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Abstract. We investigate a class of reinforcement learning dynamics in which
players adjust their strategies based on their actions’ cumulative payoffs over
time – specifically, by playing mixed strategies that maximize their expected
cumulative payoff minus a strongly convex, regularizing penalty term. In con-
trast to the class of penalty functions used to define smooth best responses
in models of stochastic fictitious play, the regularizers used in this paper need
not be infinitely steep at the boundary of the simplex; in fact, dropping this
requirement gives rise to an important dichotomy between steep and nonsteep
cases. In this general setting, our main results extend several properties of
the replicator dynamics such as the elimination of dominated strategies, the
asymptotic stability of strict Nash equilibria and the convergence of time-
averaged trajectories to interior Nash equilibria in zero-sum games.
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1. Introduction

“Reinforcement learning” has become a catch-all term for learning in recurring
decision processes where the agents’ future choice probabilities are shaped by in-
formation about past payoffs. In game theory and online optimization, most work
under this name has focused on multi-armed bandit problems, games against Na-
ture (adversarial or otherwise), or simultaneous choices by strategically interacting
players – for a panoramic introduction, see Sutton and Barto [56]. Accordingly,
reinforcement learning in games typically revolves around discrete-time stochastic
processes with the stochasticity arising at least in part from the agents’ randomized
choices – see e.g. Börgers and Sarin [10], Erev and Roth [16], Fudenberg and Levine
[20], Freund and Schapire [18], Hopkins [29], Hart and Mas-Colell [23], Beggs [6],
Leslie and Collins [38], Cominetti et al. [13], Coucheney et al. [14] and many others.

A key approach to analyzing these processes is the ordinary differential equa-
tion (ODE) method of stochastic approximation, a method which relates the be-
havior of the stochastic model under study to that of a “mean field” ODE (Benaïm
[7]). Motivated by the success of this approach, we follow Sorin [55] and Hofbauer
et al. [28] by specifying a reinforcement learning scheme directly in continuous
time. By so doing, we are then able to focus squarely on the deep relations between
reinforcement learning, convex analysis and population dynamics.1

Within this framework, our starting point is the following continuous-time expo-
nential learning process: first, each player maintains a vector of performance scores
that represent his actions’ cumulative payoffs; these scores are then converted into
mixed strategies using a logit rule which assigns choice probabilities proportionally
to the exponential of each action’s score.2 According to a well-known derivation,
this logit rule amounts to each player maximizing the difference between his ex-
pected score and a penalty term given by the (negative) Gibbs entropy of the chosen
mixed strategy. Also, under this learning process, mixed strategies evolve according
to the replicator dynamics of Taylor and Jonker [57], a fundamental model from
evolutionary game theory (Rustichini [50]).

We extend this approach by considering more general choice maps obtained by
replacing the Gibbs entropy with an arbitrary (strongly convex) penalty function
that “regularizes” the problem of choosing a mixed strategy that maximizes the
player’s expected score. These choice maps include those considered in models
of stochastic fictitious play (Fudenberg and Levine [20], Hofbauer and Sandholm
[25]) and those generated by games with control costs in the refinement literature
(van Damme [60]). In these two cases, the players’ choice maps are induced by
penalty functions that become infinitely steep at the boundary of the simplex, an
assumption which ensures in our context that mixed strategies follow an ODE in the
interior of the simplex – in the Gibbs case, this is simply the replicator equation
of Taylor and Jonker [57]. More generally, we find that the evolution of mixed
strategies agrees with a class of evolutionary game dynamics studied by Hofbauer

1One could use the results developed in this paper to analyze discrete-time learning schemes
as in Leslie and Collins [38], Sorin [55], Coucheney et al. [14] and others, but we do not pursue
this direction here.

2The literature refers to versions of this procedure under a variety of names, including
weighted/multiplicative majority algorithm (Littlestone and Warmuth [39], Freund and Schapire
[18]), exponential weight algorithm (Sorin [55], Hofbauer et al. [28]), and Boltzmann Q-learning
(Leslie and Collins [38], Tuyls et al. [59]).
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and Sigmund [26], Hopkins [30] and Harper [22], and which we study further in a
companion paper (Mertikopoulos and Sandholm [42]).

Moving beyond these steep cases, our model also allows for penalty functions that
are (sub)differentiable over the entire simplex without becoming infinitely steep at
the boundary. The basic example here is the squared Euclidean distance which
induces a choice map based on closest point projection. In analogy to the logit
case, the orbits of this projected reinforcement learning process are solutions (in an
extended sense) of the projection dynamics of Friedman [19], another basic model
of population dynamics from evolutionary game theory; however, the image of the
induced projection-based choice map is the entire simplex (rather than its relative
interior), so trajectories of play may enter and exit the boundary of the simplex
in perpetuity. Specifically, the ODE that describes the evolution of the players’
mixed strategies over time only holds for an open dense set of times – the union
of the open intervals on which the support of the players’ mixed strategies remains
constant. At the remaining times, the support of the mixed strategy specified by
some player’s choice map changes, leading to a kink in his mixed strategy trajectory,
and the moments at which this occurs cannot always be anticipated by considering
the projection dynamics alone.

Our main results extend a variety of basic properties of the replicator dynam-
ics to the class of reinforcement learning dynamics under study, allowing for both
steep and nonsteep penalty functions. First, we show that (iteratively) dominated
strategies become extinct and we compute their rates of extinction.3 Second, we
extend several stability and convergence properties of Nash equilibria under the
replicator dynamics: namely, we show that a) limits of (interior) trajectories are
Nash; b) Lyapunov stable states are Nash; and c) strict Nash equilibria are asymp-
totically stable. Finally, we show that the basic properties of the time-averaged
replicator dynamics (convergence to interior equilibria in zero-sum games and as-
ymptotic agreement with the long run behavior of the best response dynamics) also
extend to the class of learning dynamics studied here.

In the paper most closely related to this one, Coucheney et al. [14] (see also Leslie
and Collins [38] and Tuyls et al. [59]) consider a reinforcement learning process
in which players update their mixed strategies based on exponentially discounted
payoff estimates. Focusing exclusively on steep penalty functions, they investigate
the convergence of this process in a stochastic, discrete-time environment where
players can only observe their realized payoffs. To do so, the authors also examine
the Lyapunov and asymptotic stability properties of (perturbed) Nash equilibria
under the resulting mean dynamics in continuous time. The no-discounting limit of
these dynamics is precisely the steep version of the dynamics studied in the current
paper, so our stability and convergence results can be seen as an extension of the
analysis of Coucheney et al. [14] to the nonsteep regime. Also, Coucheney et al. [14]
do not examine the elimination of dominated strategies or the long-term behavior
of empirical frequencies of play, so our results here provide an indication of other
properties that could be expected to hold in a discrete-time, stochastic setting.

From the point of view of convex programming, the reinforcement learning dy-
namics we consider here can be seen as a multi-agent, continuous-time analogue of

3Interestingly, while exponential reinforcement learning eliminates dominated strategies at an
exponential rate, reinforcement learning with nonsteep penalty functions eliminates such strategies
in finite time.



4 P. MERTIKOPOULOS AND W. H. SANDHOLM

the well-known mirror descent (MD) optimization method pioneered by Nemirovski
and Yudin [45] and studied further by Beck and Teboulle [5], Alvarez et al. [2], Nes-
terov [46] and many others. This observation also extends to the class of online
mirror descent (OMD) algorithms introduced by Shalev-Shwartz [54] for online
convex problems: focusing on the interplay between discrete- and continuous-time
OMD schemes, Kwon and Mertikopoulos [34] recently showed that a unilateral vari-
ant of the reinforcement learning dynamics studied in this paper leads to no regret
against any (locally integrable) stream of payoffs.

Our analysis relies heavily on tools from convex analysis and, in particular,
the theory of Bregman functions (Bregman [11]). Returning to the case of the
replicator dynamics, it is well known that the Kullback–Leibler (KL) divergence
(an oriented distance measure between probability distributions) is a potent tool
for understanding the dynamics’ long-run behavior (see Weibull [64] and Hofbauer
and Sigmund [27]). For other steep cases, this part can be played by the Bregman
divergence, a distance-like function whose role in population dynamics was noted
recently by Harper [22].4 In the nonsteep regime however, the dynamics of mixed
strategies under reinforcement learning depend intrinsically on the players’ score
vectors (which determine a strategy’s support). To contend with this, we introduce
the Fenchel coupling, an oriented congruence measure between primal and dual
variables (that is, between mixed strategies and score vectors) that provides a
natural tool for proving elimination, convergence, and stability results.

Paper Outline. We begin in Section 2 with some game-theoretic preliminaries
and the definition of penalty functions and choice maps. The class of reinforcement
learning dynamics we examine is presented in Section 3, along with several exam-
ples. Our analysis proper begins in Section 4 where we study the elimination of
dominated strategies. In Section 5, we derive some stability and convergence prop-
erties of Nash equilibria while, in Section 6, we examine the long-term behavior of
the players’ time-averaged play. Learning without a penalty function is discussed
in Section 7.

2. Preliminaries

2.1. Notation. If V is a finite-dimensional real space, its dual will be denoted by
V∗ and we will write 〈x|y〉 for the pairing between x ∈ V and y ∈ V∗. Also, if S =
{sα}dα=0 is a finite set, the real space spanned by S will be denoted by RS and its
canonical basis by {es}s∈S . For concision, we use α to refer interchangeably to either
sα or eα, writing e.g. xα instead of xsα ; likewise, we write δαβ for the Kronecker
delta symbols on S. The set ∆(S) of probability measures on S will be identified
with the d-dimensional simplex ∆ ≡ ∆(S) = {x ∈ RS :

∑
α xα = 1 and xα ≥ 0}

of RS and the relative interior of ∆ will be denoted by ∆◦ ≡ rel int(∆). Finally, if
{Sk}k∈N is a finite family of finite sets, we will use the shorthand (αk;α−k) for the
tuple (. . . , αk−1, αk, αk+1, . . . ) and we will write

∑k
αk

instead of
∑
αk∈Sk .

2.2. Games in normal form. A finite game in normal form is a tuple G ≡
G(N ,A, u) consisting of a) a finite set of players N = {1, . . . , N}; b) a finite set
Ak of actions (or pure strategies) per player k ∈ N ; and c) the players’ payoff

4Each penalty function defines a Bregman divergence; in the case of the Gibbs entropy, the
resulting divergence is simply the Kullback–Leibler divergence. For a comprehensive treatment,
see Kiwiel [33].
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functions uk : A → R, where A ≡
∏
kAk denotes the game’s action space, i.e.

the set of all action profiles (α1, . . . , αN ), αk ∈ Ak. The set of mixed strategies
of player k will be denoted by Xk ≡ ∆(Ak) and the space X ≡

∏
k Xk of mixed

strategy profiles x = (x1, . . . , xN ) will be called the game’s strategy space. Unless
mentioned otherwise, we will write Vk ≡ RAk for the real space spanned by Ak and
V ≡

∏
k Vk for the ambient space of X .

The expected payoff of player k in the mixed strategy profile x = (x1, . . . , xN ) ∈
X is

uk(x) =
∑1

α1

· · ·
∑N

αN
uk(α1, . . . , αN ) x1,α1 · · · xN,αN , (2.1)

where uk(α1, . . . , αN ) denotes the payoff of player k in the profile (α1, . . . , αN ) ∈ A.
Accordingly, the payoff corresponding to α ∈ Ak in the mixed profile x ∈ X is

vkα(x) ≡ uk(α;x−k) =
∑1

α′1
· · ·
∑N

α′N
uk(α′1, . . . , α

′
N ) x1,α′1

· · · δα,α′k · · · xN,α′N ,
(2.2)

and we will write vk(x) = (vkα(x))α∈Ak ∈ V∗k for the payoff (co)vector of player k
at x ∈ X . The prefix “co” above is motivated by the natural duality pairing

〈vk(x)|xk〉 =
∑k

α
xkαvkα = uk(x). (2.3)

which shows that vk(x) acts on xk as a linear functional. Duality plays a basic role
in our analysis, so mixed strategies xk ∈ Vk will be treated as primal variables and
payoff vectors vk ∈ V∗k as duals.5

Finally, a restriction of G is a game G′ ≡ G′(N ,A′, u′) with the same players as
G, each with a subset A′k ⊆ Ak of their original actions and with payoff functions
u′k ≡ uk|A′ suitably restricted to the reduced action space A′ ≡

∏
kA′k of G′.

2.3. Penalty functions and choice maps. In view of (2.3), a player’s set of
optimal mixed strategies given a payoff vector vk ∈ V∗k is

Q0
k(vk) = arg max

xk∈Xk
〈vk|xk〉 . (2.4)

A standard way of obtaining a single-valued analogue of the argmax correspondence
(2.4) is to introduce a penalty term that is (at least) strictly convex in xk. It is
also customary to assume that such penalties are “infinitely steep” at the boundary
of the simplex (see e.g. Fudenberg and Levine [20]), but we obtain a much richer
theory by dropping this requirement. Formally, we have:

Definition 2.1. Let ∆ be the unit d-dimensional simplex of Rd+1. We say that
h : ∆→ R is a penalty function on ∆ if:

(1) h is continuous on ∆.
(2) h is smooth on the relative interior of every face of ∆ (including ∆ itself).6

(3) h is strongly convex on ∆: there exists some K > 0 such that

h(tx1 + (1− t)x2) ≤ th(x1) + (1− t)h(x2)− 1
2Kt(1− t) ‖x1 − x2‖2 , (2.5)

for all x1, x2 ∈ ∆ and for all t ∈ [0, 1].

