 Thus, by taking advantage
of these Lyapunov functions, one can show that the replicator dynamic and the projection
dynamic converge to equilibrium from all initial conditions in strictly stable games (ac-
tually, all interior initial conditions in the case of the replicator dynamic), and that both
admit constants of motion in null stable games.

We illustrate this point in Figure 3, where we present phase diagrams for the projection
and replicator dynamics atop contour plots of Ex∗ and E x∗ in the (standard) Rock-Paper-
Scissors game

F(x) =


FR(x)
FP(x)
FS(x)

 =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 .
Since F is null stable with unique Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ), interior solutions of

the projection dynamic are closed orbits that lie on the level sets of Ex∗ , while interior
solutions of the replicator dynamic are closed orbits that lie on the level sets of E x∗ . This
behavior stands in contrast with that of many other evolutionary dynamics, including the
best response, logit, BNN, and Smith dynamics, all of which converge to equiilbrium in
null stable games (Hofbauer and Sandholm (2007, 2008)).

5.2 Gradient Systems for Potential Games

The population game F : X → Rn a potential game (Monderer and Shapley (1996),
Sandholm (2001, 2008)) if it admits a potential function f : X→ R satisfying9

(10) ∇ f (x) = ΦF(x) for all x ∈ X.

Lahkar and Sandholm (2008) note that if F is a potential game, the potential function f
serves as a strict Lyapunov function for the projection dynamic: its value increases along
solutions to (P), strictly so except at Nash equilibria. In this respect the projection dynamic
is similar to most other evolutionary dynamics considered in the literature; see Sandholm
(2001) and Hofbauer and Sandholm (2007).

One can obtain a much stronger conclusion by restricting attention to the interior of

8E x∗ (x) is the relative entropy of x∗ with respect to x. While E (·)(·) is not a true distance, E x∗ (·) is strictly
concave, nonegative, and equal to 0 only when its argument x equals x∗.

9Since the domain of f is X, the gradient vector ∇ f (x) is the unique vector in the tangent space TX that
represents the derivative of f at X, in the sense that f (y) = f (x) + ∇ f (x)′(y − x) + o(|y − x|) for all y ∈ X.
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R

P S

(i) The projection dynamic, plotted over Ex∗ .

R

P S

(ii) The replicator dynamic, plotted over Ex∗ .

Figure 3: Phase diagrams of the projection and replicator dynamics in standard RPS. Grayscale
represents the values of the Lyapunov functions Ex∗ and E x∗ : lighter shades indicate higher values.
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1

2 3

Figure 4: Phase diagram of (P) for coordination game (12). Grayscale represents the value of
potential: lighter colors indicate higher values.

the simplex. There the projection dynamic is actually the gradient system for f :

(11) ẋ = ∇ f (x) on int(X),

In geometric terms, (11) says that interior solutions to (P) cross the level sets of the f
orthogonally. We illustrate this point in Figure 4, where we present the phase diagram of
the projection dynamic in the pure coordination game

(12) F(x) =


F1(x)
F2(x)
F3(x)

 =

1 0 0
0 2 0
0 0 3



x1

x2

x3

 .
The contour plot in this figure shows the level sets of the game’s potential function,

f (x) =
1
2

(
(x1)2 + 2(x2)2 + 3(x3)2

)
.

Evidently, solutions trajectories of (P) in the interior of the simplex cross the level sets of
f at right angles.
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Remarkably enough, it is also possible to view the replicator dynamic for F as a
gradient system for the potential function f . Shahshahani (1979), building on the early
work of Kimura (1958), showed that the replicator dynamic for a potential game is a
gradient dynamic after a “change in geometry”—in particular, after the introduction of
an appropriate Riemannian metric on int(X). Subsequently, Akin (1979) (see also Akin
(1990)) established that Shahshahani’s (1979) Riemannian manifold is isometric to the set
X = {x ∈ Rn

+ :
∑

i∈S x 2
i = 4}, the portion of the raidus 2 sphere lying in the positive orthant,

endowed with the usual Euclidean metric. It follows that if we use Akin’s (1979) isometry
to transport the replicator dynamic for the potential game F to the set X , this transported
dynamic is a gradient system in the usual Euclidean sense. To conclude the paper, we
provide a direct proof of this striking fact, a proof that does not require intermediate steps
through differential geometry.

