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1. Introduction

The theory of evolution and learning in games provides models of disequilibrium
behavior in strategic settings. Much of the theory focuses on whether and when dis-
equilibrium behavior will resolve in equilibrium play, and, if so, on predicting which
equilibrium will be played. But the theory also offers techniques for characterizing per-
petual disequilibrium play.

2. A Taxonomy

Models from evolutionary game theory consider the behavior of large populations in
strategic environments. In the biological strand of the theory, agents are genetically
programmed to play fixed actions, and changes in the population’s composition are the
result of natural selection and random mutations. In economic approaches to the theory,
agents actively choose which actions to play using simple myopic rules, so that changes
in aggregate behavior are the end result of many individual decisions. Deterministic
evolutionary dynamics, usually taking the form of ordinary differential equations, are used
to describe behavior over moderate time spans, while stochastic evolutionary dynamics,
modeled using Markov processes, and more commonly employed to study behavior over
very long time spans.

Models of learning in games focus on the behavior of small groups of players, one of
whom fills each role in a repeated game. These models too can be partitioned into two
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categories. Models of heuristic learning (or adaptive learning) resemble evolutionary models,
in that their players base their decisions on simple myopic rules.! In models of coordinated
Bayesian learning (or rational learning) each player forms explicit beliefs about the repeated
game strategies employed by other players, and plays a best response to those beliefs in
each period. The latter models assume a degree of coordination of players’ prior beliefs
that is sufficient to ensure that play converges to Nash equilibrium.?

3. Evolutionary Game Theory

The roots of evolutionary game theory lie in mathematical biology. Maynard Smith
and Price (1973) introduced the equilibrium notion of an evolutionarily stable strategy (or
ESS) to capture the possible stable outcomes of a dynamic evolutionary process by way
of a static definition. Later, Taylor and Jonker (1978) offered the replicator dynamic as an
explicitly dynamic model of the natural selection process. The decade that followed saw
an explosion of research on the replicator dynamic and related models of animal behavior,
population ecology, and population genetics—see Hofbauer and Sigmund (1988).

In economics, evolutionary game theory studies the behavior of populations of strategi-
cally interacting agents who actively choose among the actions available to them. Agents
decide when to switch actions and which action to choose next using simple myopic
rules known as revision protocols.®> A population of agents, a game, and a revision proto-
col together define a stochastic process—in particular, a Markov process—on the set of
population states.

3.1 Deterministic Evolutionary Dynamics

How the analysis proceeds depends on the time horizon of interest. Suppose that for
the application in question, our interest is in moderate time spans. Then if the popula-
tion size is large enough, the idiosyncratic noise in agent’s choices is averaged away, so
that the evolution of aggregate behavior follows an almost deterministic path (Benaim
and Weibull (2003)). This path is described by a solution to an ordinary differential

!Evolutionary models and heuristic learning models are sometimes distinguished by the inputs to the
agents’ decision rules. In both the stochastic evolutionary model of Kandori et al. (1993) and the heuristic
learning model of Young (1993), agents’ decisions take the form of noisy best responses. But in the former
model agents evaluate each action by its performance against the population’s current behavior, while in
the latter they consider performance against the time averages of opponents’ past play.

2By dropping this coordination assumption, one obtains the more general class of Bayesian learning (or
belief learning) models. Since such models can entail quite naive beliefs, belief learning models overlap with
heuristic learning models—see Section 4 below.

3See Sandholm (2006).



equation. For example, Bjornerstedt and Weibull (1996) and Schlag (1998) show that if
agents use certain revision protocols based on imitation of successful opponents, then the
population’s aggregate behavior follows a solution to Taylor and Jonker’s (1978) repli-
cator dynamic. This argument provides an alternative, economic interpretation of this
fundamental evolutionary model.

Much of the literature on deterministic evolutionary dynamics focuses on connections
with traditional game theoretic solution concepts. For instance, under a wide range of
deterministic dynamics, all Nash equilibria of the underlying game are rest points. While
some dynamics (including the replicator dynamic) have additional non-Nash rest points,
there are others under which rest points and Nash equilibria are identical (Brown and von
Neumann (1950); Smith (1984); Sandholm (2006)).