5Even though this distinction is rarely made in game theory, it is standard in learning and
optimization – see e.g. Rockafellar [49], Nemirovski and Yudin [45], Shalev-Shwartz [54] and
references therein.

6More precisely, we posit here that h(γ(t)) is smooth for every smooth curve γ : (−ε, ε) → ∆

that is entirely contained in the relative interior of a face of C.
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If ‖dh(xn)‖ → ∞ for every interior sequence xn → x, xn ∈ ∆◦, we will say that h
is steep at x;7 moreover, if this holds for all x ∈ bd(∆), we will say that h is steep.
Finally, h will be called decomposable with kernel θ if

h(x) =
∑d

β=0
θ(xβ), (2.6)

for some continuous and strongly convex θ : [0, 1]→ R that is smooth on (0, 1].

Remark 2.1. For differentiation purposes, it will often be convenient to assume that
the domain of h is the “thick simplex” ∆ε = {x ∈ RS : xα ≥ 0 and 1−ε <

∑
α xα <

1 + ε}; doing so allows us to carry out certain calculations in terms of standard
coordinates, but none of our results depend on this device. Also, “smooth” should
be interpreted above as “C∞-smooth”; our analysis actually requires C2 smoothness
only if the Hessian of h is involved (and no differentiability otherwise), but we will
keep the C∞ assumption for simplicity.

Given a penalty function h on ∆ ⊆ V ≡ Rd+1, the concave maximization problem
maximize 〈y|x〉 − h(x),

subject to x ∈ ∆,
(2.7)

admits a unique solution for all y ∈ V∗, so the regularized correspondence y 7→
arg maxx {〈y|x〉 − h(x)} becomes single-valued. We thus obtain:

Definition 2.2. The choice map (or regularized argmax correspondence) Q : V∗ →
∆ induced by a penalty function h on ∆ is

Q(y) = arg maxx∈∆ {〈y|x〉 − h(x)} , y ∈ V∗. (2.8)

Under the steepness and strong convexity requirements of Definition 2.1, the
discussion in Rockafellar [49, Chapter 26] shows that the induced choice map Q
is smooth and its image is the relative interior ∆◦ of ∆; at the other end of the
spectrum, if h is nowhere steep, the image of Q is the entire simplex (cf. Remark
C.1 in Appendix C).8 We illustrate this dichotomy with two representative examples
(see also Section 3.4):

Example 2.1. The classic example of a steep penalty function is the (negative) Gibbs
entropy

h(x) =
∑d

α=0
xα log xα. (2.9)

As is well known, the induced choice map (2.8) is the so-called logit map

Gα(y) =
exp(yα)∑d
β=0 exp(yβ)

. (2.10)

Since h is steep, imG = ∆◦.

Example 2.2. The basic example of a non-steep penalty function is the quadratic
penalty

h(x) =
1

2

∑d

β=0
x2
β . (2.11)

7In the above, dh(x) for x ∈ ∆◦ denotes the derivative of the restriction of h to ∆◦, viewed as
a map from the tangent space of the simplex to R. For a detailed treatment, see Sandholm [52,
Chap. 3.B.3].

8One can also define penalty functions that are steep only at a subset of the boundary of ∆;
the cases considered above are simply the two extremes.
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The induced choice map (2.8) is the (Euclidean) projection map

Π(y) = arg maxx∈∆

{
〈y|x〉 − 1

2 ‖x‖
2
2

}
= arg minx∈∆ ‖y − x‖

2
2 = proj∆ y, (2.12)

where proj∆ denotes the closest point projection to ∆ with respect to the standard
Euclidean norm ‖·‖2 on Rd+1. Obviously, im Π = ∆.

Remark 2.2. Up to mild technical differences, penalty functions are also known
as regularizers in online learning and Bregman functions (or prox-functions) in
convex analysis; for a comprehensive treatment, see Bregman [11], Nemirovski and
Yudin [45], Shalev-Shwartz [54] and references therein. The term “decomposable”
is borrowed from Alvarez et al. [2].

In game theory, Fudenberg and Levine [20] use the term smooth best response
function to refer to the composition Qk ◦ vk of a choice map Qk generated by a
steep penalty function and a game’s payoff function vk. Hofbauer and Sandholm
[25] use the term “perturbed best response function” for such composite functions,
while McKelvey and Palfrey [40] use the term “quantal response function” to refer
to Qk directly (the notation Q is in reference to this last fact).

Remark 2.3. Several models of smooth fictitious play (Fudenberg and Levine [20],
Hofbauer and Sandholm [25]) use a steep penalty function with positive-definite
Hessian. Concerning this last condition, the strong convexity of h imposes a positive
lower bound on the smallest eigenvalue of Hess(h), a property which in turn ensures
that the associated choice mapQ is Lipschitz continuous (Proposition C.1); later, we
also take advantage of the fact that strong convexity provides a lower bound for the
so-called Bregman divergence between points in ∆ (Proposition C.2). Even though
some of our results can be extended to penalty functions that are not strongly
convex (for instance, decomposable penalty functions with a strictly convex kernel),
the above consequences of strong convexity simplify our presentation considerably
so we will not venture beyond the strongly convex case.

3. A class of reinforcement learning dynamics

3.1. Definition and basic examples. The basic reinforcement learning scheme
that we consider is that players keep track of the cumulative payoffs of their actions
and then use a choice map to transform these aggregate score vectors into mixed
strategies and keep playing. More precisely, given a finite game G ≡ G(N ,A, u),
this amounts to the continuous-time process:

yk(t) = yk(0) +

∫ t

0

vk(x(s)) ds,

xk(t) = Qk(yk(t)),

(RL)

or, in differential form:
ẏk = vk(Q(y)), (3.1)

where Q ≡ (Q1, . . . , QN ) : V∗ ≡
∏
k V∗k → X and y = (y1, . . . , yN ) ∈ V∗ denote the

players’ choice and score profiles respectively. In the above, the (primal) strategy
variable xk(t) ∈ Xk describes the mixed strategy of player k at time t while the
(dual) score vector yk(t) aggregates the payoffs of the pure strategies α ∈ Ak of
player k. Accordingly, the basic interpretation of (RL) is that each player observes
the realized expected payoffs of his strategies over a short interval of time and then
uses these payoffs to update his score vector.
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More precisely, in the stochastic approximation language of Benaïm [7], (RL) is
simply the mean field of the discrete-time stochastic process

Ykα(n+ 1) = Ykα(n) + v̂kα(n),

Xkα(n+ 1) = Qkα(Yk(n+ 1)),
(3.2)

where Xkα(n) is the probability of playing α ∈ Ak at the n-th instance of play while
v̂kα(n) is an unbiased estimator of vkα(X(n)). If player k can observe the action
profile α−k(n) played by his opponents (or can otherwise calculate his strategies’
payoffs), such an estimate is provided by v̂kα(n) = uk(α;α−k(n)). Instead, if player
k can only observe the payoff ûk(n) = uk(αk(n);α−k(n)) of his chosen action αk(n),
a standard choice for v̂k(n) is

v̂kα(n) = ûk(n)/Xkα(n) if αk(n) = α, (3.3)

where division by Xkα(n) compensates for the infrequency with which the score of
strategy α is updated. Estimator (3.3) is sound if the penalty function of player k
is steep (see Leslie and Collins [38] and Coucheney et al. [14]); otherwise, Xkα(n)
may become zero, in which case the links between (3.3) and our continuous-time
model are less clear.

We begin with two representative examples of the reinforcement learning dy-
namics (RL):

Example 3.1. If Q is the logit map (2.10) of Example 2.1, players select actions
with probability proportional to the exponential of their aggregate payoffs. In this
case, (RL) boils down to the exponential (or logit) reinforcement learning process:

ẏkα = vkα(x),

xkα =
exp(ykα)∑k
β exp(ykβ)

.
(XL)

In a single-agent, online learning context, the discrete-time version of (XL) first ap-
peared in the work of Vovk [63] and Littlestone and Warmuth [39] – see also Rusti-
chini [50], Sorin [55], and Kwon and Mertikopoulos [34] for a continuous-time anal-
ysis. In a game-theoretic setting, this process has been studied by (among others)
Freund and Schapire [18], Hofbauer et al. [28] and Mertikopoulos and Moustakas
[41], while Leslie and Collins [38], Tuyls et al. [59] and, more recently, Coucheney
et al. [14] considered a discounted variant that we describe in Section 3.2 below.

Differentiating xkα in (XL) with respect to time and substituting yields

ẋkα =
ẏkαe

ykα
∑k
β e

ykβ − eykα
∑k
β ẏkβe

ykβ(∑k
β e

ykβ

)2 = xkα

[
ẏkα −

∑k

β
xkβ ẏkβ

]
, (3.4)

so, with ẏkα = vkα(x), we readily obtain:

ẋkα = xkα

[
vkα(x)−

∑k

β
xkβvkβ(x)

]
. (RD)

This equation describes the replicator dynamics of Taylor and Jonker [57], a funda-
mental model of evolutionary game theory whose long-term rationality properties
are quite well understood. This basic relation between exponential reinforcement
learning and the replicator dynamics was noted in a single-agent environment by
Rustichini [50] and was explored further in a game-theoretic context by Hofbauer
et al. [28] and Mertikopoulos and Moustakas [41].
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Example 3.2. If Q is the projection map (2.12) of Example 2.2, (RL) leads to the
projected reinforcement learning process:

ẏk = vk(x),

x = projX y.
(PL)

Of course, since projX y is not smooth in y, we can no longer use the same approach
as in (3.4) to derive the dynamics of the players’ mixed strategies xk. Instead, recall
(or solve the defining convex program to show) that the closest point projection on
Xk = ∆(Ak) takes the simple form(

projXk yk
)
α

= max{ykα + µk, 0}, (3.5)

where µk ∈ R is such that
∑k
α max{ykα + µk, 0} = 1. We can thus write

xkα(t) =

{
ykα(t) + µk(t) if α ∈ A′k,
0 otherwise.

(3.6)

Therefore, if Ik is an open time interval over which xk(t) = projXk yk(t) has constant
support A′k ⊆ Ak, differentiating (3.6) for t ∈ Ik yields

ẋkα = ẏkα + µ̇k = vkα + µ̇k for all α ∈ A′k. (3.7)

Since
∑
α∈A′k

ẋkα = 0, summing over α ∈ A′k gives

0 =
∑

α∈A′k
vkα + µ̇k |A′k| , (3.8)

so, by substituting into (3.7) and rearranging, we obtain the projection dynamics:

ẋkα =

{
vkα(x)− |supp(xk)|−1

∑
β∈supp(xk)

vkβ(x) if α ∈ supp(xk),

0 if α /∈ supp(xk).
(PD)

The dynamics (PD) were introduced in game theory by Friedman [19] as a geo-
metric model of the evolution of play in population games.9 The previous discussion
shows that the projected orbits x(t) = projX y(t) of the learning scheme (PL) sat-
isfy the projection dynamics (PD) on every open interval over which the support
of x(t) is fixed; furthermore, as we argue below, the union of these intervals is
dense in [0,∞). In this way, orbits of (PL) that begin in the relative interior X ◦ of
the game’s strategy space may attain a boundary face in finite time, then move to
another boundary face or re-enter X ◦ (again in finite time) and so on (cf. Fig. 1).
Thus, although x(t) may fail to be differentiable when it moves from (the relative
interior of) one face of X to another, it satisfies (PD) for all times in between.

These two examples illustrate a fundamental dichotomy between reinforcement
learning processes induced by steep and nonsteep penalty functions. In the steep
case, the dynamics of the strategy variable are well-posed and admit unique solu-
tions that stay in X ◦ for all time. On the other hand, in the nonsteep regime, the
dynamics of the strategy variable only admit solutions in an extended sense, and
may enter and exit different faces of X in perpetuity.

9Nagurney and Zhang [44] (see also Lahkar and Sandholm [35] and Sandholm et al. [53])
introduce related projection-based dynamics for population games. The relations among the
various projection dynamics are explored in a companion paper (Mertikopoulos and Sandholm
[42]).
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Remark 3.1. In several treatments of stochastic fictitious play (Fudenberg and
Levine [20], Hofbauer and Sandholm [25]), it is common to replace h(x) with γh(x)
for some positive parameter γ > 0 which is often called the noise level.10 For
instance, if h is the Gibbs entropy (2.9), this adjustment leads to the choice map

Gηα(y) =
exp(ηyα)∑d
β=0 exp(ηyβ)

. (3.9)

with η = γ−1. If y is fixed, choices are nearly uniform for small η; on the other
hand, for large η, almost all probability is placed on the pure strategies with the
highest score.