Akin’s (1979) transformation, which we denote by H : int(Rn
+)→ int(Rn

+), is defined by
Hi(x) = 2

√
xi. As we noted earlier, H is a diffeomorphism that maps the simplex X onto

the set X . We wish to prove

Theorem 5.1. Let F : X → Rn be a potential game with potential function f : X → R. Suppose
we transport the replicator dynamic for F on int(X) to the set int(X ) using the transformation
H. Then the resulting dynamic is the (Euclidean) gradient dynamic for the transported potential
function φ = f ◦H−1.

Since Hi(x) = 2
√

xi, the transformation H makes changes in component xi look large
when xi itself is small. Therefore, Theorem 5.1 tells us that the replicator dynamic is a
gradient dynamic on int(X) after a change of variable that makes changes in the use of
rare strategies look important relative to changes in the use of common ones. Intuitively,
this reweighting accounts for the fact that under imitative dynamics, both increases and
decreases in the use of rare strategies are necessarily slow.

Proof. We prove Theorem 5.1 in two steps: first, we derive the transported version of
the replicator dynamic; then we derive the gradient system for the transported version of
the potential function, and show that it is the same dynamic on X . The following notation
will simplify our calculations: when y ∈ Rn

+ and a ∈ R, we let [ya] ∈ Rn be the vector whose
ith component is (yi)a.

We can express the replicator dynamic on X as

ẋ = R(x) = diag(x) (F(x) − 1x′F(x)) =
(
diag (x) − xx′

)
F(x).
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The transported version of this dynamic can be computed as

ẋ = R (x ) = DH(H−1(x ))R(H−1(x )).

In words: given a state x ∈ X , we first find the corresponding state x = H−1(x ) ∈ X and
direction of motion R(x). Since R(x) represents a displacement from state x, we transport
it to X by premultiplying it by DH(x), the derivative of H evaluated at x.

Since x = H(x) = 2 [x1/2], the derivative of H at x is given by DH(x) = diag([x−1/2])
Using this fact, we derive a primitive expression for R (x ) in terms of x = H−1(x ) = 1

4 [x 2]:

ẋ = R (x )(13)

= DH(x)R(x)

= diag([x−1/2])(diag(x) − xx′)F(x)

=
(
diag([x1/2]) − [x1/2]x′

)
F(x).

Now, we derive the gradient system on X generated byφ = f ◦H−1. To compute∇φ(x ),
we need to define an extension of φ to all of Rn

+, compute its gradient, and then project the
result onto the tangent space of X at x . The easiest way to proceed is to let f̃ : int(Rn

+)→ R
be an arbitrary C1 extension of f , and to define the extension φ̃ : int(Rn

+)→ R by φ̃ = f̃ ◦H−1.
Since X is a portion of a sphere centered at the origin, the tangent space of X at x

is the subspace TX (x ) = {z ∈ Rn : x ′z = 0}. The orthogonal projection onto this set is
represented by the n × n matrix

PTX (x ) = I −
1

x ′x xx ′ = I −
1
4

xx ′ = I − [x1/2][x1/2]′.

Also, sinceΦ∇ f̃ (x) = ∇ f (x) = ΦF(x) by construction, it follows that ∇ f̃ (x) = F(x)+ c(x)1 for
some scalar-valued function c : X → R. Therefore, the gradient system on X generated
by φ is

ẋ = ∇φ(x )

= PTX (x )∇φ̃(x )

= PTX (x )DH−1(x )′∇ f̃ (x)

= PTX (x ) (DH(x)−1)′ (F(x) + c(x)1)

=
(
I − [x1/2][x1/2]′

)
diag([x1/2]) (F(x) + c(x)1)

=
(
diag([x1/2]) − [x1/2]x′

)
(F(x) + c(x)1)

–18–



1

2 3

(i) origin of projection = H( 1
3 ,

1
3 ,

1
3 )

1

2

3

(ii) origin of projection = H( 1
7 ,

1
7 ,

5
7 )

Figure 5: The phase diagram of the transported replicator dynamic ẋ = R (x ) for a coordination
game. Grayscale represents the value of the transported potential function.
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=
(
diag([x1/2]) − [x1/2]x′

)
F(x).