A more important question, though, is whether Nash equilibrium will be approached
from arbitrary disequilibrium states. For certain specific classes of games, general conver-
gence results can be established (Hofbauer (2000); Sandholm (2007)). But beyond these
classes, convergence cannot be guaranteed. One can construct games under which no
reasonable deterministic evolutionary dynamic will converge to equilibrium—instead,
the population cycles through a range of disequilibrium states forever (Hofbauer and
Swinkels (1996); Hart and Mas-Colell (2003)). More surprisingly, one can construct games
in which nearly all deterministic evolutionary dynamics not only cycle forever, but also
fail to eliminate strictly dominated strategies (Hofbauer and Sandholm (2006)). If we truly
are interested in modeling the dynamics of behavior, these results reveal that our predic-
tions cannot always be confined to some set of static equilibria; rather, more complicated
limit phenomena like cycles and chaotic attractors must also be permitted as predictions
of play.

3.2 Stochastic Evolutionary Dynamics

If we are interested in behavior over very long time horizons, deterministic approxima-
tions are no longer valid, and we must study our original Markov process directly. Under
certain nondegeneracy assumptions, the long run behavior of this process is captured
by its unique stationary distribution, which describes the proportion of time the process
spends in each population state.

While stochastic evolutionary processes can be more difficult to analyze than their
deterministic counterparts, they also permit us to make surprisingly tight predictions.
By making the amount of noise in agents’ choice rules vanishingly small, one can often
ensure that all mass in the limiting stationary distribution is placed on a single population
state. This stochastically stable state provides a unique prediction of play even in games

—3-



with multiple strict equilibria (Foster and Young (1990); Kandori et al. (1993)).

The most thoroughly studied model of stochastic evolution considers agents who
usually play a best response to the current population state, but who occasionally choose
a strategy at random. Kandori et al. (1993) show that if the agents are randomly matched
to play a symmetric 2 x 2 coordination game, then taking the “mutation” probability to
zero leads to the selection of the risk dominant equilibrium as the unique stochastically
stable state.* Selection results of this sort have since been extended to cases in which
the underlying game has an arbitrary number of strategies, as well as to settings in
which agents are positioned on a fixed network, interacting only with neighbors (see
Kandori and Rob (1995); Blume (2003); Ellison (1993, 2000)). Stochastic stability has also
been employed in contexts where the underlying game has a nontrivial extensive form;
these analyses have provided support for notions of backward induction (e.g., subgame
perfection) and forward induction (e.g., signaling game equilibrium refinements)—see
Noldeke and Samuelson (1993) and Hart (2002).

Still, these selection results must be interpreted with care. When the number of agents
is large or the rate of “mutation” is small, states that fail to be stochastically stable can be
coordinated upon for great lengths of time (Binmore et al. (1995)). Consequently, if the
relevant time span for the application at hand is not long enough, the stochastically stable
state may not be the only reasonable prediction of behavior.

4. Learning in Games

4.1 Heuristic Learning

Learning models study disequilibrium adjustment processes in repeated games. Like
evolutionary models, heuristic learning models assume that players employ simple my-
opic rules in deciding how to act. In the simplest of these models, each player decides
how to act by considering the payoffs he has earned in the past. For instance, under
reinforcement learning (Borgers and Sarin (1997); Erev and Roth (1998)), agents choose
each strategy with probability proportional to the total payoff that the strategy has earned
in past periods.

By considering rules that look not only at payoffs earned, but also at payoffs foregone,
one can obtain surprisingly strong convergence results. Define a player’s regret for (not
having played) action a to be the difference between the average payoff he would have

“In the risk dominant equilibrium, all agents play the action that is optimal against an opponent who is
equally likely to choose each action.



earned had he always played a in the past, and the average payoff he actually received.
Under regret matching, each action whose regret is positive is chosen with probability
proportional to its regret. Hart and Mas-Colell (2000) show that regret matching is a
consistent repeated game strategy: it forces a player’s regret for each action to become
nonpositive. If used by all players, regret matching ensures that their time-averaged
behavior converges to the set of coarse correlated equilibria of the underlying game.