In the present context, replacing hk(xk) with γkhk(xk) and writing ηk = γ−1
k

yields the following variant of (RL):
ẏk = vk(x),

xk = Qk(ηkyk),
(3.10)

Since a rescaled penalty function is itself a penalty function, (3.10) can be viewed
as an instance of (RL); therefore, our results for the latter also apply to the former.
Furthermore, because the score variables yk(t) scale with t, introducing η has less
drastic consequences under (RL) than under stochastic fictitious play: for instance,
the stationary points of (RL) in X remain unaffected by this choice – see Theorem
5.2 below.

One can also consider a variant of (RL) under which different players adjust
their score variables at different rates:

ẏk = ηkvk(x),

xk = Qk(yk),
(RLη)

Evidently, this process is equivalent to (3.10), but with initial conditions yk(0)
scaled by 1/ηk. As we show in Propositions 4.2 and 5.4, the choice of η affects
the speed at which (3.10) evolves because it determines each player’s characteristic
time scale.

3.2. Related models. Before proceeding with our analysis of (RL), we mention
a number of related models appearing in the literature.

First, as an alternative to aggregating payoffs in (RL), one can consider the
exponentially discounted model

yk(t) = yk(0)λt +

∫ t

0

λt−svk(x(s)) ds, (3.11)

where the discount rate λ ∈ (0, 1) measures the relative weight of past observa-
tions. This variant was examined by Leslie and Collins [38], Tuyls et al. [59], and
Coucheney et al. [14] for choice maps generated by steep penalty functions. Obvi-
ously, when h is steep, (RL) can be seen as a limiting case of (3.11) for λ → 1−;
in contrast to (RL) however, discounting implies that the score variable yk(t) re-
mains bounded, thus preventing the agents’ mixed strategies from approaching the
boundary of X . For instance, under the logit rule of Example 3.1, Coucheney et al.
[14] showed that discounting introduces a penalty term in the replicator dynamics
which repels orbits from the boundary bd(X ) of X .

10The term “noise level” reflects the fact that γ essentially controls the magnitude of the
perturbation to the player’s expected payoff in the regularized maximization problem (2.7).
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In a single-agent environment, payoffs are determined at each instance by nature
so the reinforcement learning process (RL) becomes:

yα(t) = yα(0) +

∫ t

0

vα(s) ds, x(t) = Q(y(t)). (3.12)

In this context, (RL) can be seen as a continuous-time analogue of the family of
online learning algorithms known as online mirror descent (OMD) – for a compre-
hensive account, see Bubeck [12] and Shalev-Shwartz [54]. The resulting interplay
between discrete and continuous time has been analyzed by Sorin [55] and Kwon
and Mertikopoulos [34] who showed that (3.12) leads to no regret against any lo-
cally integrable payoff stream v(t) in V∗. In view of the above, (RL) extends the
discounted dynamics of Leslie and Collins [38] to the nonsteep regime and the online
learning dynamics of Kwon and Mertikopoulos [34] to a multi-agent, game-theoretic
setting.

There are several other reinforcement learning schemes that are distinct from
(RL) but which still lead to the replicator equation (RD). A leading model of this
kind is presented in the seminal paper of Erev and Roth [16]: after player k chooses
pure strategy α ∈ Ak, he increments its score by the payoff he receives (assumed
positive) and then updates his choice probabilities proportionally to each action’s
score. The continuous-time, deterministic version of this model is

ẏkα = xkαvkα(x),

xkα =
ykα∑k
β ykβ

, (ER)

where the xkα term in the first equation reflects the fact that the score variable
ykα is only updated when α is played. A simple calculation then shows that the
evolution of mixed strategies is governed by the replicator dynamics (RD) up to
a player-specific multiplicative factor. Versions of this model have been studied
by Posch [47], Rustichini [50], Hopkins [31], Beggs [6], and Hopkins and Posch
[32]; Rustichini [50] also considers hybrids between (XL) and (ER) in nonstrategic
settings.

Börgers and Sarin [10] also consider a variant of the learning model of Cross [15]
where there is no separate score variable. Instead, if player k chooses pure strategy
α, he increases the probability with which he plays α and decreases the probability
of every other action β 6= α proportionally to the payoff vkα(x) ∈ (0, 1) that the
player obtained. The continuous-time, deterministic version of this model is

ẋkα = xkα(1− xkα)vkα(x) +
∑

β 6=α
xkβ(0− xkα)vkβ(x), (3.13)

so, after a trivial rearrangement, we obtain again the replicator equation (RD).

3.3. Basic results. We start our analysis by showing that the dynamics (RL) are
well-posed even if the players’ penalty functions are not steep:

Proposition 3.1. The reinforcement learning process (RL) admits a unique global
solution for every initial score profile y(0) ∈ V∗.

Proof. By Proposition C.1, strong convexity implies that Q : V∗ → X is Lipschitz.
Since vk is bounded, existence and uniqueness of global solutions follows from stan-
dard arguments – e.g. Robinson [48, Chapter V]. �
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We turn now to the dynamics induced by (RL) on the game’s strategy space X .
To that end, if y(t) is a solution orbit of (RL), we call x(t) = Q(y(t)) the trajec-
tory of play induced by y(t) – or, more simply, an orbit of (RL) in X . Mirroring
the derivation of the projection dynamics (PD) above, our next result provides a
dynamical system on X that is satisfied by smooth segments of orbits of (RL) in
X . To state it, let

gαβk (xk) = Hess
(
hk|X ′k(xk)

)−1

αβ
, α, β ∈ supp(xk), (3.14)

denote the inverse Hessian matrix of the restriction hk|X ′k of the penalty function
of player k to the face X ′k = ∆(supp(xk)) of Xk that is spanned by supp(xk).11

Furthermore, let

gαk (xk) =
∑

β∈supp(xk)
gαβk (xk) and Gk(xk) =

∑
α∈supp(xk)

gαk (xk) (3.15)

denote the row sums and the grand sum of gαβk (xk) respectively. We then have:

Proposition 3.2. Let x(t) = Q(y(t)) be an orbit of (RL) in X , and let I be an
open interval over which the support of x(t) remains constant. Then, for all t ∈ I,
x(t) satisfies:

ẋkα =
∑

β∈supp(xk)

[
gαβk (xk)− 1

Gk(xk)
gαk (xk)gβk (xk)

]
vkβ(x), α ∈ supp(xk).

(RLD)

Corollary 3.3. Every orbit x(t) = Q(y(t)) of (RL) in X is Lipschitz continuous
and satisfies (RLD) on an open dense subset of [0,∞). Furthermore, if the players’
penalty functions are steep, (RLD) is well-posed and x(t) is an ordinary solution
thereof.

Proof of Proposition 3.2. Let A′k denote the (constant) support of xk(t) for t ∈
I. Then, the first-order Karush–Kuhn–Tucker (KKT) conditions for the softmax
problem (2.7) of player k readily yield

ykα −
∂h′k
∂xkα

= µk for all α ∈ A′k, (3.16)

where h′k = hk|X ′k is the restriction of hk to X ′k = ∆(A′k) and µk is the Lagrange
multiplier associated to the constraint

∑
α∈A′k

xkα = 1. Differentiating (3.16) then
yields

ẏkα −
∑
β∈A′k

∂2h′k
∂xkα∂xkβ

ẋkβ = µ̇k, (3.17)

and hence

ẋkα =
∑
β∈A′k

gαβk (xk) (vkβ(x)− µ̇k) =
∑
β∈A′k

gαβk (xk)vkβ(x)− gαk (xk)µ̇k, (3.18)

11Strong convexity ensures that Hess(h′k) is positive-definite – and, hence, invertible (cf. Re-
mark 2.3).
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where we have used the fact that ẏk = vk. However, since xk(t) ∈ X ′k for all t ∈ I
by assumption, we must also have

∑
α∈A′k

ẋkα = 0; accordingly, (3.18) gives

0 =
∑

α,β∈A′k

gαβk (xk)vkβ(x)− µ̇k
∑
α∈A′k

gαk (xk) =
∑
β∈A′k

gβk (xk)vkβ(x)−Gk(xk)µ̇k,

(3.19)
so (RLD) is obtained by solving (3.19) for µ̇k and substituting in (3.18). �

Proof of Corollary 3.3. Lipschitz continuity follows from Proposition 3.1 and the
Lipschitz continuity of Q (Proposition C.1). To establish the next claim, we must
show that the union of all open intervals over which x(t) has constant support is
dense in [0,∞). To do so, fix some α ∈ Ak, k ∈ N , and let A = {t : xkα(t) > 0}
so that Ac = x−1

kα(0); then, if B = int(Ac), it suffices to show that A ∪ B is dense
in [0,∞). Indeed, if t /∈ cl(A ∪ B), we must have t /∈ A and hence xkα(t) = 0.
Furthermore, since t /∈ cl(A), there exists a neighborhood U of t that is disjoint
from A, i.e. xkα = 0 on U . Since U is open, we get U ⊆ int(Ac) = B, contradicting
that t /∈ B.

Finally, to prove the second part of our claim, simply note that the image imQk
of Qk coincides with the relative interior X ◦k of Xk if and only if hk is steep (cf.
Proposition C.1). �

Remark 3.2. If the players’ penalty functions can be decomposed as hk(xk) =∑k
β θk(xkβ) (cf. Definition 2.1), the inverse Hessian matrix of hk may be written

as

gαβk (xk) =
δαβ

θ′′k(xkα)
, α, β ∈ supp(xk). (3.20)

In this case, (RLD) may be written more explicitly as

ẋkα =
1

θ′′k(xkα)

[
vkα(x)−Θ′′k(xk)

∑
β∈supp(xk)

vkβ(x)
/
θ′′k(xkβ)

]
, (RLDθ)

where Θ′′k stands for the harmonic aggregate12

Θ′′k(xk) =

[∑
β∈supp(xk)

1/θ′′k(xkβ)

]−1

. (3.21)

To the best of our knowledge, the separable dynamics (RLDθ) first appeared in
a comparable form in the work of Harper [22] under the name “escort replicator
dynamics”.13 From the perspective of convex programming, the dynamics (RLDθ)
for steep θ (and, more generally, (RLD) for steep h) can be seen as a game-theoretic
analogue of the Hessian Riemannian gradient flow framework developed by Alvarez
et al. [2]. As such, (RLD) exhibits a deep Riemannian-geometric character which
links it to class of dynamics introduced by Hofbauer and Sigmund [26] and studied
further by Hopkins [29]. These geometric aspects of (RLD) are explored in detail
in a companion paper (Mertikopoulos and Sandholm [42]).

12We should stress here that Θ′′k is not a second derivative; we only use this notation for visual
consistency.

13See also Coucheney et al. [14] for a variant of (RLDθ) induced by the exponentially discounted
model (3.11).
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V∗ (payoff space) X ⊆ V (strategy space)

Q

choice map
y(t) x(t) = Q(y(t))

(RL) (RLD)

Figure 1. Diagrammatic illustration of the relation between the re-
inforcement learning scheme (RL) and the induced dynamics (RLD).
The dynamics (RL) evolve in the dual space V∗ and solutions exist for
all time; on the other hand, the dynamics (RLD) evolve in the primal
space X and solutions may fail to exist for all time. The solution orbits
x(t) = Q(y(t)) of (RL) only fail to satisfy (RLD) when they pass from
one face of X to another.

Remark 3.3. One subtle point in Corollary 3.3 is that x(t) = Q(y(t)) need not
be a solution of (RLD) in the sense of Carathéodory. The reason for this is that
Carathéodory solutions are required to satisfy the dynamical system at hand over a
set of full measure; by contrast, Corollary 3.3 shows that x(t) satisfies (RLD) over
an open dense subset of times. Hence, in principle, x(t) may fail to satisfy (RLD)
over a closed, nowhere dense set with positive measure – such as a fat Cantor set.
We believe that intricate topological pathologies of this sort cannot occur under
(RLD), but we have not been able to prove it either.

3.4. Further examples. In Section 3.1, we introduced the exponential and pro-
jected reinforcement learning models (XL) and (PL), generated respectively by
the (steep) entropic penalty (2.9) and the (nonsteep) quadratic penalty (2.11). We
close this section with some further examples of penalty functions and their induced
mixed strategy dynamics.

Example 3.3 (The Tsallis entropy and the q-replicator dynamics). A well known
generalization of the Gibbs (negative) entropy due to Tsallis [58] is:14

h(x) = [q(1− q)]−1
∑

β
(xβ − xqβ), q > 0, (3.22)

with the continuity convention (z − zq)/(1 − q) = z log z for q = 1 (corresponding
to the Gibbs penalty of Example 2.1). This penalty function is decomposable (in

14In information theory, the Tsallis entropy is often referred to as the Havrda–Charvát entropy.
Also, note that (3.22) uses the normalization [q(1−q)]−1 rather than the more common (1−q)−1;
this is done to simplify notation later on.
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the sense of Definition 2.1) with kernel θ(x) = [q(1− q)]−1(x−xq). A simple differ-
entiation then gives θ′′(x) = xq−2 and Θ′′(x) ≡

[∑
β 1/θ′′(xβ)

]−1
=
[∑

β x
2−q
β

]−1

so, substituting in (RLDθ), we obtain the q-replicator dynamics:

ẋkα = x2−q
kα

[
vkα − rq−2

k,q

∑k

β
x2−q
kβ vkβ

]
, (RDq)

where we set r2−q
k,q =

∑k
β x

2−q
kβ (and we are using the convention 00 = 0 for q = 2).