This agrees with equation (13), completing the proof of the theorem. �

In Figure 5, we illustrate Theorem 5.1 with phase diagrams of the transported replicator
dynamic ẋ = R (x ) for the three-strategy coordination game from equation (12). These
phase diagrams on X are drawn atop contour plots of the transported potential function
φ(x ) = ( f ◦ H−1)(x ) = 1

32 ((x1)4 + 2(x2)4 + 3(x3)4). According to Theorem 5.1, the solution
trajectories of R should cross the level sets of φ orthogonally.

Looking at Figure 5(i), we find that the crossings look orthogonal at the center of the
figure, but not by the boundaries. This is an artifact of our drawing a portion of the sphere
in R3 by projecting it orthogonally onto a sheet of paper.10 To check whether the crossings
near a given state x ∈ X are truly orthogonal, we can minimize the distortion of angles
near x by making x the origin of the projection.11 We mark the projection origins in
Figures 5(i) and Figures 5(ii) with dots; evidently, the crossings are orthogonal near these
points.

A. Appendix

The Proof of Theorem 4.1
The method used to construct the approximate closed orbit of (P) is described in the

text after the statement of the theorem. Here, we verify that this approximation implies
the existence of an exact closed orbit of (P). A minor modification of our argument shows
that this orbit absorbs all nearby trajectories in finite time.

Let us review the construction of the approximate closed orbit. We begin by choosing
the initial state ξ0 = ξ = ( 7

15 ,
8

15 , 0, 0). The (exact) solution to (P) from ξ initially travels
through face RPS in a fashion described by the linear differential equation (3), and so be
computed analytically. The solution exits face RPS into the interior of X when it hits the
line on which the payoff to T equals the average of the payoffs to R, P, and S. The exit
point cannot be determined analytically, but it can be approximated to any desired degree
of accuracy. We call this approximate exit point, which we compute to 16 decimal places,
ξ1
≈ (.446354, .552864, .000782, 0), and we call the time that the solution to (P) reaches this

point t1
≈ .015678.

10For the same reason, latitude and longitude lines in an orthographic projection of the Earth only appear
to cross at right angles in the center of the projection, not on the left and right sides.

11The origin of the projection, o ∈ X , is the point where the sphere touches the sheet of paper. If we view
the projection from any point on the ray that exits the sheet of paper orthogonally from o, then the center of
the sphere is directly behind o.
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Next, we consider the (exact) solution to (P) from starting from state ξ1. This solution
travels through int(X) until it reaches face PST. We again compute an approximate exit
point ξ2, and we let t2 be the total time expended during the first two solution segments.
Continuing in this fashion, we compute the approximate exit points ξ3, . . . , ξ7, and the
transition times t3, . . . , t7.

Now for each state ξk, let {xk
t }t≥tk be the solution to (P) that starts from state ξk at time

tk. Because solutions to (P) are Lipschitz continuous in their initial conditions (see Lahkar
and Sandholm (2008)), we can bound the distance between state x0

t7 , which is the location
of the solution to (P) from state ξ0 = ξ at time t7, and state x7

t7 = ξ
7, as follows:

∣∣∣x0
t7 − x7

t7

∣∣∣ ≤ 7∑
k=1

∣∣∣xk−1
t7 − xk

t7

∣∣∣ ≤ 7∑
k=1

eK(t7−tk)ε.

Here, K is the Lipschitz coefficient for the payoff vector field F, and ε is an upper bound
on the roundoff error introduced when we compute the approximate exit point ξk for the
solution to (P) from state ξk−1.

Since F(x) = Ax is linear, its Lipschitz coefficient is the spectral norm of the payoff
matrix A: that is, the square root of the largest eigenvalue of A′A (see Horn and Johnson
(1985)). A computation reveals that the spectral norm of A is approximately 5.718145.
Since we compute our approximate exit points to 16 decimal places, our roundoff errors
are no greater than 5×10−17. Thus, since t7

− t1 = 1.049900, we obtain the following bound
on the distance between x0

t7 and x7
t7 :∣∣∣x0

t7 − x7
t7

∣∣∣ ≤ 7
(
eK(t7−tk)ε

)
≈ 7

(
e(5.718145)(1.049900)

× (5 × 10−17)
)
≈ 1.416920 × 10−13.

It is easy to verify that any solution to (P) that starts within this distance of state ξ7
≈

(.693072, .306928, 0, 0) will hit edge RP between vertex R and state ξ, and so continue on to
ξ. We therefore conclude that {x0

t }t≥0, the exact solution to (P) starting from state ξ, must
return to state ξ. This completes the proof of the theorem. �
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