Some of the most striking convergence results in the evolution and learning literature
establish a stronger conclusion: namely, convergence of time-averaged behavior to the
set of correlated equilibria, regardless of the game at hand. The original result of this sort
is due to Foster and Vohra (1997, 1998), who prove the result by constructing a calibrated
procedure for forecasting opponents’ play.® Hart and Mas-Colell (2000) show that simpler
procedures also ensure convergence to correlated equilibrium—in particular, procedures
that define conditionally consistent repeated game strategies.”®

In some heuristic learning models, players use simple rules to predict how opponents
will behave, and then respond optimally to those predictions. The leading examples of
such models are fictitious play and its stochastic variants (Brown (1951); Fudenberg and
Kreps (1993)): in these models, the prediction about an opponents’ next period play is
given by the empirical frequencies of his past plays. Beginning with Robinson (1951),
many authors have proved convergence results for standard and stochastic fictitious play
in specific classes of games.” But as Shapley (1964) and others have shown, these models
do not lead to equilibrium play in all games.

4.2 Coordinated Bayesian Learning

The prediction rule underlying two-player fictitious play can be described by a belief
about the opponent’s repeated game strategy that is updated using Bayes’ rule in the face
of observed play. In particular, this belief specifies that the opponent chooses his stage

>Coarse correlated equilibrium is a generalization of correlated equilibrium under which players’ incentive
constraints must be satisfied at the ex ante stage rather than at the interim stage—see Young (2004).

®A forecasting procedure produces probabilistic forecasts of how opponents will act. The procedure
is calibrated if in those periods in which the forecast is given by the probability vector p, the empirical
distribution of opponents’ play is approximately p.

7A repeated game strategy is conditionally consistent if for each frequently played action 4, the agent
would not have been better off had he always played an alternative action a’ in place of a.

8 Another variety of heuristic learning models, based on random search and independent verification, ensures
a stochastic form of convergence to Nash equilbrium regardless of the game being played (Foster and Young
(2003)). Since in these models the time required before equilibrium is first reached is quite long, they are
most relevant to applications with especially long time horizons.

9For an overview of these results, see Hofbauer and Sandholm (2002).



game actions in an ii.d. fashion, conditional on the value of an unknown parameter.'”
Evidently, each player’s beliefs about his opponent are wrong: player 1 believes that
player 2 chooses actions in an i.i.d. fashion, whereas player 2 actually plays optimally
in response to his own (i.i.d.) predictions about player 1’s behavior. It is therefore not
surprising that fictitious play processes do not converge in all games.

In models of coordinated Bayesian learning (or rational learning), it is not only supposed
that players form and respond optimally to beliefs about the opponent’s repeated game
strategy; itis also assumed that the players’ initial beliefs are coordinated in some way. The
most studied case is one in which prior beliefs satisfy an absolute continuity condition:
if the distribution over play paths generated by the players’ actual strategies assigns
positive probability to some set of play paths, then so must the distribution generated
by each player’s prior. A strong sufficient condition for absolute continuity is that each
player’s prior assigns a positive probability to his opponent’s actual strategy.

The fundamental result in this literature, due to Kalai and Lehrer (1993), shows that
under absolute continuity, each player’s forecast along the path of play is asymptotically
correct, and the path of play is asymptotically consistent with Nash equilibrium play in
the repeated game. Related convergence results have been proved for more complicated
environments in which each player’s stage game payoffs are private information (Jordan
(1995); Nyarko (1998)). If these type distributions are continuous, then the sense in which
play converges to equilibrium can involve a form of purification: while actual play is
pure, it appears random to an outside observer.

How much coordination of prior beliefs is needed to prove convergence to equilibrium
play? Nachbar (2005) proves that for a large class of repeated games, for any belief learning
model, there are no prior beliefs that satisfy three criteria: learnability, consistency with
optimal play, and diversity. Thus, if players can learn to predict one another’s behavior,
and are capable of responding optimally to their updated beliefs, then each player’s beliefs
about his opponents must rule out some seemingly natural strategies a priori. In this sense,
the assumption of coordinated prior beliefs that ensures convergence to equilibrium in
rational learning models does not seem dramatically weaker than a direct assumption of
equilibrium play.

ELSEWHERE IN PALGRAVE:
Adaptive Heuristics
Belief Learning

1Moreover, the player’s beliefs about this parameter must come from the family of Dirichlet distributions,
the conjugate family of distributions for multinomial trials—see Fudenberg and Levine (1998).
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Deterministic Evolutionary Dynamics
ESS
Stochastic Adaptive Dynamics
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