In the context of convex programming, (RDq) was derived as an example of a
Hessian Riemannian gradient flow in Alvarez et al. [2]; more recently, these dynam-
ics also appeared in Harper [22] under the name “q-deformed replicator dynamics”.
Obviously, for q = 1, (RDq) is simply the replicator equation (RD), reflecting the
fact that the Tsallis penalty (3.22) converges to the Gibbs penalty (2.9) as q → 1.
Furthermore, for q = 2, the Tsallis penalty (3.22) is equal to the quadratic penalty
(2.11) up to an affine term; consequently, since (RLDθ) does not involve the first
derivatives of h, the dynamics (RDq) for q = 2 are the same as the projection
dynamics (PD).

Of course, (3.22) is steep if and only if 0 < q ≤ 1, so (RDq) may fail to be
well-posed for q > 1; in particular, as in the case of the projection dynamics (RD),
the orbits of (RDq) for q > 1 may run into the boundary of the game’s strategy
space in finite time. In this way, (RDq) provides a smooth interpolation between
the replicator dynamics and the projection dynamics (obtained for q = 1 and q = 2
respectively), with the replicator dynamics defining the boundary between the well-
and ill-posed regimes of (RDq).

Example 3.4 (The Rényi entropy). The Rényi (negative) entropy is defined as

h(x) = −(1− q)−1 log
∑

β
xqβ (3.23)

for q ∈ (0, 1). Just like its Tsallis counterpart, the penalty function (3.23) is steep for
all q ∈ (0, 1) and it approaches the Gibbs penalty function (2.9) as q → 1; unlike
(3.22) though, (3.23) is not decomposable so we cannot use the explict formula
(RLDθ) to derive the induced dynamics. Still, after a somewhat tedious calculation
(which we carry out in Appendix B), we obtain the Rényi dynamics:

ẋkα =
xkα
ξkα

vkα + xkα
Sk,q − ξ−1

kα

1− Sk,q

∑k

β
xkβvkβ − xkα

1− ξ−1
kα

1− Sk,q

∑k

β

xkβ
ξkβ

vkβ (ReD)

where ξkα = qxq−1
kα

/∑k
γ x

q
kγ and Sk,q = q−1

∑k
γ x

q
γ ·
∑k
γ x

2−q
γ .

In view of its rather complicated form, it is important to recall that the system
(ReD) simply describes the evolution of the reinforcement learning dynamics (RL)
with the above choice of penalty function. Furthermore, just as the Gibbs penalty
(2.9) is recovered from (3.23) in the limit q → 1, it is natural to expect that the
replicator dynamics (RD) may themselves be seen as a limiting case of (ReD) as
q → 1; in Appendix B we show that this indeed the case.

Example 3.5 (The log-barrier). An important nonexample of a penalty function is
the logarithmic barrier:

h(x) = −
∑

β
log xβ . (3.24)

Obviously, (3.24) is steep, strongly convex and decomposable, but it fails to be finite
at the boundary bd(∆) of ∆. Nevertheless, letting θ(x) = − log x (so θ′′(x) = 1/x2)



16 P. MERTIKOPOULOS AND W. H. SANDHOLM

and working as in Example 3.3, (RLDθ) yields the log-barrier dynamics

ẋkα = x2
kα

[
vkα − r−2

k

∑k

β
x2
kβvkβ

]
, (LD)

with r2
k =

∑k
β x

2
kβ . The system (LD) is easily seen to be well-posed and it can be

seen as a limiting case of (RDq) when q → 0+. In convex optimization, (LD) was
first considered by Bayer and Lagarias [4] and it has since been studied extensively
by many authors – see e.g. Fiacco [17], Kiwiel [33], Alvarez et al. [2], Laraki and
Mertikopoulos [37] and references therein. The results that we derive in the rest of
the paper for (RL) remain true in the case of (LD), but we do not provide proofs.

4. Elimination of dominated strategies

We begin our rationality analysis with the elimination of dominated strategies.
Formally, if G ≡ G(N ,A, u) is a finite game in normal form, we say that pk ∈ Xk is
dominated by p′k ∈ Xk and we write pk ≺ p′k when

uk(pk;x−k) < uk(p′k;x−k) for all x−k ∈ X−k ≡
∏

` 6=k
X`. (4.1)

Thus, for pure strategies α, β ∈ Ak, we have α ≺ β whenever

vkα(x) < vkβ(x) for all x ∈ X . (4.2)

If (4.1) is strict for only some (but not all) x ∈ X , we will say that pk is weakly
dominated by p′k and we will write pk 4 p′k; conversely, we will say that q =
(p1, . . . , pN ) ∈ X is undominated if no component pk ∈ Xk of p is (strictly) dom-
inated. Of course, if dominated strategies strategies are removed from G, other
strategies may become dominated in the resulting restriction of G, leading to the
notion of iteratively dominated strategies. Accordingly, a strategy which survives
all rounds of elimination is called iteratively undominated.

For a given trajectory of play x(t) ∈ X , t ≥ 0, we say that the pure strategy
α ∈ Ak becomes extinct along x(t) if xkα(t)→ 0 as t→∞. More generally, following
Samuelson and Zhang [51], we say that the mixed strategy pk ∈ Xk becomes extinct
along x(t) if min{xkα(t) : α ∈ supp(pk)} → 0; otherwise, we say that pk survives.

Extending the classic elimination results of Akin [1], Nachbar [43], and Samuelson
and Zhang [51], we first show that only iteratively undominated strategies survive
under (RL):

Theorem 4.1. Let x(t) = Q(y(t)) be an orbit of (RL) in X . If pk ∈ Xk is
dominated (even iteratively), then it becomes extinct along x(t).

In the replicator dynamics, most proofs of elimination of dominated strate-
gies involve some form of the Kullback–Leibler divergence function DKL(pk, xk) =∑k
α pkα log(pkα/xkα), an asymmetric measure of the “distance” between pk and xk;

in particular, to show that pk is eliminated along xk(t) it suffices to show that
DKL(pk, xk(t)) → +∞. Following Bregman [11], the same role for a steep penalty
function h : ∆→ R is played by the so-called Bregman divergence:

Dh(p, x) = h(p)− h(x)− 〈dh(x)|p− x〉 , p ∈ ∆, x ∈ ∆◦, (4.3)
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Figure 2. Evolution of play under the reinforcement learning dynam-
ics (RL) in Matching Pennies (Nash equilibria are depicted in dark red
and stationary points in light/dark blue; for the game’s payoffs, see the
vertex labels). As the deformation parameter q of (RDq) decreases, we
pass from the nonsteep regime (q > 1) where the orbits of (RL) in X
collide with the boundary of X in finite time, to the steep regime (q ≤ 1)
where (RDq) becomes well-posed.

where dh(x) denotes the differential of h at x (so Dh(p, x) is just the difference
between h(p) and the estimate of h(p) based on linearization at x).15

On the other hand, since (RLD) may fail to be well-posed if the players’ penalty
functions are not steep, we must analyze the reinforcement learning dynamics (RL)
directly on the dual space V∗ where the score variables y evolve. To do so, we

15One can easily verify that the Bregman divergence (4.3) of the Gibbs penalty (2.9) is simply
the standard Kullback–Leibler divergence.
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introduce the Fenchel coupling between pk ∈ Xk and yk ∈ V∗k , defined as

Fk(pk, yk) = hk(pk) + h∗k(yk)− 〈yk|pk〉 , (4.4)

where
h∗k(yk) = max

xk∈Xk
{〈yk|xk〉 − hk(xk)} (4.5)

denotes the convex conjugate of the penalty function hk : Xk → R of player k. Our
choice of terminology above simply reflects the fact that Fk(pk, yk) collects all the
terms of Fenchel’s inequality, so it is non-negative and (strictly) convex in both
arguments. Furthermore, we show in Proposition C.3 that Fk(pk, yk) is equal to
the associated Bregman divergence between pk and xk = Qk(yk) when the latter is
interior and that Fk(pk, yk) provides a proximity measure between pk and Qk(yk)
which is applicable even when hk is not steep.

Proof of Theorem 4.1. Assume first that pk ∈ Xk is dominated by p′k ∈ Xk and let
Λk = {xk ∈ Xk : xkα = 0 for some α ∈ supp(pk)} be the union of all faces of Xk
that do not contain pk. By definition, pk becomes extinct along x(t) if and only if
xk(t)→ Λk as t→∞; therefore, in view of Proposition C.4, it suffices to show that
Fk(pk, yk(t))→ +∞.

To that end, consider the “cross-coupling”

Vk(yk) = Fk(pk, yk)− Fk(p′k, yk) = hk(pk)− hk(p′k)− 〈yk|pk − p′k〉 . (4.6)

Under the dynamics (RL), we then have:
d

dt
Vk(yk(t)) = −〈vk(x(t))|pk − p′k〉 = uk(p′k;x−k(t))− uk(pk;x−k(t)) ≥ δk > 0,

(4.7)
where δk = minx∈X {uk(p′k;x−k)−uk(pk;x−k)} denotes the minimum payoff differ-
ence between pk and p′k. Hence, with Fk(p′k, yk) ≥ 0 for all yk ∈ V∗k (Proposition
C.3), we readily obtain

Fk(pk, yk(t)) ≥ Vk(yk(0)) + δkt, (4.8)

so every ω-limit of xk(t) belongs to Λk by Proposition C.4, i.e. pk becomes extinct.
To show that iteratively dominated strategies become extinct, we proceed by

induction on the rounds of elimination of dominated strategies. More precisely, let
X rk ⊆ Xk denote the space of mixed strategies of player k that survive r rounds of
elimination so that all strategies pk /∈ X rk become extinct along x(t); in particular,
if α /∈ Ark ≡ Ak ∩ X rk , this implies that xkα(t) → 0 as t → ∞. Assume further
that pk ∈ X rk survives for r elimination rounds but dies on the subsequent one, so
there exists some p′k ∈ X rk with uk(p′k;x−k) > uk(pk;x−k) for all x ∈ X r =

∏
` X r` .

With this in mind, decompose x ∈ X as x = xr + zr where xr is the (Euclidean)
projection of x on the subspace of X spanned by the surviving pure strategies Ar` ,
` ∈ N . Our induction hypothesis implies zr(t) = x(t)− xr(t)→ 0 as t→∞ (recall
that xkα(t)→ 0 for all α /∈ Ark), so, for large enough t, we have

|〈vk(x(t))|p′k − pk〉 − 〈vk(xr(t))|p′k − pk〉| < δrk/2, (4.9)

where δrk = minxr∈X r{uk(p′k;xr−k)− uk(pk;xr−k)}.
By combining the above, we get

〈vk(x(t))|p′k − pk〉 = uk(p′k;x(t))− uk(pk;x(t)) > δrk/2 > 0 (4.10)

for large t, and our claim follows by plugging this last estimate into (4.7) and
arguing as in the base case r = 1. �
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Remark 4.1. In the projection dynamics of Nagurney and Zhang [44], dominated
strategies need not be eliminated: although such strategies are selected against at
interior states, the dynamics’ solutions may enter and leave the boundary of X in
perpetuity, allowing dominated strategies to survive (Sandholm et al. [53]). Simi-
larly, there exist Carathéodory solutions of the projection dynamics (PD) that do
not eliminate dominated strategies (for instance, stationary trajectories at vertices
corresponding to dominated strategies). By contrast, Theorem 4.1 shows that dom-
inated strategies become extinct along every orbit x(t) = projX y(t) of (PD) that
is induced by the projected reinforcement learning scheme (PL).16

Remark 4.2. Theorem 4.1 imposes no restrictions on the players’ choice maps.
For instance, dominated strategies become extinct even if some players use the
exponential learning scheme (XL) while others employ the projection-driven process
(PL). In fact, the proof of Theorem 4.1 shows that the elimination of a player’s
dominated strategies is a unilateral result: if a player follows (RL), he ceases to
play dominated strategies irrespective of what other players are doing.

We now turn to the rate of elimination of dominated strategies. In the case
of the replicator dynamics, this rate is known to be exponential: if α ≺ β, then
xα(t) = O(exp(−ct)) for some c > 0 – see e.g. Weibull [64]. However, as we show
below, the rate of elimination of dominated strategies under (RL) depends crucially
on the players’ choice of penalty function; in fact, if the players’ penalty functions
are nowhere steep, dominated strategies become extinct in finite time. This is
perhaps most easily seen in the case of the projection dynamics (PL): when starting
at the interior of the simplex, a player simply follows his payoff vector and there is
no mitigating factor to slow down his trajectory of play near the boundary of the
simplex (by contrast, in the replicator dynamics, ẋkα tends to zero as xkα → 0). In
this way, trajectories of play attain the boundary of the simplex in finite time – and
so on for every subface of the simplex until all dominated strategies are eliminated.

Building on this intuition, our general result is as follows:

Proposition 4.2. Let x(t) = Q(y(t)) be an orbit of the dynamics (RLη) and
assume that the players’ penalty functions are of the form hk(xk) =

∑k
β θk(xkβ) for

some θk : [0, 1]→ R as in (2.6). If α ≺ β, then
xkα(t) ≤ φk(ck − ηkδkt), (4.11)

where ck is a constant that only depends on the initial conditions of (RL), δk =
min{vkβ(x) − vkα(x) : x ∈ X} is the minimum payoff difference between α and β,
and the rate function φk is given by:

φk(z) =


0 if z ≤ θ′k(0+),
1 if z ≥ θ′k(1−),
(θ′k)−1(z) otherwise,

(4.12)

where (θ′k)−1 is the inverse function of θ′k. In particular, if θ′k(0) is finite, dominated
strategies become extinct in finite time.

Proof. By the definition of the reinforcement learning dynamics (RLη), we have:

ẏkα − ẏkβ = ηk [vkα(x(t))− vkβ(x(t))] ≤ −ηkδk, (4.13)

16Recall here that such orbits are solutions of (PD) in the sense of Corollary 3.3 – i.e. they
satisfy (PD) over an open dense subset of [0,∞).
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Dynamics Penalty Kernel θ(x) Decay Rate φ(−y)

projection (PL) 1
2
x2 −y

replicator (RD) x log x exp(−y)

q-replicator (RDq) [q(1− q)]−1(x− xq) [q−1 + (1− q)y]1/(q−1)

log-barrier (LD) − log x 1/y

Table 1. Rates of extinction of dominated strategies and convergence
to strict equilibria under the dynamics (RLη) for different penalty ker-
nels θ. If α ≺ β and vkβ − vkα ≥ δ, the rate function φ is such that
xkα(t) ≤ φ(c− ηδt) for some c ∈ R – cf. (4.12). Otherwise, if α ∈ Ak is
the component of a strict equilibrium x∗ and vk,0(x∗)−vkβ(x∗) ≥ δ > 0
for all β ∈ Ak \{α}, the rate function φ is such that 1− xkα(t) is of the
order of φ(c − ηδt) for large t. If the penalty kernel θ is not steep at 0
(as in the projection and q-replicator dynamics for q > 1), extinction of
dominated strategies and/or convergence to a strict equilibrium occurs
in finite time.

and hence:
ykα(t)− ykβ(t) ≤ ykα(0)− ykβ(0)− ηkδkt. (4.14)

On the other hand, by the KKT conditions (A.2) for the softmax problem (2.7),
we obtain θ′k(xkα)− θ′k(xkβ) ≤ ykα− ykβ whenever xkα = Qkα(yk) > 0. Since θ′k is
bounded above on (0, 1], (4.14) gives

θ′k(xkα(t)) ≤ ck − ηkδkt (4.15)

for some ck ∈ R and for all t such that xkα(t) > 0, so (4.11) follows – simply recall
that θ′k(0) ≤ θ′k(xkα(t)) so xkα(t) = 0 if t ≥ (ck − θ′k(0))/(ηkδk). �

Remark 4.3. Proposition 4.2 shows that a player’s penalty function can be reverse-
engineered in terms of the desired rate of elimination of dominated strategies: to
achieve a target extinction rate φ, it suffices to pick a penalty kernel θ such that
θ′ = φ−1 (cf. Table 1). For instance, the Gibbs kernel θ(x) = x log x of (2.9) yields
the exponential extinction rate exp(c−δt) whereas the quadratic kernel (2.11) gives
the bound [c−δt]+ which shows that (PL) eliminates dominated strategies in finite
time.

Finally, for weakly dominated strategies, we obtain the following conditional
extinction result in the spirit of Weibull [64, Proposition 3.2]:

Proposition 4.3. Let x(t) = Q(y(t)) be an orbit of (RL) in X and let pk 4 p′k.
Then, pk becomes extinct along x(t) or every α−k ∈ A−k ≡

∏
` 6=kA` such that

uk(pk;α−k) < uk(p′k;α−k) becomes extinct along x(t).

Remark 4.4. The “or” above is not exclusive: the two extinction clauses could occur
simultaneously – see e.g. Weibull [64, Proposition 3.2] for the case of the replicator
dynamics.

Proof of Proposition 4.3. With notation as in the proof of Theorem 4.1, we have:

V̇k = 〈vk(x(t))|p′k − pk〉 =
∑

α−k∈A′−k
[uk(p′k;α−k)− uk(pk;α−k)]xα−k(t), (4.16)
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where xα−k ≡
∏
6̀=k x`,α` denotes the α−k-th component of x and A′−k = {α−k ∈

Ak : uk(pk;α−k) < uk(p′k;α−k)}. Integrating with respect to t, we see that Vk(y(t))
remains bounded if and only if the integrals

∫∞
0
xα−k(t) dt are all finite. However,

with ẋα−k(t) essentially bounded, the same argument as in the proof of Weibull
[64, Prop. 3.2] shows that limt→∞ xα−k(t) = 0 if

∫∞
0
xα−k(t) dt is finite. If this is

not the case, we have limt→∞ Vk(y(t)) = +∞ and Proposition C.4 shows that pk
becomes extinct. �

5. Equilibrium, stability and convergence

We now turn to the long-term stability and convergence properties of the rein-
forcement dynamics (RL). Our analysis focuses on Nash equilibria, i.e. strategy
profiles x∗ = (x∗1, . . . , x

∗
N ) ∈ X that are unilaterally stable in the sense that

uk(x∗) ≥ uk(xk;x∗−k) for all xk ∈ Xk and for all k ∈ N , (5.1)

or, equivalently:

vkα(x∗) ≥ vkβ(x∗) for all α ∈ supp(x∗k) and for all β ∈ Ak, k ∈ N . (5.2)

If (5.1) is strict for all xk 6= x∗k, k ∈ N , we say that x∗ is a strict equilibrium. Finally,
equilibria of restrictions of G are called restricted equilibria of G; in particular, x∗
is a restricted equilibrium of G if (5.1) holds for every k ∈ N and for all xk with
supp(xk) ⊆ supp(x∗k).

Some basic long-term stability and convergence properties of the replicator dy-
namics for (asymmetric) normal form games can be summarized as follows:

(1) Nash equilibria are stationary.
(2) If an interior solution orbit converges, its limit is Nash.
(3) If a point is Lyapunov stable, then it is Nash.
(4) Strict equilibria are asymptotically stable.

Our aim in this section is to establish analogous results for the reinforcement
learning scheme (RL). That said, since (RL) does not evolve directly on X (and
the induced strategy-based dynamics (RLD) are well-posed only when the players’
penalty functions are steep), the standard notions of stability and stationarity must
be modified accordingly.17

Definition 5.1. Let x∗ ∈ X and let x(t) = Q(y(t)) be a solution orbit of (RL).
We will then say that:

(1) x∗ is stationary under (RL) if x∗ ∈ imQ and x(t) = x∗ for all t ≥ 0
whenever x(0) = x∗.

(2) x∗ is Lyapunov stable under (RL) if, for every neighborhood U of x∗, there
exists a neighborhood V of x∗ such that x(t) ∈ V for all t ≥ 0 whenever
x(0) ∈ V ∩ imQ.

(3) x∗ is attracting under (RL) if x∗ admits a neighborhood V such that x(t)→
x∗ as t→∞ whenever x(0) ∈ V ∩ imQ.

(4) x∗ is asymptotically stable under (RL) if it is Lyapunov stable and attract-
ing.

17The standard stability notions continue to apply in the dual space V∗ where y(t) evolves;
however, since the mapping Q : V∗ → X which defines the trajectories of play x(t) = Q(y(t)) in
X is neither injective nor surjective, this approach would not suffice to define stationarity and
stability on X .
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Remark 5.1. The requirement x(0) ∈ V ∩ imQ above is redundant because x(0) ∈
imQ by definition. We only mention it to clarify that there are boundary points of
X which may be inadmissible as initial points of the dynamics (RL).

On a similar note, stationary points x∗ ∈ X are explicitly required to belong
to the image of the players’ choice map Q but no such assumption is made for
stable states. From a propositional point of view, this is done to ensure that points
x∗ ∈ X \ imQ are not called stationary vacuously. From a dynamical standpoint,
stationary points should themselves be (constant) trajectories of the dynamical
system under study, whereas Lyapunov stable and attracting states only need to
be approachable by trajectories.

Since imQ ⊇ X ◦, any point in X can be a candidate for (asymptotic) stabil-
ity under (RL); however, boundary points might not be suitable candidates for
stationarity, so stability does not imply stationarity (as would be the case for a
dynamical system defined on X ). In particular, recall that x∗ /∈ imQ if and only
if some player’s penalty function is steep at x∗. As such, in the (steep) example of
exponential learning, x∗ ∈ X is stationary under (XL) if and only if it is an interior
stationary point of the replicator dynamics (RD); by contrast, in the (non-steep)
projection setting of (PD), any point in X may be stationary.

With this definition at hand, we then obtain:

Theorem 5.2. Let G ≡ G(N ,A, u) be a finite game, let x∗ ∈ X , and let x(t) =
Q(y(t)) be an orbit of (RL) in X .

I. If x∗ is stationary under (RL), then it is a Nash equilibrium of G; conversely,
if x∗ is a Nash equilibrium of G and x∗ ∈ imQ, x∗ is stationary under (RL).

II. If limt→∞ x(t) = x∗, then x∗ is a Nash equilibrium of G.
III. If x∗ ∈ X is Lyapunov stable under (RL), then x∗ is a Nash equilibrium of G.
IV. If x∗ is a strict Nash equilibrium of G, then it is also asymptotically stable

under (RL).

For steep and decomposable penalty functions, Parts I, III and IV of Theorem
5.2 essentially follow from Theorem 1 in Coucheney et al. [14] (see also Laraki and
Mertikopoulos [36, 37] for related results in a second order setting). Our proofs
mimic those of Coucheney et al. [14], but the lack of steepness means that we
must work directly on the dual space V∗ of the score variables yk and rely on the
properties of the Fenchel coupling.

To prove Theorem 5.2, we need the following result (which is of independent
interest):

Proposition 5.3. If every neighborhood U of x∗ ∈ X admits an orbit xU (t) =
Q(yU (t)) of (RL) such that xU (t) ∈ U for all t ≥ 0, then x∗ is a Nash equilibrium.

Proof. Assume ad absurdum that x∗ is not Nash, so vkα(x∗) < vkβ(x∗) for some
player k ∈ N and for some α ∈ supp(x∗k), β ∈ Ak. Moreover, let U be a sufficiently
small neighborhood of x∗ in X such that vkβ(x) − vkα(x∗) ≥ δ > 0 for all x ∈ U .
Then, if x(t) = Q(y(t)) is an orbit of (RL) in X that is contained in U for all t ≥ 0,
we will have

ykα(t)− ykβ(t) = ykα(0)− ykβ(0) +

∫ t

0

[vkα(x(s))− vkβ(x(s))] ds ≤ c− δt, (5.3)

for some c ∈ R and for all t ≥ 0. This shows that ykα(t) − ykβ(t) → −∞ so,
by Proposition A.1, we must also have limt→∞ xkα(t) = 0. This contradicts our



LEARNING IN GAMES VIA REINFORCEMENT AND REGULARIZATION 23

original assumption that x(t) remains in a small enough neighborhood of x∗ (recall
that α ∈ supp(x∗k) by assumption), so x∗ must be Nash. �

With this result at hand, we may now proceed with the proof of Theorem 5.2:

Proof of Theorem 5.2.
Part I. If x∗ is stationary under (RL), then Q(y(t)) = x∗ for some y(0) ∈ V∗
and for all t ≥ 0; this shows that x∗ satisfies the hypothesis of Proposition 5.3,
so x∗ must be a Nash equilibrium of G. Conversely, assume that x∗ is Nash with
x∗ = Q(y(0)) for some initial y(0) ∈ V∗; we then claim that the trajectory y(t)
with ykα(t) = ykα(0) + vkα(x∗)t is the unique solution of (RL) starting at y(0).
Indeed, since vkβ(x∗) ≤ vkα(x∗) for all α ∈ supp(x∗k) and for all β ∈ Ak, we have
ykα(t) = ykα(0) + ckt− dkαt where dkα = 0 if α ∈ supp(x∗k) and dkα ≥ 0 otherwise.
Proposition A.1 shows that Qk(yk(t)) = x∗k, so y(t) satisfies (RL) and our assertion
follows by the well-posedness of (RL).

Parts II and III. The convergence and stability assumptions of Parts II and
III both imply the hypothesis of Proposition 5.3 so x∗ must be a Nash equilibrium
of G.
Part IV. Relabeling strategies if necessary, assume that x∗ = (α1,0, . . . , αN,0)
is a strict equilibrium of G, let A′k = Ak \{αk,0}, and consider the relative score
variables:

zkµ = ykµ − yk,0, µ ∈ A′k, (5.4)
so that

żkµ = vkµ(x)− vk,0(x). (5.5)
Proposition A.1 shows that xkµ → 0 whenever zkµ → −∞, so we also have x→ x∗

if zkµ → −∞ for all µ ∈ A′k, k ∈ N . Moreover, given that x∗ is a strict equilibrium,
the RHS of (5.5) is negative if x is close to x∗; as such, the main idea of our proof
will be to show that the relative scores zkµ escape to negative infinity when they
are not too large to begin with (i.e. when x(0) is close enough to x∗).

To make this precise, let δk = minµ∈A′k{vk,0(x∗)− vkµ(x∗)} > 0 and let ε > 0 be
such that vkµ(x)− vk,0(x) < −δk/2 for all x with ‖x− x∗‖2 < ε. Furthermore, let

Fh(x∗, y) =
∑

k
Fk(x∗k, yk) =

∑
k

[hk(x∗k) + h∗k(yk)− 〈yk|x∗k〉] (5.6)

denote the Fenchel coupling between x∗ and y (cf. Appendix C), and set

U∗ε = {y ∈ V∗ : Fh(x∗, y) < εKmin/2} (5.7)

where Kmin > 0 is the smallest strong convexity constant of the players’ penalty
functions. Proposition C.3 gives ‖Q(y)− x∗‖2 ≤ 2K−1

minFh(x∗, y) < ε, so we will
also have vkµ(Q(y))− vk,0(Q(y)) < −δk/2 for all y ∈ U∗ε .

In view of the above, let y(t) be a solution of (RL) with y(0) ∈ U∗ε and let
τε = inf{t : y(t) /∈ U∗ε } be the first exit time of y(t) from U∗ε . Then, if τε <∞:

zkµ(τε) = zkµ(0)+

∫ τε

0

[vkµ(x(s))− vk,0(x(s))] ds ≤ zkµ(0)− 1
2δkτε < zkµ(0), (5.8)

for all µ ∈ A′k and for all k ∈ N . Intuitively, since the score differences yk,0 − ykµ
grow with t, x(τε) must be closer to x∗ than x(0), meaning that y(τε) ∈ U∗ε , a
contradiction. More rigorously, note that Fk(x∗k, yk) = hk(x∗k) + h∗k(yk) − yk,0;
since 〈yk|xk〉 = yk,0 +

∑
µ∈A′k

xkµ(ykµ − yk,0), we will also have h∗k(yk) − yk,0 =
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maxxk∈Xk{
∑
µ∈A′k

xkµzkµ − hk(xk)}, so h∗k(y′k) − y′k,0 < h∗k(yk) − yk,0 whenever
z′kµ < zkµ for all µ ∈ A′k. In this way, (5.8) yields the contradictory statement
ε ≤ Fh(q, y(τε)) < Fh(q, y(0)) < ε, so y(t) must remain in U∗ε for all t ≥ 0. The
estimate (5.8) then shows that limt→∞ zkµ(t) = −∞, so limt→∞ xkµ(t) = 0 by
Proposition A.1. Therefore, limt→∞ x(t) = x∗.

The above shows that y(t) is contained in U∗ε and Q(y(t))→ x∗ whenever y(0) ∈
U∗ε . To complete the proof, let Uε = {x ∈ X :

∑
kDhk(x∗k, xk) < εKmin/2} where

Dhk(x∗k, xk) is the Bregman divergence (C.4) between xk and x∗k. Propositions
C.2 and C.3 show that Uε is a neighborhood of x∗ in X with Q(U∗ε ) ⊆ Uε and
Q−1(Uε) = U∗ε , so x∗ is asymptotically stable under (RL). �

Remark 5.2. In the (asymmetric) replicator dynamics (RD), it is well known that
only strict equilibria can be attracting – so strict Nash equilibria and asymptotically
stable states coincide. One can extend this equivalence to (RL) by using restrictions
of G with smaller strategy sets to define the mixed strategy dynamics (RLD) on
the faces of X – for a related discussion, see Coucheney et al. [14].

Theorem 5.2 shows that the reinforcement learning scheme (RL) exhibits essen-
tially the same long-run properties as the benchmark replicator dynamics. That
said, from a quantitative viewpoint, the situation can be quite different: as we show
below, the rate of convergence of (RL) to strict equilibria depends crucially on the
players’ penalty functions, and convergence can occur in finite time:

Proposition 5.4. Let x(t) = Q(y(t)) be an orbit of (RLη), let x∗ = (α1,0, . . . , αN,0)
is a strict Nash equilibrium, and assume that the players’ penalty functions are of
the form hk(xk) =

∑k
β θk(xkβ) for some θk : [0, 1]→ R as in (2.6). Then, for every

ε > 0 and for all x(0) sufficiently close to x∗, we have:

1− xk,0(t) ≤ φk(ck − (1− ε)ηkδkt), (5.9)

where ck is a constant that only depends on the initial conditions of (RL), δk =
min

{
vk,0(x∗)− vkµ(x∗) : µ ∈ Ak, µ 6= αk,0

}
, and the rate function φk is defined as

in (4.12).
In particular, if θ′k(0) is finite, convergence occurs in finite time.

Proof. Pick some ε > 0 and let U be a neighborhood of x∗ in X such that vk,0(x)−
vkµ(x) remains (multiplicatively) within (1± ε) of vk,0(x∗)− vkµ(x∗) for all x ∈ U
and for all µ ∈ A′k = Ak \{αk,0}. If x(0) is sufficiently close to x∗, x(t) will remain
in U for all t ≥ 0 by Theorem 5.2; hence, the same reasoning as in the proof of
Proposition 4.2 yields

xkµ(t) ≤ [φk(ckµ − (1− ε)ηkδkµt)]+ , (5.10)

where δkµ = vk,0(x∗)−vkµ(x∗) and ckµ is a constant depending on initial conditions.
Since ε can be taken arbitrarily small and x(t) → x∗ as t → ∞, the above yields
xkµ(t) ∼ [φk(−ηkδkµt)]+ for large t; thus, letting δk = minµ δkµ, we finally obtain:

1− xk,0(t) =
∑

µ∈A′k
xkµ(t) ∼

∑
µ∈A′k

[φk(−ηkδkµt)]+ ∼ [φk(−ηkδkt)]+, (5.11)

which completes our proof. �
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6. Time averages and the best response dynamics

As is well known, the replicator dynamics (RD) do not converge to equilibrium
when the game’s only Nash equilibrium is interior (for instance, as in Matching
Pennies and generic zero-sum games). On the other hand, if a replicator trajectory
stays away from the boundary of the simplex in a 2-player normal form game, its
time-average converges to the game’s Nash set – see e.g. Hofbauer and Sigmund
[27, Chap. 7].

Under the reinforcement learning dynamics (RL), trajectories of play may enter
and exit the boundary of the game’s strategy space in perpetuity so the “per-
manence” criterion of staying a bounded distance away from bd(X ) is no longer
natural. Instead, the conclusion about convergence of time averages can be reached
by requiring that differences between the scores of each player’s strategies remain
bounded:

Theorem 6.1. Let x(t) = Q(y(t)) be an orbit of (RL) in X for a 2-player game G.
If the score differences ykα(t)− ykβ(t) remain bounded for all α, β ∈ Ak, k = 1, 2,
the time average x̄(t) = t−1

∫ t
0
x(s)ds of x(t) converges to the set of Nash equilibria

of G.

As with the classic result on time averages, our proof relies on the linearity (as
opposed to multilinearity) of each player’s payoff function, a property specific to
2-player games.

Proof. By the definition of the dynamics (RL) we have:

ykα(t)− ykβ(t) = cαβ +

∫ t

0

[vkα(x(s))− vkβ(x(s))] ds

= cαβ + t · [vkα(x̄(t))− vkβ(x̄(t))] , (6.1)

where cαβ = ykα(0)− ykβ(0) and we used linearity to bring the integral inside the
argument of vkα and vkβ . Thus, dividing by t and taking the limit t→∞, we get

lim
t→∞

[vkα(x̄(t))− vkβ(x̄(t))] = 0, (6.2)

where we have used the assumption that ykα − ykβ is bounded. Hence, if x∗ is an
ω-limit of x(t), we will have vkα(x∗) = vkβ(x∗) for all α, β ∈ Ak, k = 1, 2, so x∗
must be a Nash equilibrium of G. Since X is compact, the ω-limit set of x(t) is
nonempty and our assertion follows. �

Remark 6.1. To see how Theorem 6.1 implies the corresponding result for the
replicator dynamics, simply note that ykα − ykβ = log xkα − log xkβ under (XL).
Therefore, if x(t) stays away from the boundary of the simplex, the requirement of
Theorem 6.1 is fulfilled and we recover the classical result of Hofbauer and Sigmund
[27].

The standard example of a 2-player game that cycles under the replicator dy-
namics is the zero-sum game of Matching Pennies (MP) with payoff bimatrix:

UMP =

(
(1,−1) (−1, 1)
(−1, 1) (1,−1)

)
. (6.3)

The game’s unique minmax solution (von Neumann [62]) and unique Nash equi-
librium is x∗1 = x∗2 = (1/2, 1/2), and it is well known that the Kullback–Leibler
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divergence

DKL(x∗, x) =
∑

k

∑k

α
x∗kα log

(
x∗kα
/
xkα
)

(6.4)

is a constant of motion for (RD) (Hofbauer and Sigmund [27]). This implies that
replicator trajectories always stay away from the boundary of X , so their time
averages converge to the game’s (unique) equilibrium.

Extending the above result to the reinforcement learning dynamics (RL) and to
general zero-sum games, whose minmax solutions and Nash equilibria coincide, we
have:

Proposition 6.2. Let G be a 2-player zero-sum game (u1 = −u2). Then, the time
average x̄(t) = t−1

∫ t
0
x(s) ds of every orbit x(t) = Q(y(t)) of (RL) in X converges

to the set of interior Nash equilibria of G, provided that this set is nonempty.

Proof. Let x∗ be an interior equilibrium of G and let Fh(x∗, y) =
∑
k=1,2

[
hk(x∗k) +

h∗k(yk)− 〈yk|x∗k〉
]
denote the Fenchel coupling between x∗ and y (cf. Appendix C).

Then, by Lemma C.6, we get:

d

dt
Fh(x∗, y) = 〈v1(x)|x1 − x∗1〉+ 〈v2(x)|x2 − x∗2〉

= u1(x1, x2)− u1(x∗1, x2) + u2(x1, x2)− u2(x1, x
∗
2) = 0 (6.5)

on account of the game being zero-sum. The above shows that Fh(x∗, y(t)) remains
constant along (RL). Proposition C.5 then implies that yα(t) − yβ(t) is bounded,
so our assertion follows from Theorem 6.1. �

In the case of the replicator dynamics, a heuristic explanation for the above
is that time averages of replicator trajectories in 2-player games exhibit the same
long-run behavior as the best response dynamics of Gilboa and Matsui [21]:

ẋk ∈ brk(x)− xk. (BRD)

with brk(x) = arg maxx′k∈Xk〈vk(x)|x′k〉 ⊆ ∆ denoting the standard best response
correspondence of player k. Hofbauer et al. [28] showed that the ω-limit set Ω of
a time-averaged replicator orbit is internally chain transitive under (BRD): any
two points x, y ∈ Ω may be joined by a piecewise continuous curve (a “chain”)
consisting of arbitrarily long pieces of orbits in Ω broken by arbitrarily small jump
discontinuities (see Benaïm et al. [8] for the precise definition).

As it turns out, this property extends verbatim to the learning scheme (RL):

Theorem 6.3. Let x(t) = Q(y(t)) be an orbit of (RL) in X for a 2-player game G.
Then, the ω-limit set of the time average x̄(t) of x(t) is internally chain transitive
under the best reply dynamics (BRD).

The proof of Theorem 6.3 follows closely that of Hofbauer et al. [28, Proposi-
tion 5.1] and relies on the following proposition – itself a generalization of (and
proved in the same way as) Proposition 4.2 in Hofbauer et al. [28]:

Proposition 6.4. Let x(t) = Q(y(t)) be an orbit of (RL) for a 2-player game
G. Then, xk(t) lies within δ(t) of brk(x̄(t)) in the uniform norm on X and the
approximation error δ(t) tends to 0 as t→∞.
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Figure 3. Time averages in Matching Pennies under the exponen-
tial learning scheme (XL) and the projected reinforcement learning dy-
namics (PL). In both cases, solution trajectories (green) cycle, either
avoiding the boundary bd(X ) of X (replicator) or attaining it infin-
itely often (projection); on the other hand, their time averages (blue)
converge to the game’s equilibrium. In both cases, the dynamics have
been integrated over the same time horizon, showing that (PL) evolves
significantly faster than (XL).

Proof. From the definition of the dynamics (RL), and using the fact that vk is linear
in 2-player games, we readily obtain:

yk(t) = yk(0) +

∫ t

0

vk(x(s)) ds = yk(0) + t · vk(x̄(t)). (6.6)

Hence, xk(t) = Qk(yk(t)) is the (unique) maximizer of the strictly concave problem:

maximize 〈vk(x̄(t))|x′k〉+ t−1 [〈yk(0)|x′k〉 − h(x′k)] ,

subject to x′k ∈ Xk.
(6.7)

Therefore, with y(0)/t → 0 as t → ∞ and h finite and continuous on Xk, the
maximum theorem of Berge [9, p. 116] shows that xk(t) lies within a vanishing
distance of brk(x̄(t)) = arg maxx′k∈Xk 〈vk(x̄(t)|x′k〉, as claimed. �

Proof of Theorem 6.3. Following Hofbauer et al. [28], differentiate x̄(t) to obtain

d

dt
x̄(t) =

x(t)

t
− 1

t2

∫ t

0

x(s) ds =
1

t
(x(t)− x̄(t)) . (6.8)

After changing time to τ = log t, this expression gives d
dτ x̄ = x− x̄, so Proposition

6.4 shows that x̄(τ) tracks a perturbed version of the best reply dynamics (BRD)
in the sense of Benaïm et al. [8, Definition II]. Our assertion then follows from
Theorem 3.6 in Benaïm et al. [8]. �
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We close this section with some easy corollaries of Theorem 6.3: first, if the
time average of a solution orbit x(t) = Q(y(t)) of (RL) converges, its limit must be
Nash; second, if (BRD) is globally attracted to some x∗ ∈ X ◦, the time averages
of (RL) also converge to x∗. These conclusions can be seen as generalizations of
the corresponding statements in Hofbauer et al. [28] for interior replicator orbits;
in our more general setting however, these conclusions hold for every orbit of (RL)
in X , even those that enter and then leave bd(X ) – e.g. as in the Matching Pennies
example of Fig. 3.

7. Learning without a penalty function

We conclude this paper by considering the following question: what happens
if players use the exact argmax correspondence Q0

k(yk) = arg maxxk∈Xk 〈yk|xk〉 of
(2.4) as a choice map in (RL)?

Given that Q0
k : V∗k ⇒ Xk is multi-valued, the resulting unpenalized reinforce-

ment learning (URL) process is defined via the inclusion:

yk(t) = yk(0) +

∫ t

0

vk(x(s)) ds,

xk(t) ∈ Q0
k(yk(t)).

(URL)

Expressing this in differential form yields the differential inclusion

ẏk(t) ∈ vk(Q0
k(y(t))).

This unpenalized version of (RL) is equivalent to the process of correlated
continuous-time fictitious play (CFP) (Fudenberg and Levine [20]), in which players
best respond to the time average of their opponents’ joint past play.18 To define
this process formally, recall first that a correlated strategy χ = (χα1,...,αN ) ∈ ∆(A)
is a distribution on pure strategy profiles (α1, . . . , αN ) ∈ A =

∏
kAk. Writing

A−k ≡
∏
` 6=kA` for the set of action profiles of the opponents of player k, let

χ−k ∈ ∆(A−k) denote the associated marginal distribution of χ, and let vck(χ)
denote the payoff vector of player k against this marginal distribution:

vckαk(χ) =
∑

α′−k∈A−k
uk(αk, α

′
−k) χ−kα′−k . (7.1)

Then, given a strategy profile x(t) = (x1(t), . . . , xN (t)) at time t, let χ(t) =⊗
k xk(t) be its representation as a correlated strategy, i.e.

χα1,...,αN (t) ≡
∏

k
xkαk(t). (7.2)

To define CFP, we initialize the players’ strategies xk(t) arbitrarily over some
interval of time [−τ, 0], and thereafter set:

χ̄(t) =
1

τ + t

∫ t

−τ
χ(s) ds,

xk(t) ∈ Q0
k(vck(χ̄(t))).

(CFP)

18We are grateful to an anonymous referee for pointing out this connection.
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Because the independent joint behavior at time t is represented as a correlated
strategy χ(t), the time-averaged joint behavior χ̄(t) typically exhibits correlation.19

To show the equivalence of (CFP) with the unpenalized reinforcement learning
process (URL), we use the linearity of vck to express vck(χ̄(t)) in terms of the score
variable y(t). Defining the initial score by

yk(0) =

∫ 0

−τ
vk(x(s)), (7.3)

we get

vck(χ̄(t)) = vck

(
1

τ + t

∫ t

−τ
χ(s) ds

)
=

1

τ + t

∫ t

−τ
vck(χ(s)) ds

=
1

τ + t

(
yk(0) +

∫ t

0

vk(x(s)) ds

)
=

1

τ + t
yk(t). (7.4)

Since the argmax correspondence Q0
k is scale-invariant, we can write

xk(t) ∈ Q0
k(vck(χ̄(t))) = Q0

k

(
1

τ + t
yk(t)

)
= Q0

k(yk(t)), (7.5)

thus recovering (URL).20

The only difference between (CFP) and (URL) is in their allowable initial con-
ditions: equation (7.3) shows that (CFP) can only generate initial score vectors
yk(0) corresponding to aggregate payoffs from an initial period of play. Still, the
definition of yk(t) in (URL) implies that the averaged score 1

τ+tyk(t) approaches
the set of initial conditions of form (7.3) as t increases.

In 2-player games, each player has just one opponent, so there is no need to
account for correlation in opponents’ choices over time. In this case we can express
(CFP) as

x̄k(t) =
1

τ + t

∫ t

−τ
xk(s) ds,

xk(t) ∈ Q0
k(vk(x̄(t))).

(7.6)

Differentiating then yields

˙̄xk(t) ∈ 1

τ + t

(
Q0
k(vk(x̄(t)))− x̄(t)

)
=

1

τ + t
(br(x̄(t))− x̄(t)) . (7.7)

Thus, up to a time change, the evolution of each player’s time-averaged play under
two-player (URL) and (CFP) follows the best response dynamics (BRD). Con-
sequently, standard results on these dynamics (see e.g. Hofbauer [24]) imply that

19For instance, if the players first play pure strategy profile (α1, . . . , αN ) and subsequently a
pure strategy profile (α′1, . . . , α

′
N ) with αk 6= α′k for all k, then χ̄(t) will be a joint distribution

that puts all mass on these two strategy profiles. This χ̄(t) cannot be represented as a mixed
strategy profile, as it is not a product distribution.

20This last step would fail for our original process (RL), since the regularized argmax Qk is
not scale-invariant.
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Figure 4. Logit and projection choice maps for different noise levels.
We consider a player with two actions A = {0, 1} and z = y1−y0 denotes
the score difference between the two. The player’s choice probability
Q1(y) for different noise levels γ = η−1 is given by (3.9) for the logit
case, and by min{1,max{0, (1 + γ−1z)/2}} for the projection case.

analogues of certain properties of (RL) still hold for (URL) when initial scores are
of form (7.3):

(1) Dominated strategies are never chosen.
(2) There exists a stationary trajectory x(t) of (URL) such that x(t) = x∗ (or

x̄(t) = x∗) for all t ≥ 0, if and only if x∗ is a Nash equilibrium.
(3) If x∗ is a strict equilibrium, then it attracts an open set of nearby initial

conditions x̄(0). Alternatively, there is an open set of initial conditions y(0)
with Q0(y(0)) close enough to x∗ such that x̄(t) and x(t) converge to x∗.

(4) In 2-player zero-sum games, x̄(t) converges to the game’s set of Nash equi-
libria.

It is easy to establish versions of these results that allow for arbitrary initial score
vectors. The only amendment needed is to claim (1), to say that dominated strate-
gies cease to be chosen after some finite time interval.

With three or more players, (URL) and (CFP) are no longer equivalent to (BRD):
as we have seen, the former two processes incorporate the correlation which comes
from averaging over time; the latter process does not. In this setting, (CFP) does
not define a convex-valued differential inclusion, so the basic properties of its solu-
tions do not follow from standard results.21 However, under the equivalent process
(URL), the state variable y(t) is a profile of score vectors. Because correlation no
longer appears explicitly, (URL) defines a convex-valued differential inclusion. In
this way, standard results on differential inclusions can be applied to (URL), and
we can carry over their implications to (CFP). Working in the other direction,
properties (1)–(3) above are easily established for the process (CFP), and therefore
hold for (URL) as well.

The rationality properties of (URL) can also be explained by considering the
reinforcement learning scheme (RL) with a very small noise level γ ≈ 0 as in (3.10).
In Fig. 4, we focus on the entropic and quadratic penalties (2.9) and (2.11), and we

21Whenever χ̄(t) is a correlated strategy against which multiple players have multiple best re-
sponses, the set of allowable choices of χ(t) in (CFP) is a set of correlated strategies corresponding
to independent randomizations by these players. This is not a convex subset of ∆(A) (cf. Viossat
and Zapechelnyuk [61]). For basic properties of differential inclusions, see Aubin and Cellina [3].
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plot the induced regularized best response maps for different noise levels γ when
the player has two pure strategies. Up to a time shift, these plots also describe the
behavior of the solution orbits of (3.10) for a single-player game with fixed payoff
difference v1 − v0 ≡ 1 (simply note that the player’s score difference z satisfies
ż = v1 − v0 = 1). In the logit case, the weight on the dominated strategy vanishes
at an exponential rate, and this rate of decay increases as the noise level γ tends
to 0 (cf. Table 1); nevertheless, the dominated strategy is played with positive
probability for all time. In the projection case however, the player assigns positive
weight on both actions only within a window whose width goes to 0 as the noise
level γ tends to 0; thus, if the player starts with a high score difference in favor of
the dominated strategy, this difference will decrease linearly until it reaches that
window, and the player will then transit sharply to the dominant strategy. Either
way, the behavior of the dynamics (URL) is recovered in the limit γ → 0.

Appendix A. Basic properties of choice maps

In this appendix, we prove some intuitive properties of choice maps that were in-
voked in the main text. For simplicity, all results will be stated for the d-dimensional
simplex ∆ ≡ ∆(A) of V = Rd+1 that is spanned by the index set A = {0, 1, . . . , d}.
We have:

Proposition A.1. Let h be a penalty function on ∆ and let Q : V∗ → ∆ be its
induced choice map. Then:
i. Q(y′) = Q(y) for all y, y′ ∈ V∗ such that y′ − y ∝ (1, . . . , 1).
ii. Q(y − teβ) = Q(y) for all t ≥ 0 and for all y ∈ V∗ such that Qβ(y) = 0.
iii. Qα(y)→ 0 whenever yα − yβ → −∞ for some β 6= α.

The first part of Proposition A.1 shows that modifying all payoffs by the same
amount does not change relative advantages between strategies, so choice proba-
bilities remain invariant along (1, . . . , 1). The second part shows that choice prob-
abilities also remain unchanged if one reduces the payoff of an action that already
has a strategy share of 0; finally, the last part states that the strategy share of
an action becomes vanishingly small when the payoff of said action is at a great
relative disadvantage to that of another action.

Proof of Proposition A.1. For the first part, assume that y′α = yα+c for some c ∈ R
and for all α ∈ A. Then:

Q(y′) = arg maxx∈∆

{
〈y|x〉+

∑
β xβ · c− h(x)

}
= arg maxx∈∆{〈y|x〉 − h(x)} = Q(y). (A.1)

For the second part, the first order Karush–Kuhn–Tucker (KKT) conditions for
the regularized problem (2.7) give

yβ −
∂h

∂xβ

∣∣∣∣
Q(y)

= µ− νβ (β = 0, . . . ,m), (A.2)

where µ ∈ R is the Lagrange multiplier of the equality constraint
∑
β xβ = 1 and

να ≥ 0 is the complementary slackness multiplier of the inequality constraint xα ≥ 0
– i.e. να = 0 for all α ∈ supp(Q(y)). Hence, if we let y′α = yα − tδαβ for some
β /∈ supp(Q(y)) and set µ′ = µ and ν′α = να+tδαβ ≥ 0, Q(y) also satisfies the KKT
conditions of (2.7) for y′ with Lagrange multipliers µ′ and ν′α. Since h is strictly
convex, it follows that Q(y′) = Q(y), as claimed.
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As for the last part, let yn be a sequence in V∗ such that yn,α − yn,β → −∞,
set xn = Q(yn), and assume (by descending to a subsequence if necessary) that
xn,α > ε > 0 for all n. By definition, we then have

〈yn|xn〉 − h(xn) ≥ 〈yn|x′〉 − h(x′) (A.3)

for all x′ ∈ ∆. Therefore, if we set x′n = xn + ε(eβ − eα), we readily get

ε(yn,α − yn,β) ≥ h(xn)− h(x′n) ≥ −(hmax − hmin), (A.4)

which contradicts our original assumption that yn,α − yn,β → −∞. With ∆ com-
pact, the above shows that x∗α = 0 for any limit point x∗ of xn, i.e. Qα(yn)→ 0. �

Appendix B. Calculations for the Rényi dynamics

Here we provide the calculations leading to the Rényi dynamics (ReD). To begin
with, if we drop the player index k, a straightforward differentiation of the Rényi
penalty function (3.23) yields:

∂h

∂xα
=

q

q − 1

xq−1
α∑
γ x

q
γ

=
ξα
q − 1

, (B.1)

and hence:

∂2h

∂xα∂xβ
= qδαβ

xq−2
α∑
γ x

q
γ
− q2

q − 1

xq−1
α∑
γ x

q
γ

xq−1
β∑
γ x

q
γ

= δαβ
ξα
xα

+
1

1− q
ξαξβ , (B.2)

where, for simplicity, we have set:

ξα =
qxq−1
α∑
γ x

q
γ
. (B.3)

Thus, letting gαβ = ∂α∂βh, the next step is to calculate the inverse Hessian matrix
gαβ = Hess(h(x))−1

αβ . To that end, we claim that:

gαβ = −xαxβ + δαβ
xα
ξα
. (B.4)

Indeed, by a straightforward verification, we get:∑
β
gαβgβγ =

∑
β

(
−xαxβ + δαβ

xα
ξα

)(
1

1− q
ξβξγ + δβγ

ξβ
xβ

)
= − 1

1− q
xαξγ

∑
β
xβξβ − xαξγ +

1

1− q
xαξγ + δαγ

ξα
xα

xγ
ξγ

= δαγ , (B.5)

where we have used the fact that
∑
β xβξβ = q (by definition).

On that account, we obtain:

gα =
∑

β
gαβ = −xα +

xα
ξα

(B.6)

and

G =
∑

α
gα = −1 +

∑
α

xα
ξα

= −1 +
1

q

∑
α
xqα ·

∑
α
x2−q
α . (B.7)
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Thus, letting Sq ≡ q−1
∑
α x

q
α ·
∑
α x

2−q
α = 1 +G, some more algebra yields:

gαβ − gαgβ

G
= −xαxβ + δαβ

xα
ξα

+
xαxβ − xαxβξ−1

β − xαxβξ−1
α + xαxβξ

−1
α ξ−1

β

1− Sq

=
xα
ξα
δαβ + xα

Sq − ξ−1
α

1− Sq
xβ − xα

1− ξ−1
α

1− Sq
xβ
ξβ
, (B.8)

and (ReD) follows immediately from Proposition 3.2.
We are left to show that the limit of (ReD) as q → 1 is xα

(
vα −

∑
β xβvβ

)
, i.e.,

that it boils down to the RHS of the replicator dynamics (RD). To do so, given
that ξα → 1 as q → 1, it suffices to show that

lim
q→1

[
Sq − ξ−1

α

1− Sq
− 1

ξβ

1− ξ−1
α

1− Sq

]
= −1, (B.9)

However, after discarding terms that tend to 1 as q → 1, the above limit may be
written as:

lim
q→1

∑
γ x

2−q
γ − x1−q

α − x1−q
β + q−1x1−q

α x1−q
β

∑
γ x

q
γ

q −
∑
γ x

q
γ ·
∑
γ x

2−q
γ

. (B.10)

Hence, by using de l’Hôpital’s rule, the limit (B.10) will be equal to:

−
∑
γ xγ log xγ + log xα + log xβ − 1− log xα − log xβ +

∑
γ xγ log xγ

1−
∑
γ xγ log xγ +

∑
γ xγ log xγ

= −1,

(B.11)
as claimed.

Appendix C. Bregman divergences and the Fenchel coupling

In this appendix, we introduce Bregman divergences and the Fenchel coupling,
and we discuss their basic properties.

As before, let h : ∆→ R be a penalty function on the unit d-dimensional simplex
∆ of V ≡ Rd+1. For convenience, we will treat h as an extended-real-valued function
h : V → R by setting h(x) = +∞ for all x ∈ V \∆. The subdifferential of h at x ∈ V
is then defined as ∂h(x) = {y ∈ V∗ : h(x′) ≥ h(x) + 〈y|x′ − x〉 for all x′ ∈ V} and
we will say that h is subdifferentiable at x whenever ∂h(x) is nonempty. This is
always the case if x ∈ ∆◦, so we have ∆◦ ⊆ dom ∂h ≡ {x ∈ ∆ : ∂h(x) 6= ∅} ⊆ ∆.

A key tool in our analysis is the convex conjugate h∗ : V∗ → R of h defined as

h∗(y) = maxx∈∆{〈y|x〉 − h(x)}. (C.1)

As it turns out, the choice map Q : V∗ → ∆ induced by h is simply the differential
of h∗:

Proposition C.1. Let h be a penalty function on ∆. The induced choice map
Q : V∗ → ∆ is Lipschitz and Q(y) = dh∗(y) for all y ∈ V∗.

Proof. By Theorem 23.5 in Rockafellar [49], we readily obtain

x ∈ ∂h∗(y) ⇐⇒ y ∈ ∂h(x) ⇐⇒ x ∈ arg maxx′∈∆{〈y|x′〉 − h(x′)}. (C.2)

Since the last set only contains Q(y), we immediately obtain Q(y) = dh∗(y). The
Lipschitz property for Q then follows from the strong convexity of h – see e.g.
Nesterov [46]. �
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Remark C.1. Proposition C.1 is folklore in convex optimization – see e.g. Hofbauer
and Sandholm [25], Nesterov [46], Shalev-Shwartz [54], Kwon and Mertikopoulos
[34] and many others. Equation (C.2) also shows that the image of Q is precisely
dom ∂h, a fact which we use freely in the rest of this appendix.

Given a basepoint p ∈ ∆, the one-sided derivative

h′(x; p− x) = lim
t→0+

t−1 [h(x+ t(p− x))− h(x)] (C.3)

exists for all x ∈ ∆ and is finite whenever x lies in the relative interior of a face of
∆ that also contains p. With this in mind, we define the Bregman divergence of h
as

Dh(p, x) = h(p)− h(x)− h′(x; p− x) for all p, x ∈ ∆, (C.4)
with Dh(p, x) possibly attaining the value +∞ if h′(x; p − x) = −∞.22 We then
have:

Proposition C.2. Let h be a K-strongly convex penalty function on ∆ and let ∆p

be the union of the relative interiors of the faces of ∆ that contain p, i.e.

∆p = {x ∈ ∆ : supp(x) ⊇ supp(p)} = {x ∈ ∆ : xα > 0 whenever pα > 0}. (C.5)

Then:
i. Dh(p, x) < +∞ whenever x ∈ ∆p.
ii. Dh(p, x) ≥ 0 for all x ∈ ∆ and Dh(p, x) = 0 if and only if p = x; in particular:

Dh(p, x) ≥ 1

2
K ‖x− p‖2 for all x ∈ ∆. (C.6)

iii. Dh(p, xn)→ Dh(p, x) whenever xn → x in ∆p.

Proof. Let z = p − x. If x ∈ ∆p, h(x + tz) is finite and smooth for all t in a
neighborhood of 0 so h′(x; p− x) – and hence Dh(p, x) – must be finite as well.

For part (ii), positive-definiteness is a trivial consequence of strict convexity; on
the other hand, strong convexity yields:

h(x+ tz) ≤ th(p) + (1− t)h(x)− 1

2
Kt(1− t) ‖z‖2 . (C.7)

Moreover, with h(x) finite, we also get h(x+ tz) ≥ h(x) + th′(x; z), so (C.7) gives:

h(x) + th′(x; z) ≤ th(p) + (1− t)h(x)− 1

2
Kt(1− t) ‖z‖2 . (C.8)

After rearranging and dividing by t, the above becomes

h(p)− h(x)− h′(x; z) ≥ 1

2
K(1− t) ‖z‖2 , (C.9)

so (C.6) is obtained by letting t→ 0.
Finally, if xn → p, part (iii) follows from Kiwiel [33, Lemma 8.2]. Otherwise, if

limn xn 6= p, let zn = p−xn and take ε > 0 such that xn+tzn ∈ ∆ for all t ∈ (−ε, ε)
and for all sufficiently large n (recall that ∆p is relatively open in ∆ so xn ∈ ∆p for
large enough n). Furthermore, let fn(t) = h(xn + tzn) and let f(t) = h(x+ tz) for
t ∈ (−ε, ε); since fn and f are smooth, convex and fn → f pointwise, we obtain

22Usually, Bregman divergences are defined for x ∈ dom ∂h – Kiwiel [33] uses the notation
D′h to distinguish (C.4) from the original definition of Bregman [11]. The “raison d’ être” of the
more general definition (C.4) is that we often need to work with boundary points x ∈ bd(∆) with
∂h(x) = ∅.
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h′(xn; p− xn) = f ′n(0)→ f ′(0) = h′(x; p− x) by Theorem 25.7 in Rockafellar [49].
This concludes our proof. �

Dually to the above, h also induces a convex coupling Fh : ∆× V∗ → R with

Fh(p, y) = h(p) + h∗(y)− 〈y|p〉 for all p ∈ ∆, y ∈ V∗. (C.10)

This primal-dual coupling is (strictly) convex in both arguments and positive-
semidefinite by Fenchel’s inequality, so we call it the Fenchel coupling between
p and y. The next proposition establishes the duality relation between Dh and Fh:

Proposition C.3. Let h be a K-strongly convex penalty function on ∆ and let
p ∈ ∆. Then, Fh(p, y) ≥ 1

2K ‖Q(y)− p‖2 for all y ∈ V∗ and Fh(p, y) → 0 if and
only if Q(y)→ p; furthermore:

Fh(p, y) = Dh(p, x) whenever Q(y) = x and x ∈ ∆p. (C.11)

Remark C.2. The first part of Proposition C.3 is not implied by the second because
imQ = dom ∂h is not necessarily contained in ∆p.

Proof. For the first part of the proposition, let x = Q(y) so that h∗(y) = 〈y|x〉 −
h(x). Then:

Fh(p, y) = h(p)− h(x)− 〈y|p− x〉 . (C.12)
With y ∈ ∂h(x), we also get

h(x+ t(p− x)) ≥ h(x) + t 〈y|p− x〉 for all t ∈ [0, 1], (C.13)

so, by combining (C.13) with (C.7) as in the proof of Prop. C.2, we obtain

h(p)− h(x)− 〈y|p− x〉 ≥ 1

2
K ‖x− p‖2 , (C.14)

and our claim follows.
As for (C.11), if x ∈ ∆p, the function h(x+ t(p− x)) is finite and smooth for all

t in a neighborhood of 0 (simply note that x+ t(p−x) lies in the relative interior of
a face of ∆ for small t). Thus, since y ∈ ∂h(x) and h admits a two-sided derivative
at x along p− x, we will also have h′(x; p− x) = 〈y|p− x〉, so (C.11) follows from
(C.12). �

Intuitively, Proposition C.3 shows that the Fenchel coupling Fh(p, y) between p
and y measures the proximity of Q(y) to p; as such, if Fh(p, y) grows large, Q(y)
must be moving away from p. We formalize this as follows:

Proposition C.4. If Fh(p, yn) → +∞ for some sequence yn ∈ V∗, the sequence
xn = Q(yn) has no limit points in ∆p; in particular, lim infn→∞{xn,α : α ∈
supp(p)} = 0.

Proof. By descending to a subsequence of xn = Q(yn) if necessary, assume that
limn xn = x∗ ∈ ∆p. Since ∆p is relatively open in ∆, we must eventually have xn ∈
∆p, so Proposition C.2 gives Dh(p, xn) → Dh(p, x∗) < +∞. However, with xn ∈
∆p, Proposition C.3 also yields Dh(p, xn) = Fh(p, yn)→ +∞, a contradiction. �

The following result may be seen as a weak partial converse to the above:

Proposition C.5. Let p ∈ ∆◦. If Fh(p, yn) is bounded, then yn,α − yn,β is also
bounded for all α, β = 0, 1, . . . , d.
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Proof. We argue by contradiction. Indeed, assume that Fh(p, yn) is bounded but
yn,α−yn,β → +∞ for some α, β ∈ A ≡ {0, 1, . . . , d}. Then, by relabeling indices and
passing to a subsequence if necessary, we may assume that a) yn,α ≥ yn,κ ≥ yn,β
for all κ ∈ A; and b) the index set A can be partitioned into two nonempty sets, A+

and A−, such that yn,α − yn,κ is bounded for all κ ∈ A+ while yn,α − yn,κ → +∞
for all κ ∈ A− (obviously, α ∈ A+ and β ∈ A−). Hence, letting xn = Q(yn), we
readily obtain:

〈yn|p− xn〉 =
∑
κ∈A

yn,κ(pκ − xn,κ) =
∑
κ∈A

(yn,κ − yn,α)(pκ − xn,κ)

=
∑
κ∈A+

(yn,κ − yn,α)(pκ − xn,κ) +
∑
κ∈A−

(yn,κ − yn,α)(pκ − xn,κ).

(C.15)

The first sum above is bounded by assumption. As for the second one, Proposition
A.1 gives xn,κ → 0 as n → ∞ for all κ ∈ A−, so lim infn(pκ − xn,κ) > 0 (recall
that p ∈ ∆◦). We thus obtain

∑
κ∈A−(yn,κ − yn,α)(pκ − xn,κ) → −∞ and, hence,

〈yn|p− xn〉 = h(p)− h(xn)− Fh(p, yn)→ −∞, a contradiction. �

Our final result shows that the Fenchel coupling evolves in a particularly simple
fashion under the reinforcement learning dynamics (RL):

Lemma C.6. Let y(t) be a solution orbit of (RL). Then, for all pk ∈ Xk, we have:

d

dt
Fhk(pk, yk(t)) = 〈vk(x(t))|xk(t)− pk〉 . (C.16)

Proof. By the differential formulation (3.1) of the dynamics (RL), we readily obtain:

d

dt
Fhk(pk, yk) =

d

dt
h∗k(yk)− 〈ẏk|pk〉

= 〈ẏk|dh∗k(yk)〉 − 〈vk|pk〉 = 〈vk|Qk(yk)− pk〉 = 〈vk|xk − pk〉 ,
(C.17)

where the first equality in the second line follows from the chain rule and the
penultimate one from the fact that Qk = dh∗k (Proposition C.1). �
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